×
21.07.2020
220.018.3513

Результат интеллектуальной деятельности: Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби

Вид РИД

Изобретение

№ охранного документа
0002727081
Дата охранного документа
17.07.2020
Аннотация: Изобретение относится к ледоведению и ледотехнике и служит для прогноза момента образования трещин или разлома ледяного поля. Система, реализующая способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби, содержит четыре модульные полевые станции 1 (С, С, С, С), датчики 2 (Д - сейсмометры, Д - наклономеры, Д - деформометры, Д - датчики напряжения во льду, Д - приемники сигнала глобальной спутниковой системы позиционирования), радиоканалы 3, базовую станцию сбора и обработки данных 4, расположенную на судне 5, источник излучения ИИ (очаг трещинообразования и разрушения). Базовая станция 4 сбора и обработки данных содержит приемники 6-9, узкополосные фильтры 10-13, фазометры 14-19, компьютер 20, корреляторы 21.1-21.6, блоки 22.1-22.6 регулируемой задержки, перемножители 23.1-23.6, фильтры 24.1-24.6 нижних частот, экстремальные регуляторы 25.1-25.6, индикаторы 26-31 углов. Технический результат заключается в обеспечении возможности расширения функциональных возможностей способа и повышения точности определения местоположения очагов трещинообразования и разрушения. 2 ил.

Предлагаемый способ относится к ледоведению и ледотехнике и служит для прогноза момента образования трещин или разлома ледяного поля в условиях сжатия ледяных полей и при воздействии волн зыби.

Такие данные могут быть использованы для обеспечения безопасности нахождения на льду людей, материальных ценностей, дрейфующих станций, ледовых аэродромов, ледовых переправ, а также при эксплуатации нефтедобывающих платформ в ледовых условиях и разгрузки судов на ледяной покров.

Известны способы и устройства мониторинга состояния дрейфующего ледяного поля (авт. свид. СССР №№1.788.487, 1.818.608, 1.840.741; патенты на полезные модели №№70.983, 107.371, 120.766; патенты РФ №№2.319.205, 2.362.971, 2.416.070, 2.427.011, 2.435.136, 2.444.760, 2.449.326, 2.453.865, 2.510.608, 2.526.222, 2.559.159, 2.559.311, 2.593.411, 2.621.276, 2.623.830; патенты США №№4.697.254, 5.790.474. Йоханнессен О.М. и др. Научные исследования в Арктике. Том 3. Дистанционное зондирование морских льдов на Северном морском пути: изучение и применение. СПб. Наука, 2007, с. 79-88, 235-238 и др.).

Из известных способов и устройств наиболее близким к предлагаемому является «Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби» (патент РФ №2.621.276, G01V 1/00, 2016), который и выбран в качестве прототипа.

Известный способ заключается в расстановке на ледяном поле или припае сейсмометров и наклономеров, которые фиксируют волновые поля и очаги их формирования в окружающем ледяном покрове, датчиков напряжений и деформометров для определения изменений напряженно-деформированного состояния ледяного поля, глобальной спутниковой системы позиционирования для временной синхронизации и фиксации изменений ориентации расстановки датчиков при дрейфе и поворотах ледяного поля.

Согласно известному способу на ледяном поле расставляются по четырехугольной схеме четыре полевые модульные станции, каждая из которых включает трехкомпонентный сейсмометр, двухкомпонентный наклономер, два однокомпонентных деформометра, два датчика напряжения и приемник сигналов глобальной спутниковой системы позиционирования. При этом размеры сторон четырехугольника выбираются в зависимости от размеров ледяного поля и решаемых задач.

На дрейфующей льдине или припае по четырехугольной схеме в вершинах четырехугольника устанавливаются четыре модульные полевые станции 1 (С1, С2, С3, С4), которыми образованы шесть измерительных баз d1-d6, которые не участвуют в определении местоположения очагов трещинообразования и разрушения дрейфующего ледяного поля или припая.

Технической задачей изобретения является расширение функциональных возможностей известного способа и повышение точности определения местоположения очагов трещинообразования и разрушения дрейфующего ледяного поля или припая путем использования шести измерительных баз d1-d6.

