×
12.04.2023
223.018.4450

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СУБМИКРОННЫХ КРИСТАЛЛОВ НИТРИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической технологии субмикронных кристаллов нитрида алюминия в форме гексагональных призм и комбинации гексагональной призмы с дипирамидой и пинакоидом, которое может быть использовано при создании элементов нано-, микро- и оптоэлектроники, а также люминесцентно-активных микроразмерных сенсоров медико-биологического назначения. Гранулы металлического алюминия смешивают с порошком трифторида алюминия в соотношении 1:1 − 3:1 и нагревают смесь до температуры образования паров субфторида алюминия, равной 1050 − 1150°С, в атмосфере аммиака, подаваемого в пространство над жидким алюминием с объемной скоростью подачи ниже 50 мл/мин при абсолютном давлении 0,03 – 0,07 МПа. Технический результат состоит в получении кристаллов нитрида алюминия с одинаковым фракционным размером от 70 нм до 1 мкм. 3 ил., 2 пр.

Изобретение относится к химической технологии получения соединений алюминия, а именно к технологии получения субмикронных кристаллов нитрида алюминия в форме гексагональных призм и в форме комбинации гексагональной призмы с дипирамидой и пинакоидом, имеющих одинаковый фракционный размер от 70 нм до 1 мкм. Изобретение может быть использовано при разработке нано-, микро- и оптоэлектронных устройств, подложек и элементов, включая элементы нано-оптоэлектроники и люминесцентно-активные микроразмерные сенсоры медико-биологического назначения.

Нитрид алюминия AlN является перспективным материалом для создания мощных светоизлучающих и лазерных устройств в УФ и видимой области спектра благодаря широкой запрещенной зоне 6.2 эВ, высокой теплопроводности и электроизоляционным свойствам (Т. Я. Косолапова, Т. В. Андреева, Т. Б. Бартницкая и др. Неметаллические тугоплавкие соединения. М. Металлургия, 1985, − 224 с.). Однако, как правило, частицы коммерческих порошков AlN имеют размеры, превышающие 1 мкм.

Известен способ выращивания объемных монокристаллов нитрида алюминия из смеси азота и паров алюминия, включающий размещение в ростовой камере друг напротив друга подложки и источника паров алюминия, нагрев и поддержание рабочих температур источника и подложки, обеспечивающих соответственно образование паров алюминия в составе смеси, и рост монокристалла нитрида алюминия на подложке (патент РФ №2330905, МПК С30В 23/00, опубл. 10.08.08. Бюл. №22). В известном способе для очищения подложки и источника паров алюминия от летучих примесей предварительно осуществляют нагрев подложки до температуры 1500 − 1700°С при давлении не выше 10-3 мм рт.ст. Затем для подавления излишнего испарения и исключения возможности роста поликристаллов в ростовую камеру напускают азот до давления 0.9 – 1 атм, после чего продолжают нагрев до рабочей температуры. Однако известный способ не позволяет получать кристаллы AlN размером менее 1 мкм.

Разработан способ получения монокристаллов AlN путем газофазной эпитаксии из смеси, содержащей источники AlN и NH3, включающий размещение в ростовой камере друг напротив друга источника Al и обращенной к нему ростовой поверхностью подложки, образующих ростовую зону, создание в ростовой зоне потока NH3, нагрев источника Al и подложки до температур, обеспечивающих рост монокристалла AlN на подложке (патент РФ №2468121, МПК С30В 23/00, опубл. 27.11.12. Бюл. №33). В качестве источника Al используют только свободный Al, подложку предварительно обрабатывают Ga и/или In, после чего охлаждают источник Al до температуры 800 − 900°С и осуществляют отжиг подложки путем нагрева ее до температуры 1300 − 1400°С с последующим ее охлаждением до температуры нитридизации ее ростовой поверхности; после охлаждения подложки в ростовую зону подают NH3 в течение 8 − 15 минут, а затем повышают температуру источника Al и вместе с NH3 подают в ростовую зону пары Al; монокристалл AlN на начальном этапе роста до достижения толщины 1 − 10 мкм выращивают со скоростью не более 10 мкм/час, а затем увеличивают скорость роста до 100 − 200 мкм/час. Однако описанный способ не позволяет получать субмикронные кристаллы AlN и требует для своего осуществления дорогостоящего вакуумного оборудования.

