×
24.07.2020
220.018.3801

Результат интеллектуальной деятельности: Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика

Вид РИД

Изобретение

№ охранного документа
0002727777
Дата охранного документа
23.07.2020
Аннотация: Изобретение относится к системам управления, в частности к сложным системам, включающим совместно функционирующие подсистемы с различными динамическими свойствами. Предлагаемый метод наведения позволяет скомпенсировать несоответствие динамических свойств перехватчика и цели в процессе наведения без решения сложной двухточечной краевой задачи. При этом сигнал управления формируется по закону: где j - требуемое поперечное ускорение перехватчика; - оптимальные оценки курсов и угловых скоростей перехватчика и цели; и - оценки дальности до цели и ее первой производной; Т - постоянная времени перехватчика, характеризующая его инерционность; b - коэффициент усиления сигнала управления; q - коэффициент штрафов за точность наведения системы по углу; q - коэффициент штрафов за точность наведения системы по угловой скорости; g - коэффициент учета взаимодействия ошибок наведения и маневра цели; k - коэффициент штрафов за величину сигнала управления. В отличие от прототипа предлагаемый метод имеет третье нестационарное слагаемое, учитывающее несоответствие динамических свойств цели и перехватчика. Использование изобретения позволит обеспечить перехват быстродвижущихся целей в широком диапазоне их скоростей и курсов; экономию затрат энергии на управление на начальных участках наведения и повышение его точность на конечном участке. 8 ил.

Изобретение относится к системам автоматического управления летательными аппаратами (ЛА), в частности к системам наведения на воздушные цели (ВЦ), включающим совместно функционирующие подсистемы с различными динамическими свойствами.

Процесс перехвата ВЦ является результатом взаимодействия различных подсистем, составляющих единую последовательную информационно-управляющую цепь, началом которой является цель, а конечным звеном - боевая часть средства поражения. Следует отметить, что каждая из этих подсистем обладает различной динамичностью [1], характеризующей ее способность реагировать на изменение входных воздействий. От того, в какой степени согласованы динамические свойства подсистем в процессе совместного функционирования, во многом зависит совершенство системы наведения в целом.

В общем случае требуемые динамические свойства подсистем перехватчика определяются его методом наведения и могут быть определены на основе его анализа на чувствительность [2] к изменению условий функционирования, определяемых динамическими свойствами цели.

В связи с этим весьма актуальной является задача разработки метода наведения, автоматически, учитывающего несоответствие динамических свойств перехватчика и цели. Один из способов решения этой задачи основан на представлении этого несоответствия в виде измеряемого возмущения [3].

Из известных технических решений наиболее близким является способ, выбранный в качестве прототипа и изложенный в [4]. В данном алгоритме сигнал управления учитывает ошибки по углу и угловой скорости в соответствии с формулой:

где

jп - поперечное ускорение перехватчика;

Kϕ - постоянный коэффициент усиления, определяющий вес ошибки управления по углу

- угол визирования цели;

- угол визирования перехватчика;

Kω - постоянный коэффициент усиления, определяющий вес сигнала ошибки по угловой скорости;

- оцененная угловая скорость цели;

- оцененная угловая скорость перехватчика.

Недостатками прототипа являются:

1) недостаточный учет в прототипе несоответствия динамических свойств цели и перехватчика;

2) низкая устойчивость сопровождения при появлении в законах изменения сопровождаемых координат производных третьего и более высоких порядков.

Эти недостатки обусловлены тем, что в данном алгоритме не учитывается угловая скорость линии визирования. Их влияние можно уменьшить, если управлять динамичностью перехватчика с целью приближения ее к динамичности ЛА. Для этого необходимо использовать закон управления радиолокационной системой, на стадии синтеза которого будут скомпенсированы инерционные свойства системы. Этого можно достичь учетом угловой скорости линии визирования, дальности до цели и скорости ее изменения.

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в обеспечении высокой точности перехвата при наведении ЛА.

Заявленный технический результат достигается за счет использования предлагаемого способа для управления по поперечному ускорению, определяемому взвешенной суммой ошибок наведения, дополненной слагаемым, учитывающим угловую скорость линии визирования цели, дальность и скорость сближения с ней, наводимого на цель ЛА.