Поставленная задача решается тем, что способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби, заключающийся в соответствии с ближайшим аналогом, в фиксации поля упругих волн сейсмическими станциями, состоящими каждая из сейсмометров, ориентированных по странам света, при этом на дрейфующем ледяном поле или припае фиксируют напряженно-деформированное состояние и одновременно поле упругих волн, а также положение ледяного поля в пространстве и во времени с помощью расстановки по четырехугольной схеме четырех полевых станций, каждая из которых состоит из трехкомпонентного сейсмометра, двухкомпонентного наклономера, двух деформометров, двух датчиков напряжений, ориентированных по странам света, и приемника глобальной спутниковой системы позиционирования, а данные поступают на базовую станцию сбора и обработки данных в режиме реального времени, располагаемую на судне или берегу, или на дрейфующем ледяном поле, отличается от ближайшего аналога тем, что сигналы, принимаемые полевыми модульными станциями от очага трещинообразования и разрушения передают по радиоканалам на базовую станцию сбора и обработки данных, где принимают указанные сигналы, выделяют гармонические напряжения и измеряют разности фаз между ними, формируя фазовые шкалы отсчета угловых координат очага трещинообразования и разрушения α, β, γ, μ, ϕ, ψ: точные, но неоднозначные, одновременно сигнал, принимаемый первой полевой модульной станцией C1, пропускают через первый, второй и третий блоки регулируемой задержки и перемножают с сигналами, принимаемыми второй С2, третьей С3 и четвертой С4 полевыми модульными станциями, выделяют низкочастотные напряжения, пропорциональные первой R1(τ), второй R2(τ) и третьей R3(τ) корреляционным функциям, где τ - текущая временная задержка, изменением временной задержки τ обеспечивают максимальные значения первой R1(τ), второй R2(τ) и третьей R3(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τз1, τ=τз2 и τ=τз3, соответствующие максимуму корреляционных функций, сигнал, принимаемый второй полевой модульной станцией С2, пропускают через четвертый и пятый блоки регулируемой задержки и перемножают с сигналами, принимаемыми третьей С3 и четвертой С4 полевыми модульными станциями, выделяют низкочастотные напряжения, пропорциональные четвертой R4(τ) и пятой R5(τ) корреляционным функциям, изменением временной задержки τ обеспечивают максимальное значение четвертой R4(τ) и пятой R5(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τз4 и τ=τз5, соответствующие максимуму корреляционных функций, сигнал, принимаемый третьей полевой модульной станцией С3, пропускают через шестой блок регулируемой задержки и перемножают с сигналом, принимаемым четвертой полевой модульной станцией С4, выделяют низкочастотное напряжение, пропорциональное шестой корреляционной функции R6(τ), изменением временной задержки τ обеспечивают максимальное значение шестой корреляционной функции R6(τ), поддерживают ее на максимальном уровне и фиксируют временную задержку τ=τз6, соответствующую максимуму шестой корреляционной функции R6(τ), по зарегистрированным временным задержкам формируют временные шкалы отсчета угловых координат α, β, γ, μ, ϕ и ψ очага трещинообразования и разрушения дрейфующего ледяного поля или припая: грубые, но однозначные, по измеренным угловым координатам точно и однозначно определяют местоположение очага трещинообразования и разрушения дрейфующего ледяного поля или припая.

Геометрическая расстановка четырех полевых модульных станций 1 (С1, С2, С3, С4) и базовой станции сбора и обработки данных 4 представлена на фиг. 1. Структурная схема базовой станции сбора и обработки данных 4 изображена на фиг. 2.

Четыре модульные станции 1 (С1, С2, С3, С4) расположены по четырехугольной схеме и образуют шесть измерительных баз d1, d2, d3, d4, d5 и d6 с подключенными датчиками 2 (Д1 - сейсмометры, Д2 - наклономеры, Д3 - деформометры, Д4 - датчики напряжения во льду, Д5 - приемники сигнала глобальной спутниковой системы позиционирования). По радиоканалам 3 полевые станции 1 связываются с базовой станцией сбора и обработки данных 4, расположенной на судне 5. Кроме того, в зависимости от условий проведения наблюдений, базовая станция сбора и обработки данных 4 может быть расположена на ледяном поле или берегу.