Монокристаллический нитрид алюминия может быть получен выращиванием монокристалла AlN на затравочном кристалле с использованием устройства для производства монокристаллического AlN, содержащего тигель, причем тигель содержит внутренний тигель и внешний тигель; внутренний содержит исходный AlN и затравочный кристалл, указанные исходный AlN и затравочный кристалл расположены внутри внутреннего тигля таким образом, чтобы находится напротив друг друга; внутренний тигель содержит единый корпус из металла, имеющего ионный радиус, превышающий ионный радиус Al, или содержит нитрид металла; внешний тигель содержит нитрид бора, и внешний тигель также покрывает внутренний тигель, причем способ включает: стадию заполнения внутренней части тигля атмосферой газообразного азота, а также стадии нагрева тигля и уменьшения давления внутри внутреннего тигля (патент РФ №2485219, МПК С30В 23/00, опубл. 20.06.13. Бюл. №17). Однако реализация способа требует значительного времени из-за использования множества различных исходных материалов.

Существует способ производства нитрида алюминия в виде нитевидных кристаллических волокон со средним диаметром менее 100 нм и с соотношением длины волокна к диаметру более 100, включающий взаимодействие нагретого алюминия с азотом и галогенидами алюминия (III), скорость подачи которых находится на уровне 0.1 − 6.0 см3/мин на каждый 1 см2 поверхности конденсации, весь процесс синтеза ведут в реакционной камере, куда в процессе синтеза нитевидных волокон AlN поступают реагенты в результате испарения порошка тригалогенида алюминия из находящегося внутри реакционной камеры внешнего тигля, а конденсацию ведут на поверхности жидкого Al, находящегося в малом внутреннем тигле, который в свою очередь находится внутри внешнего тигля в той же реакционной камере. Реакционная камера во время процесса синтеза заполняется азотсодержащим газом, подаваемым в необходимом количестве в область над жидким Al (патент РФ №2617495, МПК С30В 23/00, опубл. 25.04.17. Бюл. №12). Недостатком получаемых волокон по известному способу является их малый диаметр (менее 100 нм), что ограничивает возможности их применения в качестве подложек для микро- и оптоэлектроники.

Наиболее близким к заявляемому является способ получения микрокристаллов нитрида алюминия правильной гексагональной формы из смеси газа и паров алюминия, включающий размещение нанопорошка Al между полюсами постоянного магнита и его нагрев в режиме теплового взрыва. Процесс осуществляют в атмосфере воздуха при давлении 1 атм и магнитном поле напряженностью 1500 эрстед (патент РФ №2437968, МПК С30В 23/00, опубл. 27.12.11. Бюл. №36). Данный способ позволяет получить кристаллы AlN преимущественно микронного размера. Другим недостатком является необходимость использовать нанопорошок Al в качестве источника Al и дополнительно прикладывать магнитное поле для получения кристаллов правильной гексагональной формы, что приводит к высокой стоимости синтезированных образцов AlN, полученных данным способом.

Технической проблемой является создание способа, возможности/характеристики которого удовлетворяют требованиям снижения размеров кристаллов нитрида алюминия, имеющих, во-первых, близкий к одинаковому фракционный размер, и во-вторых, имеющих размер существенно не превышающий 1 мкм.

Решение данной проблемы обеспечивается при осуществлении способа, включающего взаимодействие паров алюминия с трифторидом алюминия и аммиаком и последующую конденсацию конечно продукта. Внутри реакционной камеры смешивали гранулы металлического алюминия с порошком трифторида алюминия в соотношении 1:1 − 3:1 и нагревали до температуры 1050 − 1150ºС достаточной для образования паров субфторида алюминия. Во внутреннее пространство реакционной камеры в область над жидким алюминием подавали аммиак с объемной скорость подачи ниже 50 мл/мин при абсолютном давлении 0.03 – 0.07 МПа. При большей скорости подачи возможно удаление газообразных реагентов из зоны реакции. Конденсацию конечного продукта вели на поверхности жидкого алюминия и стенках реакционной камеры.