Сущность предлагаемого изобретения заключается в использовании простого и экономичного в вычислительном отношении метода синтеза управления на основе локальной оптимизации [2], не требующего решения сложной двухточечной краевой задачи [5], для получения способа формирования сигнала управления, при котором для системы

при наличии измерений

сформировать сигнал управления

оптимальный по минимуму функционала

В (2)-(5)

х - n-мерный вектор состояния;

F - динамическая матрица внутренних связей координат вектора х;

u - вектор сигналов управления;

В - матрица эффективности r-мерного (r≤n) вектора u управления;

t - текущее время;

s - вектор измеряемых возмущений, изменяющихся по произвольному закону;

z - вектор измерений;

Н - матрица связей z и х;

ξх и ξи - векторы центрированных гауссовских шумов состояния и измерений;

- векторы оптимальных оценок х и s;

Q1 - матрица «штрафов» за точность функционирования системы;

G1 - матрица, учитывающая взаимосвязи х и s;

К - матрица штрафов за величину сигналов управления.

Для упрощения записей будет опущена зависимость векторов от времени.

Для системы (2), в состав которой входит подсистема

формирующая входные воздействия для подсистемы

при наличии измерений (3) необходимо получить сигнал управления u, обеспечивающий отработку процесса (6) при условии несоответствия динамических свойств этих подсистем FУ≠FT.

Задача будет решаться в рамках линейно-квадратично-гауссовских представлений, для которых на основе теоремы разделения [5] задача управления может решаться независимо от задачи оптимального оценивания. При этом задача синтеза управления может решаться в детерминированной постановке (ξх=0 и ξи=0) при условии, что в полученном законе управления координаты состояния будут заменены их оптимальными оценками.

В общем случае несоответствие динамических свойств можно выразить вектором Δх=хТУ, возникающих за счет этого ошибок, изменения которого во времени можно найти посредством решения уравнения

Подставляя (6) и (7) в (8), получим

Если динамические свойства подсистемы (7) соответствуют требуемым значениям (FУ=FT), то ошибка управления будет убывать вплоть до нуля со скоростью, определяемой ее динамическими свойствами (FУ), даже при отсутствии управления. В случае несоответствия динамических свойств (FУ≠FT) в соотношении (9) появляется вынужденная составляющая, зависящая от характера изменения хТ и воздействующего управления u. Отсюда следует, что выбором сигнала управления можно скомпенсировать несоответствие динамических свойств системы (7) и внешнего воздействия (6).

Управляющий сигнал, минимизирующий ошибку управления (9), при FУ≠FT, Δх=у и уТ=0 может быть получен из уравнения

где sУ=(FT-FУ)xT - измеряемое возмущение.

Тогда сигнал управления, минимизирующий (5) на основе (2)-(4) и (6)- (7), определяется соотношением (4):

при получении которого было учтено, что

В соответствии с выводами условия статистической эквивалентности координаты стояния хТ и хУ были заменены их оценками.

При оценке возможности компенсации несоответствия динамических свойств подсистем (6) и (7) на основе закона формирования управления (10) на примере наведения в горизонтальной плоскости перехватчика на интенсивно маневрирующий ЛА в качестве модели состояния перехватчика использовалось типовое уравнение, включающее инерционное и интегрирующее звенья [4]:

а в качестве модели движения цели - кинематические уравнения [4]:

В (11) и (12)

Т - постоянная времени перехватчика;

b - коэффициент его усиления;

- дальность до цели и ее производная;

- проекции поперечных ускорений цели и перехватчика на

перпендикуляр к линии визирования;

ξп и ξц - центрированные гауссовские шумы состояния.

Взаимное геометрическое расположение цели и перехватчика показано на фигуре 1, на которой в декартовой неподвижной наземной системе координат XOZ точками Оп и Оц показано расположение перехватчика и цели, Vп соответствует продольной скорости наводимого ЛА, a Vц -продольной скорости цели.

Из (11) и (12) ошибки сопровождения по углу и угловой скорости могут быть представлены в виде

При появлении в (12) третьей и более высоких производных ϕц в (11) появляются нарастающие ошибки наведения (13), приводящие, в конечном счете, к срыву этого процесса.

С учетом (6), (7) из (11)-(13) векторы состояния и динамические матрицы связей системы принимают вид

В свою очередь, несоответствие динамических свойств перехватчика и цели определяется матрицей

Из (15) следует, что для устранения несоответствия динамических свойств цели и перехватчика необходимо выполнение условия

Однако при Т=const обеспечить это условие невозможно, поскольку меняются в процессе наведения. В связи с этим целесообразно использовать расчет сигнала управления перехватчиком по правилу (10) при условии, что матрицы К, Q, G записаны в общем виде:

Подставляя (14)-(16) в (10), с учетом выводов теоремы разделения получим

Анализ (17) позволяет сделать следующие выводы.

1. Полученный закон отличается от прототипа (1) учетом наравне с ошибками по углу и угловой скорости еще и несоответствия динамичности цели и перехватчика.

