×
12.04.2023
223.018.482d

Результат интеллектуальной деятельности: Способ трансфекции и культивирования клеток, синтезирующих рекомбинантный белок глутаматдекарбоксилазу

Вид РИД

Изобретение

Аннотация: Изобретение относится к области молекулярной генетики и медицинской биотехнологии и может быть использовано в медицине при создании технологий дифференциальной диагностики аутоиммунного сахарного диабета, синдрома мышечной скованности и других заболеваний. Разработан способ трансфекции и культивирования клеток, синтезирующих рекомбинантный белок глутаматдекарбоксилазу GAD65, основанный на трансфекции клеточной культуры HEK293 специально сконструированной плазмидой, содержащей под эукариотическим промотором ген человеческого белка GAD65. Стабильная экспрессия гена и синтез белка GAD65 в трансфицированных клетках HEK293 достигнута за счет регулярного дополнительного обогащения глутамином культуральной среды. Предложенный способ культивирования клеток-продуцентов GAD65 в среде с повышенным содержанием глутамина позволяет обеспечивать стабильный синтез глутаматдекарбоксилазы в лабораторных условиях с одновременным повышением эффективности трансфекции. 2 ил., 3 табл, 3 пр.

Изобретение относится к области молекулярной генетики и медицинской биотехнологии и может быть использовано в медицине при создании технологий дифференциальной диагностики аутоиммунного сахарного диабета, синдрома мышечной скованности и других заболеваний.

Глутаматдекарбоксилазa (GAD, GAD65, GAD67) - это фермент, катализирующий преобразование глутаминовой кислоты в гамма-аминомасляную кислоту (ГАМК) посредством реакции декарбоксилирования, как показано на фиг. 1.

В организме млекопитающих глутаматдекарбоксилазa существует в виде двух изоформ - GAD67 и GAD65, кодируемых двумя генами - GAD1 и GAD2. Числа 67 и 65 указывают на молекулярную массу изоформ - 67 кДа и 65 кДа соответственно. Оба гена экспрессируются в клетках мозга и в поджелудочной железе, причем GAD65 обнаруживается в основном в синаптических терминалях, а GAD67 - в синаптических терминалях, в теле нейрона и в аксонах (Kaufman D.L., Houser C.R., Tobin A.J. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. - J. Neurochem. 1991; 56:720-723). Появление аутоантител к GAD65 предшествует развитию инсулин-зависимого сахарного диабета (Baekkeskov S., Aanstoot H.J., Christgau S., Reetz A., Solimena M, Cascalho M, Folli F, Richter-Olesen H, De Camilli P., Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990, 347(6289):151-6).

Также антитела к GAD часто обнаруживаются у пациентов с синдромом мышечной скованности (Lohmann T., Hawa M., Leslie R.D., Lane R., Picard J., Londei M. “Immune reactivity to glutamic acid decarboxylase 65 in stiffman syndrome and type 1 diabetes mellitus”. Lancet, July 2000, 356 (9223): 31-5. DOI:10.1016/S0140-6736(00)02431-4). По сути, в этих случаях аутоантитела к GAD65 являются маркерами соответствующего аутоиммунного заболевания. У здоровых людей аутоантитела к GAD65 отсутствуют. Обнаружение аутоантител к GAD65 в крови больных является важным шагом в дифференциальной диагностике аутоиммунного сахарного диабета, синдрома мышечной скованности и других заболеваний.

Для лабораторного измерения концентрации аутоантител к GAD65 в биологических жидкостях человека нужен антиген, представляющий собой GAD65, имеющий ту же аминокислотную последовательность и, предпочтительно, ту же конформацию, что GAD65, присутствующий в человеческих клетках.

Тематика культивирования белка глутаматдекарбоксилазы или использования культур, экспрессирующих ген глутаматдекарбоксилазы, уже становилась предметом исследований. Известен способ добавления витамина B6 для улучшения выхода глутаматдекарбоксилазы в культуре клеток E. coli ((Pat. No CN 104531652) Method for adding vitamin B6 to improve yield of glutamate decarboxylase, and application thereof). Однако этот способ не подходит для работы с глутаматдекарбоксилазой в эукариотических клетках. Культивирование глутаматдекарбоксилазы предпочтительно осуществляют в эукариотических культурах клеток, т.к. данный белок в природе существует в клетках млекопитающих.