Суть метода заключается в следующем: расплавленный Al взаимодействует с парами AlF3 с образованием газообразного AlF по реакции:

2Alжид. + AlF3газ. = 3AlFгаз.

В газовой фазе AlF реагирует с NH3 и в результате образуются зародыши твердой фазы AlN. Продуктом реакции также является H2, поток которого поддерживает зародыши в газовом объеме.

3AlFгаз. + 2NH3газ. = 2AlNтв. + 3H2газ. + AlF3газ.

В процессе синтеза зародыши увеличиваются и осаждаются, а затем из них формируются субмикронные кристаллы AlN в форме гексагональных призм, а также в форме комбинации гексагональной призмы с дипирамидой и пинакоидом с характерными размерами от 70 нм до 1 мкм (фиг. 1). Образующийся также AlF3 может повторно вступать в реакцию с Al.

Способ иллюстрируется следующими примерами выполнения.

Пример 1. Способ получения субмикронных кристаллов нитрида алюминия

Исходные гранулы металлического Al смешивают с порошком AlF3 в тигле в соотношении 1:1 и испаряют в реакционной камере при температуре 1050°С. В пространство над тиглем подают NH3 с объемной скоростью ниже 50 мл/мин при абсолютном давлении 0.03 МПа. Продолжительность процесса синтеза составляла 4.5 часа. За это время на стенках тигля и поверхности жидкого Al образовался белый порошок из микрочастиц кристаллического AlN. Анализ снимков, полученных с помощью растрового электронного микроскопа Sigma VP Carl Zeiss, показал, что AlN представляет собой кристаллы в виде гексагональных призм правильной геометрической формы и комбинации гексагональной призмы с дипирамидой и пинакоидом, имеющие фракционный размер от 70 нм до 1 мкм (фиг. 2) По результатам химического анализа с использованием энергодисперсионного детектора X-max Oxford Instruments определено, что микрочастицы имеют нестехиометрию по Al с соотношением Al:N = 0.9:1. Основными примесями являются O (1.6 ат. %) и Si (0.5 ат. %). С помощью рентгенофазового анализа на дифрактометре X'PertPro MPD PANalytical установлено, что продуктом синтеза является гексагональный нитрид алюминия.

Пример 2. Способ получения субмикронных кристаллов нитрида алюминия

Исходные гранулы металлического Al смешивают с порошком AlF3 в тигле в соотношении 3:1 и испаряют в реакционной камере при температуре 1150°С. В пространство над тиглем подают NH3 с объемной скоростью ниже 50 мл/мин при абсолютном давлении 0.07 МПа. Продолжительность процесса синтеза составляла 4.5 часа. За это время на стенках тигля и поверхности жидкого Al образовался белый порошок из микрочастиц кристаллического AlN. РЭМ-снимки этих кристаллов приведены на фиг. 3. Как видно из фиг. 3, AlN имеет вюрцитную гексагональную структуру с преимущественным размером фракции в диапазоне 0.1 – 0.6 мкм. Рентгенофазовый анализ конечного продукта показал, что синтезированный субмикронный порошок состоит из кристаллов гексагонального AlN.

Техническим результатом является расширение арсенала известных технологий получения нитрида алюминия путем создания дополнительного способа получения субмикронных гексагональных кристаллов нитрида алюминия с одинаковым фракционным размером от 70 нм до 1 мкм.