2. В состав оптимизируемой системы управления должны входить оптимальные фильтры, формирующие оптимальные оценки и регулятор, вычисляющий сигнал управления (17).

3. Разработанный способ наведения не накладывает принципиальных ограничений на возможность его реализации ни по требуемой вычислительной производительности, ни по возможности его информационного обеспечения.

На фигуре 2 представлен вариант структурной схемы системы сопровождения цели с использованием предлагаемого способа учета несоответствия динамических свойств подсистем, где

1 - измерители, формирующие наблюдения z;

2 - фильтр, принимающий на вход сигналы наблюдений и формирующий оценки курса ЛА и его первой производной оценки абсолютного углового положения цели и его первой производной дальности до цели и ее первой производной

3 - усилитель, получающий на вход сигнал и усиливающий его с коэффициентом

4 - усилитель, получающий на вход и усиливающий его с коэффициентом

5 - усилитель, получающий на вход сигналы и формирующий сигнал

6 - сумматор, получающий на вход сигналы и формирующий сигнал управления jп;

7 - перехватчик;

8 - цель.

Исследование полученного алгоритма проводилось в процессе имитационного моделирования пространственных эволюций цели, сопровождение которой в угломерном канале РЛС задается системой

и алгоритма формирования закона (17) управления перехватчиком (11).

Необходимо подчеркнуть, что манипулируя в (18) начальными значениями можно реализовать самые разнообразные законы изменения ϕц.

В качестве показателей эффективности использовались текущие промахи, поперечные ускорения и время наведения. Необходимо отметить, что для проверки устойчивости наведения модель входных воздействий (18) специально была выбрана несоответствующей модели (12).

Исследования эффективности проводились в два этапа.

1. На первом этапе исследовалась эффективность перехвата гипотетической маневрирующей цели, бортовой пеленг которой изменяется по квазисинусоидальному закону, предопределяющему быструю смену знака производных. Способ (17) сравнивался с прототипом (1).

2. На втором этапе исследовалось влияние инерционности перехватчика на эффективность наведения.

Результаты исследований первого этапа, на котором оценивались возможности (17) и (1) при наведении на цель, движущуюся по сложной квазисинусоидальной траектории при встречных курсах перехвата, иллюстрируются фигурами 3, 4 и 5, на которых представлены траектории перехвата, текущие промахи и поперечные ускорения перехватчика соответственно.

Из фигур видно, что закон управления (17), учитывающий несоответствие динамических свойств перехватчика и цели, обеспечивает существенно лучшую точность и меньшее время наведения. Однако преимущества (17) по сравнению с (1) проявляются лишь на конечном участке наведения. Поскольку метод показал свою эффективность в самых сложных условия для наведения, можно судить о его применимости и в более простых условиях.

Результаты второго этапа, на котором исследовалось влияние инерционности перехватчика на показатели эффективности на примере перехвата цели, движущейся по квазисинусоидальной траектории на встречных курсах, проиллюстрированы на фигурах 6, 7 и 8, на которых представлены траектории перехвата, текущие промахи и поперечные ускорения перехватчика соответственно.

Из фигур видно, что метод обеспечивает практически одинаковые показатели точности при всех значениях постоянной времени перехватчика, однако энергетические затраты и время наведения увеличиваются с ростом постоянной времени наводимого ЛА, т.е. метод применим и для перехватчиков обладающих большой инерционностью.

Проведенные исследования позволяют сделать следующие выводы.

Предложенный метод наведения обеспечивает устойчивый всеракурсный перехват интенсивно маневрирующих целей в более широком поле условий применения, нежели прототип, включая цели, движущиеся по квазисинусоидальной траектории.

Предложенный метод перехвата, учитывающий несоответствие динамических свойств цели и перехватчика позволяет улучшить точность наведения на конечном участке траектории.

Размер участка, на котором проявляется влияние третьего слагаемого в (17) определяется соотношением

Метод применим для обширного класса наводимых ЛА, т.к. сохраняет свою работоспособность в большом диапазоне значений постоянной времени перехватчика.

Список использованных источников

1. Меркулов В.И. Динамичность авиационных комплексов и бортовые радиоэлектронные системы. // Радиотехника. 2010. №1.

2. Авиационные системы радиоуправления: учебник для военных и гражданских ВУЗов. / Под ред. В.И.Меркулова - М.: Изд. ВВИА им. проф. Н.Е.Жуковского, 2008.

3. Меркулов В.И. Учет измеряемых возмущений при локальной оптимизации систем управления. // Информационно-измерительные и управляющие системы. 2016. №2.