Задачей настоящего изобретения явилась разработка способа получения такого антигена в лабораторных условиях. Для решения этой задачи нами создана тест-система, состоящая из клеточной культуры HEK293, полученной из клетки надпочечника абортированного эмбриона человека, экспрессирующей ген белка GAD65. Предполагается, что с синтезированным таким образом антигеном будут взаимодействовать аутоантитела, присутствующие в крови пациентов. Для этого сконструирована плазмида, содержащая под эукариотическим промотором ген человеческого белка GAD65. После трансфекции клеточной культуры HEK293 полученной плазмидой достигнута стабильная экспрессия гена и синтез белка GAD65 в трансфицированных клетках HEK293. Такая клеточная культура может использоваться для обнаружения аутоантител к GAD65 в сыворотках больных при помощи стандартного иммуноцитохимического анализа, (Bosman FT. Monoclonal antibodies in immunocytochemistry. Acta Histochem Suppl. 1988;35:27-32). Под больными здесь подразумеваются люди, которым достоверно диагностирован диабет первого типа, возникший из-за появления аутоантител к GAD65. Кровь больных получена с их согласия, и после центрифугирования плазма отделена от форменных элементов, а затем заморожена при -20°С для дальнейшего анализа.

Однако в ходе работы с клеточной культурой HEK293 было выявлено, что скорость деления клеток HEK293, синтезирующих рекомбинантный белок глутаматдекарбоксилазу (GAD65) (далее по тексту HEK293-GAD) снижена по сравнению с клетками, не синтезирующими указанный белок (табл. 1). Этот эффект обусловлен тем, что синтезируемая в трансфицированных клетках глутаматдекарбоксилаза преобразует поступающую из культуральной среды глутаминовую кислоту в гамма-аминомасляную кислоту, в результате чего трансфицированные клетки испытывают дефицит глутаминовой кислоты, что снижает скорость синтеза белков, необходимых для деления клетки.

В результате любой трансфекции получается смесь из трансфицированных и не трансфицированных клеток. При дальнейшей культивации все клетки делятся или погибают. Поскольку нетрансфицированные клетки делятся быстрее, то со временем они практически вытесняют из культуры трансфицированные клетки (табл. 1).

Это затрудняет использование культивируемых клеток для обнаружения аутоантител к GAD65 в сыворотках пациентов при помощи имунноцитохимического исследования. Этот же фактор, кроме того, является препятствием для создания клеточной линии, стабильно синтезирующей рекомбинантную глутаматдекарбоксилазу GAD65.

Техническая задача настоящего изобретения состоит в разработке способа трансфекции и культивирования клеток-продуцентов, обеспечивающих стабильный синтез глутаматдекарбоксилазы GAD65.

Предлагаемое техническое решение

Стандартные среды для культивирования клеток животных (например, среда Игла, Игла МЕМ, 199, DMEM, DMEM/F12) содержат, помимо других компонентов, глутамин (0,3-0,6 мг/мл) и глутаминовую кислоту (от 0,007). При хранении среды глутамин постепенно превращается в глутаминовую кислоту. В организмах животных этот процесс катализируется глутаминазой (фиг. 2).

В живых организмах глутаминовая кислота присутствует в составе белков, ряда низкомолекулярных веществ и в свободном виде. Она играет важную роль в азотистом обмене. Глутаминовая кислота относится к группе заменимых аминокислот и играет важную роль в организме, ее содержание в организме составляет до 25% от всех аминокислот.

Использование трансфицированных клеток для обнаружения аутоантител к GAD65 в сыворотках пациентов при помощи иммуноцитохимического исследования предполагает гиперэкспрессию GAD65 в этих клетках. То есть полезные в диагностике трансфицированные клетки должны синтезировать намного больше GAD65, чем его синтезируется в природных условиях. Если не будет гиперэкспресии, то чувствительность таких тест-систем будет слишком низкой. Вполне ожидаемо, что большое количество синтезированного GAD65 метаболизирует значимое количество глутаминовой кислоты, тем самым обедняя клетку данной аминокислотой.