К каждой полевой модульной станции C12, С3, С4) по радиоканалу 3 последовательно подключены приемник 6 (7, 8, 9) и узкополосный фильтр 10 (11, 12, 13), который через фазометр 14 (15, 16, 17, 18, 19) подключен к компьютеру 20. К выходу первой модульной станции C1 через радиоканал 3 последовательно подключены блок 22.1 (22.2, 22.3) регулируемой задержки, перемножитель 23.1 (23.2, 23.3), второй вход которого соединен с выходом станции С23, С4), фильтр 24.1 (24.2, 24.3) нижних частот и экстремальный регулятор 25.1 (25.2, 25.3), выход которого соединен с вторым входом блока 22.1 (22.2, 22.3), второй выход которого через индикатор α 26 (индикатор β 27, индикатор γ 28 подключен к соответствующему входу компьютера 20. К выходу второй модульной станции С2 через радиоканал 3 последовательно подключены блок 22.4 (22.5) регулируемой задержки, перемножитель 23.4 (23.5), второй вход которого соединен с выходом станции С34), фильтр 24.4 (24.5) нижних частот и экстремальный регулятор 25.4 (25.5), выход которого соединен с вторым входом блока 22.4 (22.5) регулируемой задержки, второй выход которого через индикатор μ 29, индикатор ϕ 30 подключен к соответствующему входу компьютера 20. К выходу третьей модульной станции С3 через радиоканал 3 последовательно подключены блок 22.6 регулируемой задержки, перемножитель 23.6, второй вход которого соединен с выходом четвертой модульной станции С4, фильтр 24.6 нижних частот и экстремальный регулятор 25.6, выход которого соединен с вторым входом блока 22.6 регулируемой задержки, второй выход которого через индикатор 31 угла ψ подключен к соответствующему входу компьютера 20.

Блок 22.1 (22.2, 22.3, 22.4, 22.5, 22.6) регулируемой задержки, перемножитель 23.1 (23.2, 23.3, 23.4, 23.5, 23.6), фильтр 24.1 (24.2, 24.3, 24.4, 24.5, 24.6) нижних частот и экстремальный регулятор 25.1 (25.2, 25.3, 25.4, 25.5, 25.6) образуют первый 21.1 (второй 21.2, третий 21.3, четвертый 21.4, пятый 21.5, шестой 21.6) коррелятор.

Предлагаемый способ реализуют следующим образом.

На дрейфующей льдине или припае по четырехугольной схеме в вершинах четырехугольника устанавливаются четыре модульные полевые станции 1 (C1, С2, С3, С4). Для этого расчищаются четыре площадки, на которых ко льду примораживаются постаменты из досок и на них устанавливаются трехкомпонентные сейсмометры 2 (Д1) и двухкомпонентные наклономеры 2 (Д2). В поверхностный слой льда вмораживаются деформометры 2 (Д3) и датчики напряжения 2 (Д4), которые замораживаются в предварительно выбуренные скважины. Датчики ориентированы по сторонам света - север-юг и запад-восток, что обеспечивает возможность определения направлений и координат очагов трещинообразования и разрушения, а также скорость продвижения этих процессов к исследуемому ледяному полю. Кроме того, подключаются приемники сигналов глобальной спутниковой системы позиционирования 2 (Д5). Датчики при помощи проводов соединяются с модулями сбора и оцифровки данных и блоком аккумуляторных батарей. Рабочая настройка и проверка полевых станций осуществляется с помощью защищенного переносного персонального компьютера (ноутбука), который на фиг. 1 не указан. На судне 5 разворачивается базовая станция сбора и обработки данных 4, на которую по радиоканалам 3 поступаю данные в цифровом формате и записываются в базу данных на устройство постоянной памяти (сервер). Кроме того, осуществляется обработка поступающей информации на компьютере по определенному алгоритму в режиме реального времени с выводом на дисплей, что позволяет оперативно выделить предикторы разломов ледяного поля и дать заблаговременный прогноз опасного явления в определенном временном диапазоне. Базовая станция сбора и обработки данных 4, кроме судна 5, в зависимости от решаемых задач, может располагаться на ледяном поле или берегу. За временной синхронизацией между полевыми станциями и изменениями первоначальной ориентации расстановки датчиков при дрейфе и поворотах ледяного поля осуществляется постоянный контроль посредством приема сигнала ГЛОНАСС на приемники 2 (Д5).