4. Авиационные системы радиоуправления. Т. 2. Радиоэлектронные системы самонаведения. / Под ред. А.И. Канащенкова и В.И. Меркулова - М.: Радиотехника, 2003.

5. Ройтенберг Я.Н. Автоматическое управление - М.: Наука, 1992.


Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Способ наведения инерционного летательного аппарата с учетом несоответствия динамических свойств цели и перехватчика
Источник поступления информации: Роспатент

Показаны записи 21-30 из 66.
25.08.2017
№217.015.9ffa

Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера

Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера включает в себя измерение диаграммы направленности VCSEL. Используют модель излучения для моделирования дифракционной решетки таким образом, чтобы обеспечить требуемый поворот...
Тип: Изобретение
Номер охранного документа: 0002606702
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ae94

Способ временного закрепления подложек на технологическом основании

Изобретение относится к радиоэлектронике и может быть использовано, например, при изготовлении гибридных интегральных схем, высокоплотных электронных модулей, а также при корпусировании многокристальных электронных компонентов, содержащих утоненные полупроводниковые кристаллы в составе единого...
Тип: Изобретение
Номер охранного документа: 0002612879
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.bba6

Сверхширокополосный радиолокатор с активной многочастотной антенной решеткой

Изобретение относится к радиолокации и может быть использовано в различных радиолокационных системах, где требуется высокое разрешение по дальности. Достигаемый технический результат - увеличение разрешающей способности по дальности. Указанный технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002615996
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bcc1

Способ многоступенчатой фильтрации для систем автосопровождения

Изобретение относится к радиоэлектронным системам сопровождения интенсивно маневрирующих целей, в частности к следящим дальномерам и угломерам бортовых РЛС. Достигаемый технический результат - обеспечение бессрывного сопровождения интенсивно маневрирующих целей с высокоточным оцениванием...
Тип: Изобретение
Номер охранного документа: 0002616188
Дата охранного документа: 13.04.2017
25.08.2017
№217.015.c0f0

Способ подготовки кристаллической или поликристаллической подложки под металлизацию

Изобретение относится к радиоэлектронике, а точнее к технологии производства печатных плат. Сущность способа подготовки кристаллической или поликристаллической подложки под металлизацию заключается в том, что кристаллическую или поликристаллическую подложку стандартным образом шлифуют, на...
Тип: Изобретение
Номер охранного документа: 0002617461
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c2a7

Способ устранения несоответствия динамичности подсистем в составе сложных технических систем и система обеспечения бессрывного сопровождения интенсивно маневрирующей цели

Изобретение относится к системам управления. Способ формирования сигнала управления для сопровождения цели заключается в том, что сигнал управления формируется по закону на основе динамических матриц внутренних связей систем, обобщенного вектора состояния системы и вектора сигналов управления....
Тип: Изобретение
Номер охранного документа: 0002617870
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c615

Система автоматизированного модального управления бокового движения летательного аппарата

Система автоматизированного модального управления (САМУ) боковым движением летательных аппаратов содержит датчик угловой скорости крена, два изодромных фильтра, два ограничителя, четыре сумматора, два звена с зоной нечувствительности, два звена с зоной нечувствительности и ограничением, привод...
Тип: Изобретение
Номер охранного документа: 0002618652
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.d157

Способ изготовления межслойного перехода между печатными проводниками на кристаллической или поликристаллической подложке

Изобретение относится к радиоэлектронике, а точнее к технологии производства печатных плат. Технический результат изобретения - создание способа изготовления межслойного перехода между печатными проводниками на кристаллической или поликристаллической подложке, улучшающего адгезию за счет...
Тип: Изобретение
Номер охранного документа: 0002622038
Дата охранного документа: 09.06.2017
25.08.2017
№217.015.d230

Способ контроля поверхности

Изобретение относится к визуальной оценке качества поверхностей плоских подложек для оптико-электронных компонентов и может быть использовано при техническом контроле состояния поверхности крупных партий деталей в электротехнической промышленности. В заявленном способе контроля поверхности на...
Тип: Изобретение
Номер охранного документа: 0002621469
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.edf9

Способ регулировки яркости отображения информации на оптоэлектронном табло с жидкокристаллическим дисплеем

Изобретение относится к области отображения информации средствами, основанными на жидкокристаллических элементах, и может быть использовано при визуальном считывании показаний с оптоэлектронных табло. Техническим результатом изобретения является упрощение методики создания оптоэлектронных табло...
Тип: Изобретение
Номер охранного документа: 0002628917
Дата охранного документа: 22.08.2017
Показаны записи 21-30 из 35.
10.04.2019
№219.017.0054