Нами установлено, что регулярное дополнительное обогащение глутамином среды, в которой культивируются HEK293-GAD клетки, решает указанную выше техническую задачу (табл. 1). Кроме того, установлено, что обогащение глутамином среды, в которой осуществляется трансфекция клеток плазмидой, содержащей ген GAD65, значительно повышает эффективность трансфекции (табл. 3). При этом для достижения указанных эффектов конечная концентрация глутамина в культуральной среде должна значительно превышать концентрацию глутаминовой кислоты в стандартных культуральных средах, таких как Игла, Игла МЕМ, 199, DMEM, F12, DMEM/F12 и других.

Пример 1. Детекция GAD65 с помощью Вестерн-блот-анализа.

Клетки HEK293 культивировали при +37°С в CO2-инкубаторе (5% CO2, влажность 100) в среде DMEM/F12, содержащей эмбриональную телячью сыворотку (FBS) (10%), антибиотики (5000 ЕД/мл пенициллина G, и 50 мкг/мл стрептомицина), амфотерицин В (25 мкг/мл) и глутамин (до 9,6 мг/мл). При образовании клетками монослоя, его дезинтегрировали с помощью раствора Версена и клетки дважды отмывали PBS. К 107 клеток добавляли по 500 мкл буферных растворов I и II для экстракции белков (буфер I: 50 мМ Трис-HCl, pH 7.4, 250 мМ сахарозы, 25 мМ NaCl, 0.1 мг/мл ингибитора трипсина из сои, 2 мМ ЭДТА, 0.1% NP-40; буфер II: 50 мМ Трис-HCl, pH 8.0, 1% Тритон X-100, 150 мМ NaCl). Клетки в буфере пипетировали, ресуспендировали с помощью вортекса, инкубировали на льду в течение 30 мин и центрифугировали при 13000 g в течение 10 мин при 4°С. В надосадочной жидкости, содержащей солюбилизированные мембранные белки, определяли концентрацию белка. Белки супернатанта разделяли электрофоретически (50 мкг общего белка на дорожку) в полиакриламидном геле в денатурирующих условиях, а затем переносили (полусухой электроперенос) на нитроцеллюлозную мембрану (Anderson et al., 1982) для последующего Вестерн-блот-анализа. Свободные от белков участки мембраны блокировали с помощью 3%-ного раствора обезжиренного молока, приготовленного на PBS (Fluka, Швейцария), в течение 30 мин, затем мембрану инкубировали с сыворотками, содержащими антитела к GAD65 (разведение от 1:10 до 1:100) в течение 1 часа, затем промывали и инкубировали с антителами к антителам человека, конъюгированными с пероксидазой хрена в течение 1 ч (разведение 1:5000). В качестве положительного контроля наносили 1 мкг рекомбинантного GAD65. В качестве хромогенного субстрата использовали 4-хлор-1-нафтол, либо осуществляли визуализацию хемилюминесцентным методом с использованием реагентов ECL (GE Healthcare, Великобритания).

Пример 2. Конструирование плазмиды pGAD65-RFP, кодирующей химерный белок.

Кодирующую последовательность гена (кДНК) GAD65 вставляли в плазмиду pRFP (Novagen, США), имеющую MCS перед RFP. Для амплификации нужного фрагмента GAD65 применяли ПЦР с использованием двух специально сконструированных праймеров.

Прямой праймер характеризуется последовательностью SEQ ID No 1, а именно 5'-ctgAAGCTTcaATGGGGCCCTGGGGCTGGA, его расчетная температура отжига (Ta) - 60°С; полужирным шрифтом выделена часть олигонуклеотида, комплементарная GAD65; подчеркнут сайт узнавания для эндонуклеазы рестрикции Hind III.

Обратный праймер характеризуется последовательностью SEQ ID No 2, а именно 5'-ctgGTCGACCGCCACGTCATCCTCCAGACT, его расчетная температура отжига (Ta) - 58°С, полужирным шрифтом выделена часть олигонуклеотида, комплементарная 3'-концу кодирующей части GAD65; подчеркнут сайт узнавания для эндонуклеазы рестрикции Sal I. Для вычисления температур плавления и отжига праймеров использовали программу Oligos v.7.1.