Способ получения субмикронных кристаллов нитрида алюминия, включающий взаимодействие паров алюминия с азотсодержащим газом, отличающийся тем, что гранулы металлического алюминия смешивают с порошком трифторида алюминия в соотношении 1:1 − 3:1 и нагревают смесь до температуры 1050 − 1150°С в атмосфере аммиака, подаваемого в пространство над жидким алюминием с объемной скоростью подачи ниже 50 мл/мин при абсолютном давлении 0,03 – 0,07 МПа.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 207.
20.08.2016
№216.015.4acb

Способ удаления мелких частиц из крупнозернистого слоя сыпучих материалов

Изобретение относится к области разделения компонентов дисперсной сыпучей среды, различающихся размером, и может быть использовано в сельском хозяйстве для удаления посторонних примесей при очистке сельскохозяйственных зерновых культур (пшеница, рожь, ячмень и др.) от мелкодисперсной среды...
Тип: Изобретение
Номер охранного документа: 0002594494
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e31

Реактор для аэробной ферментации биомассы

Изобретение используется в сельском и лесном хозяйстве. Цилиндрический термостатированный корпус реактора установлен вертикально и содержит трубу загрузочного устройства, соединенную через подшипниковые узлы с кольцевой пустотелой трубой мешалки, на выходе которой подключена гребенка с...
Тип: Изобретение
Номер охранного документа: 0002595143
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e4e

Система управления тепловым режимом в комплексе "печь ванюкова - котел-утилизатор"

Изобретение относится к области металлургии и может быть использовано, например, в печи Ванюкова. Система дополнительно снабжена корректирующим регулятором соотношения шихта/кислородно-воздушная смесь по температуре в котле-утилизаторе, датчиком температуры котла-утилизатора, установленным на...
Тип: Изобретение
Номер охранного документа: 0002595188
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f6a

Способ упрочнения поверхности деталей обработкой трением с перемешиванием вращающимся инструментом

Изобретение относится к упрочнению плоских поверхностей заготовок. Осуществляют перемещение вращающегося упрочняющего инструмента по всей поверхности механически обработанной заготовки с установленными нагрузкой и скоростью по заданной траектории. Используют упрочняющий инструмент с рабочим...
Тип: Изобретение
Номер охранного документа: 0002595191
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.548e

Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра

Изобретение относится к гамма-спектрометрам с неорганическими сцинтилляторами, имеющими зависимость световыхода от энергии образованных в них гамма-квантами вторичных электронов. Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра включает преобразование с помощью...
Тип: Изобретение
Номер охранного документа: 0002593617
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5571

Способ получения извести

Изобретение относится к технологиям производства извести различного назначения, включая производство строительных материалов, и рекомендуется для предприятий мощностью от 10 до 300 тыс т в год. Технический результат заключается в повышении химической активности, улучшении технических и...
Тип: Изобретение
Номер охранного документа: 0002593396
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5d60

Валковый пресс для брикетирования

Изобретение относится к области обработки давлением и может быть использовано в оборудовании для брикетирования. Валковый пресс содержит станину, на которой размещены с возможностью вращения от привода валки. Валки выполнены с рядом формующих ячеек в форме плоского овала, последовательно...
Тип: Изобретение
Номер охранного документа: 0002590435
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e53

Брикет для легирования алюминиевого сплава

Изобретение относится к брикетам для легирования при выплавке алюминиевых сплавов. Брикет содержит стружку сплава алюминия с медью и частицы меди в количестве 20-40 мас.% от общей массы брикета. Частицы меди могут быть использованы в виде стружки. Обеспечивается погружение брикета в расплав при...
Тип: Изобретение
Номер охранного документа: 0002590441
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5fd3

Способ обработки металлов

Изобретение относится к области обработки металлов давлением. Способ включает формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с...
Тип: Изобретение
Номер охранного документа: 0002590437
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.669c

Волновая электростанция

Изобретение предназначено для выработки электрической энергии от движения волн в морях и океанах. Волновая электростанция содержит платформу на понтонах с размещенными на ней электрическим генератором и штангой с шестерней. На платформе с помощью стоек размещено дугообразное зубчатое коромысло....
Тип: Изобретение
Номер охранного документа: 0002592094
Дата охранного документа: 20.07.2016
Показаны записи 1-10 из 17.
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
10.12.2015
№216.013.9656