Способ измерения дальности в импульсно-доплеровских радиолокационных станциях

Способ измерения дальности в импульсно-доплеровских радиолокационных станциях (РЛС) заключается в том, что излучают линейно-частотно-модулированное(ЛЧМ) радиоимпульсы с крутизной, обеспечивающей однозначное измерение дальности до любого летательного аппарата (ЛА), находящегося в пределах...
Тип: Изобретение
Номер охранного документа: 0002296346
Дата охранного документа: 27.03.2007
10.04.2019
№219.017.0055

Способ обнаружения и анализа радиосигналов

Способ обнаружения и анализа радиосигналов заключается в том, что задают: первый порог, определяемый уровнем шума приемного устройства, третий порог, определяемый мощностью помеховых сигналов, четвертый порог, определяемый величиной эффективной площади отражения (ЭПО) обнаруживаемых объектов, а...
Тип: Изобретение
Номер охранного документа: 0002296349
Дата охранного документа: 27.03.2007
10.04.2019
№219.017.02ed

Радиолокационная система для обнаружения проводов линий электропередач

Изобретение относится к радиолокации и может быть использовано на летательных аппаратах при совершении ими маловысотных полетов. Предлагаемая радиолокационная система для обнаружения проводов линий электропередач за счет использования специального вычислителя, оптимизированного на решение...
Тип: Изобретение
Номер охранного документа: 0002310885
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.1d96

Способ автоматического группового целераспределения истребителей с учетом возможного выбывания участников

Изобретение относится к способу автоматического группового целераспределения истребителей с учетом возможного выбывания участников, который заключается в том, что для каждого перехватчика формируют функционал эффективности перехвата, путем решения множества численных уравнений получают...
Тип: Изобретение
Номер охранного документа: 0002684963
Дата охранного документа: 16.04.2019
29.04.2019
№219.017.3f37

Следящий измеритель с обнаружителем маневра и адаптивной коррекцией прогноза

Изобретение относится к радиотехнике и может использоваться в радиотехнических системах измерения параметров траекторий летательных аппаратов, а именно: дальность - скорость, скорость - ускорение, угловая координата - скорость изменения угловой координаты. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002296348
Дата охранного документа: 27.03.2007
29.04.2019
№219.017.44d1

Способ скрытного самонаведения самолетов на воздушные объекты

Изобретение относится к области приборостроения и может быть использовано в системах самонаведения летательных аппаратов. Технический результат - расширение функциональных возможностей. Для достижения данного результата траектория наводимого летательного аппарата все время находится в секторе...
Тип: Изобретение
Номер охранного документа: 0002408845
Дата охранного документа: 10.01.2011
01.05.2019
№219.017.47fe

Способ двухэтапного ранжирования воздушных целей по степени опасности в радиолокационных информационно-управляющих системах

Изобретение относится к радиолокации и радиоуправлению и может быть использовано при модернизации существующих и разработке перспективных радиолокационных систем. Достигаемый технический результат: повышение достоверности ранжирования воздушных целей при решении задач многоцелевого...
Тип: Изобретение
Номер охранного документа: 0002686482
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.489e

Система информационного обеспечения скрытного наведения летательных аппаратов в зоне обнаружения импульсно-доплеровской рлс

Система информационного обеспечения метода скрытного наведения летательных аппаратов (ЛА) в зоне обнаружения импульсно-доплеровской РЛС (ИД РЛС) содержит формирователь косвенных измерений, формирователь оценок, регулятор. Формирователь оценок содержит фильтр дальномерного канала, фильтр канала...
Тип: Изобретение
Номер охранного документа: 0002686802
Дата охранного документа: 30.04.2019
04.06.2019
№219.017.7342

Способ автоматического группового целераспределения истребителей с учетом приоритета целей

Изобретение относится к системам управления летательными аппаратами (ЛА) и может быть использовано в комплексе функциональных программ управления и наведения ЛА авиационных комплексов для назначения целей перехватчикам при противостоянии групп ЛА. Предлагаемый способ позволяет определить...
Тип: Изобретение
Номер охранного документа: 0002690234
Дата охранного документа: 31.05.2019
13.06.2019
№219.017.81bf

Емкостной генератор тока

Емкостной генератор тока предназначен для использования в приборостроении, в частности в микроэлектронике. Генератор состоит из двух электрических конденсаторов переменной емкости, соединенных электрической цепью и связанных между собой в противофазе так, что когда одна емкость имеет...
Тип: Изобретение
Номер охранного документа: 0002346380
Дата охранного документа: 10.02.2009
+ добавить свой РИД