ПЦР проводили в 30 мкл реакционной смеси. Плазмиду pEGFP-N3 и полученный продукт ПЦР обрабатывали эндонуклеазами рестрикции Hind III и Sal I (Fermentas, Литва), и затем очищали. Выделение ДНК из агарозного геля осуществляли с помощью набора фирмы Promega (WizardSV Gel and PCR Clean-Up System, США) согласно инструкции производителя. Лигирование осуществляли при помощи T4 ДНК-лигазы (Fermentas, Литва). Компетентные клетки Escherichia coli штамм DH5(alpha) были трансформированы ДНК, полученной после лигирования, и перенесены на селективную среду, содержащую 100 мкг/мл канамицина. Плазмидную ДНК из выросших клонов выделяли с помощью щелочного лизиса с последующей обработкой РНК-азой, депротеинизацией при экстракции ДНК смесью фенола и хлороформа и осаждением ДНК спиртом. Качество плазмидной ДНК оценивали с помощью электрофореза в 0.8%-ном агарозном геле. Для выявления плазмид со вставкой кДНК GAD65 осуществляли секвенирование на секвенаторе 3500 genetic analyzer (Applied Biosystems, США). Для дальнейшей работы использовали клоны, в плазмидной ДНК которых присутствовала вставка и отсутствовали мутации в кодирующей области GAD65.

Пример 3. Трансфекция клеток плазмидной ДНК.

Клетки HEK293 культивировали при +37°С в CO2-инкубаторе (5% CO2, влажность 100) в среде DMEM/F12, содержащей эмбриональную телячью сыворотку (FBS) (10%), антибиотики (5000 ЕД/мл пенициллина G, и 50 мкг/мл стрептомицина), амфотерицин В (25 мкг/мл) и глутамин (300 мкг/мл). За день до трансфекции клетки переносили в лунки планшетов с покровными стеклами на дне. Число вносимых в лунку клеток подбирали таким образом, чтобы на следующий день они занимали 20-30% поверхности стекла. Клеточную линию HEK293 трансфицировали кольцевыми формами исходной pEGFP-N3 и pLDLR-EGFP, очищенными из агарозного геля. Трансфекцию осуществляли по стандартному методу (Chen C., Okayama H 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 7: 2745-2752), используя 100 нг плазмидной ДНК на 1 лунку 96-луночного планшета. Через 24 ч после трансфекции культуральную среду заменяли средой DMEM/F12, содержащей антибиотики и антимикотики, а также 10% FBS и глутамин в концентрации от 4,8 мг/мл. до 9,6 мг/мл. После инкубации в течение от 1 до 9 суток клетки аккуратно промывали PBS и фиксировали 4%-ным параформальдегидом в PBS в течение 10 мин. Препараты отмывали РВS не менее 1 ч, инкубировали 1 ч при комнатной температуре в блокирующем растворе TNB (0.1 M Трис-HCl, pH 7.5, 0.15 M NaCl, 0.5% блокирующего реагента (Perkin Elmer, FP1020, США)), затем 1 ч с антителами против GAD65 при 37°C во влажной камере. Препараты промывали 3 раза в растворе PBS в течение 5 мин. Затем инкубировали 1 час с флуоресцентно-меченными вторичными антителами при 37°C. После промывания препаратов в PBS (3 раза по 5 мин) монтировали покровные стекла на предметные с помощью полимеризующейся смолы для флуоресцентной микроскопии (DAKO, США).

Предложенный способ культивирования клеток-продуцентов GAD65 в среде с повышенным содержанием глутамина обеспечил стабильный синтез глутаматдекарбоксилазы в лабораторных условиях с одновременным повышением эффективности трансфекции.