Способ визуализации ротационного искривления решетки нанотонких кристаллов

Способ визуализации ротационного искривления решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом и темном поле, получение электронограммы от кристалла, микродифракционное исследование, анализ картины изгибных экстинкционных...
Тип: Изобретение
Номер охранного документа: 0002570106
Дата охранного документа: 10.12.2015
13.01.2017
№217.015.728e

Способ повышения радиационной стойкости и стабилизации светопропускания германо-силикатных стекловолокон

Изобретение относится к германо-силикатным стекловолокнам. Технический результат изобретения заключается в снижении уровня радиационно-наведенного поглощения, повышении трансмиссионных свойств и надежности Ge-SiO стекловолокон, работающих в радиационных полях. Германо-силикатные стекловолокна...
Тип: Изобретение
Номер охранного документа: 0002598093
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.9c98

Способ лечения острых бактериальных послеоперационных эндофтальмитов

Изобретение относится к медицине, в частности к офтальмологии, и предназначено для лечения острых бактериальных послеоперационных эндофтальмитов. Способ включает удаление содержимого витреальной полости путем субтотальной витрэктомии с одномоментной заменой стекловидного тела на раствор BSS,...
Тип: Изобретение
Номер охранного документа: 0002610408
Дата охранного документа: 09.02.2017
25.08.2017
№217.015.bf59

Способ диагностики римановой кривизны решетки нанотонких кристаллов

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле,...
Тип: Изобретение
Номер охранного документа: 0002617151
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c14a

Способ получения нитевидного нитрида алюминия

Изобретение относится к химической технологии получения нитевидных нанокристаллов нитрида алюминия (или нановискеров) и может быть использовано при создании элементов нано- и оптоэлектроники, а также люминесцентно-активных наноразмерных сенсоров медико-биологического профиля. Сущность...
Тип: Изобретение
Номер охранного документа: 0002617495
Дата охранного документа: 25.04.2017
26.08.2017
№217.015.d4d9

Рабочее вещество для термоэкзоэлектронной дозиметрии высокоэнергетического электронного излучения

Изобретение относится к термоэкзоэлектронной (ТЭЭ) дозиметрии электронного излучения и может быть пригодно для высокодозной дозиметрии электронного излучения высоких энергий (до 10 МэВ). Рабочее вещество для термоэкзоэлектронной дозиметрии электронного излучения высоких энергией на основе...
Тип: Изобретение
Номер охранного документа: 0002622240
Дата охранного документа: 13.06.2017
29.12.2017
№217.015.f410

Способ получения диссипативных структур

Использование: для получения диссипативных структур. Сущность изобретения заключается в том, что способ получения диссипативной структуры в аморфной пленке в виде нанотонких кристаллов с упругим ротационным искривлением решетки включает нагревание и последующее охлаждение, где предварительно на...
Тип: Изобретение
Номер охранного документа: 0002637396
Дата охранного документа: 04.12.2017
19.01.2018
№218.016.0630

Реакционная камера установки для получения дисперсного нитрида алюминия

Изобретение относится к составным частям устройств для получения полупроводниковых материалов, а именно дисперсного нитрида алюминия. Реакционная камера выполнена из жаропрочной стали, футерована нитридом алюминия, снабжена герметично соединенными с корпусом камеры средством для отвода газов и...
Тип: Изобретение
Номер охранного документа: 0002631076
Дата охранного документа: 18.09.2017
29.05.2018
№218.016.56a7

Способ повышения электрической и механической прочности вакуумно-плотных окон ввода/вывода свч-излучений (варианты)

Изобретение относится к электронной и ускорительной технике для повышения электрической и механической прочности вакуумно-плотных окон ввода и/или вывода энергии СВЧ-излучения в волноводные ускоряющие структуры и может быть использовано при создании/эксплуатации мощных современных ускорителей...
Тип: Изобретение
Номер охранного документа: 0002654582
Дата охранного документа: 22.05.2018
+ добавить свой РИД