--->

ПЕРЕЧЕНЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

<110> ФГБНУ "ИЭМ" FSBSI “IEM”

<120> Способ трансфекции и культивирования клеток,

синтезирующих рекомбинантный белок глутаматдекарбоксилазу

<140>

<141>

<160> 2

<210> 1

<211> 30

<212> Нуклеотидная последовательность

<213> Искусственная последовательность

<220>

<223> Нуклеотидная последовательность прямого праймера для амплификации гена

GAD65

<400> 1

ctgaagcttc aatggggccc tggggctgga

<210> 2

<211> 30

<212> Нуклеотидная последовательность

<213> Искусственная последовательность

<220>

<223> Нуклеотидная последовательность обратного праймера для амплификации гена

GAD65

<400> 2

ctggtcgacc gccacgtcat cctccagact

<---

Способ трансфекции и культивирования клеток, синтезирующих рекомбинантную глутаматдекарбоксилазу GAD65, включающий создание плазмиды, содержащей эукариотический промотор и нуклеотидную последовательность, кодирующую белок глутаматдекарбоксилазу GAD65, трансфекцию культуры клеток животного полученной плазмидой и культивирование их на питательной среде, отличающийся тем, что культивирование клеток, трансфицированных плазмидой, содержащей ген белка GAD65, осуществляется в течение не менее 3 дней в питательной среде с повышенным содержанием глутамина в концентрации от 2,4 мг/мл до 9,6 мг/мл.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 43.
14.11.2019
№219.017.e1d5

Способ выявления эндотелиальных клеток на гистологических препаратах

Изобретение относится к медицине, а именно к иммуногистохимии, и позволяет выявлять эндотелиальные клетки на гистологических препаратах. Для этого проводится фиксация препарата, далее следует процедура обезвоживания, заключение в парафин, приготовление гистологических срезов, нанесение их на...
Тип: Изобретение
Номер охранного документа: 0002705811
Дата охранного документа: 12.11.2019
17.01.2020
№220.017.f69f

Вакцинный штамм вируса гриппа а/17/брисбен/2017/7178 (h3n2) для производства живой гриппозной интраназальной вакцины для взрослых и для детей

Изобретение относится к области биотехнологии. Изобретение представляет собой штамм вируса гриппа А/17/Брисбен/2017/7178 (H3N2) - реассортант, полученный путем скрещивания эпидемического вируса А/Брисбен/190/2017 (H3N2) с холодоадаптированным температурочувствительным вирусом...
Тип: Изобретение
Номер охранного документа: 0002711101
Дата охранного документа: 15.01.2020
27.01.2020
№220.017.fa50

Комплекс для синхронной регистрации физиологических параметров пациента и его положения в трёхмерном пространстве при динамических постуральных воздействиях

Изобретение относится к медицине, а именно к медицинской технике. Комплекс для синхронной регистрации физиологических параметров пациента и его положения в трехмерном пространстве при динамических постуральных воздействиях содержит механургический стол с ложем, средства фиксации на нем...
Тип: Изобретение
Номер охранного документа: 0002712017
Дата охранного документа: 24.01.2020
04.03.2020
№220.018.0853

Вакцинный штамм вируса гриппа а/17/швейцария/2017/51 (h3n2) для производства живой гриппозной интраназальной вакцины для взрослых и для детей

Изобретение относится к области биотехнологии. Изобретение представляет собой вакцинный штамм А/17/Швейцария/2017/51 (H3N2) - реассортант, полученный путем скрещивания эпидемического вируса А/Швейцария/8060/2017 (H3N2) с холодоадаптированным температурочувствительным вирусом...
Тип: Изобретение
Номер охранного документа: 0002715674
Дата охранного документа: 02.03.2020
04.03.2020
№220.018.0894

Рекомбинантные днк pg4223 и плазмидная днк pqe 30-pg4223, штамм escherichia coli m 15-g4223, обеспечивающие получение полипептида g4223, селективно связывающего igg, и его применение в аффинной хроматографии для выделения igg

Группа изобретений относится к биотехнологии и касается получения генетической конструкции, обеспечивающей синтез в клетках Escherichia coli рекомбинантного полипептида G4223 (рG4223). Предложены рекомбинантная ДНК pG4223, имеющая нуклеотидную последовательность SEQ ID NO: 1 и кодирующая...
Тип: Изобретение
Номер охранного документа: 0002715672
Дата охранного документа: 02.03.2020
13.03.2020
№220.018.0b24

Реассортантный штамм вируса гриппа rn2/14-human a(h6n2) для определения антител к нейраминидазе при гриппозной инфекции и вакцинации

Изобретение относится к области биотехнологии. Изобретение представляет собой штамм RN2/14-human A(H6N2) активно размножающийся в развивающихся куриных эмбрионах при оптимальной температуре 33°С, что позволяет накапливать вирусный материал для последующей очистки и концентрации. Реассортант...
Тип: Изобретение
Номер охранного документа: 0002716416
Дата охранного документа: 11.03.2020
20.04.2020
№220.018.15ed

Способ демаскирования антигенов при проведении иммуноцитохимических реакций

Изобретение относится к медицине, а именно к диагностическим гистологическим исследованиям. Предложен способ демаскирования антигенов при проведении иммуноцитохимических реакций, включающий фиксацию препарата в 10% формалине в течение 24 ч при комнатной температуре, процедуру обезвоживания,...
Тип: Изобретение
Номер охранного документа: 0002719163
Дата охранного документа: 17.04.2020
27.06.2020
№220.018.2bac

Вакцинный штамм вируса гриппа а/17/словения/2015/1121 (h1n1)pdm09 для производства живой гриппозной интраназальной вакцины для взрослых и для детей

Изобретение относится к медицинской вирусологии. Вакцинный штамм А/17/Словения/2015/1121 (H1N1)pdm09 - реассортант, полученный путем скрещивания эпидемического вируса А/Словения/2903/2015 (HlNl)pdm09 с холодоадаптированным температурочувствительным вирусом А/Ленинград/134/17/57 (H2N2) - донором...
Тип: Изобретение
Номер охранного документа: 0002724706
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.45a7

Реассортантный штамм вируса гриппа а/17/гуандун-маонань/2019/211 (h1n1)pdm09 для производства живой гриппозной интраназальной вакцины для взрослых и для детей

Изобретение относится к медицинской вирусологии и может быть использовано в практическом здравоохранении для профилактики заболеваемости гриппом среди взрослых и детей с помощью живой гриппозной интраназальной вакцины из штамма вируса гриппа А/17/Гуандун-Маонань/2019/211 (H1N1)pdm09. Вакцинный...
Тип: Изобретение
Номер охранного документа: 0002793387
Дата охранного документа: 04.04.2023
16.05.2023
№223.018.61ba

Вакцинный штамм вируса гриппа в/60/колорадо/2017/1 (линия виктория) для производства живой гриппозной интраназальной вакцины для взрослых и для детей

Изобретение относится к вирусологии. Предложен штамм вируса гриппа В/60/Колорадо/2017/1 (Линия Виктория). Получен он на основе эпидемического вируса В/Колорадо/06/17 (линия Виктория) и безвредного для человека холодоадаптированного донора аттенуации В/СССР/60/69. Заявленный штамм...
Тип: Изобретение
Номер охранного документа: 0002746274
Дата охранного документа: 12.04.2021
Показаны записи 1-2 из 2.
29.05.2018
№218.016.52ac

Способ получения гетеротетрамерного рекомбинантного стрептавидина из периплазмы e.coli

Изобретение относится к области биохимии, генной инженерии и биотехнологии, в частности к способу получения гетеротетрамерного рекомбинантного стрептавидина. Настоящий способ предусматривает создание двух плазмид, одна из которых кодирует стрептавидин мутантного типа, а другая – стрептавидин...
Тип: Изобретение
Номер охранного документа: 0002653750
Дата охранного документа: 14.05.2018
25.04.2020
№220.018.19a1

Способ прогнозирования исходов операций коронарного шунтирования

Изобретение относится к медицине, а именно к кардиохирургии, и может быть использовано для прогнозирования исходов операций коронарного шунтирования (КШ). Интраоперационно сразу после завершения наложения шунтов определяют концентрацию активной миелопероксидазы в плазме крови. Рассчитывают...
Тип: Изобретение
Номер охранного документа: 0002719914
Дата охранного документа: 23.04.2020
+ добавить свой РИД