Гармонические напряжения:

u1(t)=U1⋅Cos(ωct+ϕ1),

u2(t)=U2⋅Cos(ωct+ϕ2),

u3(t)=U3⋅Cos(ωct+ϕ3),

u4(t)=U4⋅Cos(ωct+ϕ4), 0≤t≤Tc,

выделяемые узкополосными фильтрами 10-13 на выходе приемников 6-9 поступают на два входа фазометров 14-19. Последние измеряют следующие разности фаз:

где λ - длина волны,

d1-d6 - измерительные базы;

α, β, γ, μ, ϕ, ψ - углы, определяющие местоположение источника излучения ИИ (очаг трещинообразования и разрушения), которые фиксируются компьютером 20. Так формируются фазовые шкалы отсчета угловых координат источника излучения (очага трещинообразования и разрушения) α, β, γ, μ, ϕ, ψ: точные, но неоднозначные.

Принимаемые радиосигналы одновременно поступают на два входа корреляторов 21.1, 21.2, 21.3, 21.4, 21.5 и 21.6. Получаемые на выходе фильтров 24.1, 24.2, 24.3, 24.4, 24.5 и 24.6 нижних частот корреляционные функции R1(τ), R2(τ), R3(τ), R4(τ), R5(τ) и R6(τ) имеют максимум при значении введенной регулируемой задержки:

τ1=t2-t1, τ2=t3-t1, τ3=t4-t1

τ4=t3-t2, τ5=t4-t2, τ6=t4-t3,

где t1, t2, t3, t4 - время прохождения сигналом расстояния от источника излучений ИИ до полевых станций С1, С2, С3 и С4 соответственно.

Максимальные значения корреляционных функций R1(τ), R2(τ), R3(τ), R4(τ), R5(τ) и R6(τ) поддерживаются с помощью экстремальных регуляторов 25.1, 25.2, 25.3, 25.4, 25.5 и 25.6, воздействующих на управляющие входы блоков 22.1, 22.2, 22.3, 22.4, 22.5 и 22.6 регулируемой задержки.

Шкалы блоков 22.1÷22.6 регулируемой задержки (указатели углов) проградуированы непосредственно в значениях угловых координат источника излучения:

где с - скорость распространения волн.

Значения угловых координат α, β, γ, μ, ϕ и ψ фиксируются соответствующими индикаторами 26, 27, 28, 29, 30 и 31 и поступают в компьютер 20.

Так формируются временные шкалы отсчета угловых координат источника излучения (очага трещинообразования и разрушения) α, β, γ, μ, ϕ и ψ: грубые, но однозначные.

Таким образом, предлагаемый способ по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение точности определения местоположения источника излучения (очага трещинообразования и разрушения) дрейфующего ледяного поля или припая. Это достигается за счет использования шести измерительных баз d1-d6.

Тем самым функциональные возможности известного способа расширены.

Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби, заключающийся в фиксации поля упругих волн сейсмическими станциями, состоящими каждая из сейсмометров, ориентированными по странам света, при этом на дрейфующем ледяном поле или припае фиксируют напряженно-деформированное состояние и одновременно поле упругих волн, а также положение ледяного поля в пространстве и во времени с помощью расстановки по четырехугольной схеме четырех полевых станций, каждая из которых состоит из трехкомпонентного сейсмометра, двухкомпонентного наклономера, двух деформометров, двух датчиков напряжений, ориентированных по странам света, и приемника глобальной спутниковой системы позиционирования, а данные поступают на базовую станцию сбора и обработки данных в режиме реального времени, располагаемую на судне или берегу, или на дрейфующем ледяном поле, отличающийся тем, что сигналы, принимаемые полевыми станциями от очага трещинообразования и разрушения, передают по радиоканалам на базовую станцию сбора и обработки данных, где принимают указанные сигналы, выделяют гармонические напряжения и измеряют разности фаз между ними, формируя фазовые шкалы отсчета угловых координат очага трещинообразования и разрушения α, β, γ, μ, ϕ, ψ: точные, но неоднозначные, одновременно сигнал, принимаемый первой полевой станцией C, пропускают через первый, второй и третий блоки регулируемой задержки и перемножают с сигналами, принимаемыми второй С, третьей С и четвертой С полевыми станциями соответственно, выделяют низкочастотные напряжения, пропорциональные первой R(τ), второй R(τ) и третьей R(τ) корреляционным функциям, где τ - текущая временная задержка, изменением временной задержки τ обеспечивают максимальные значения первой R(τ), второй R(τ) и третьей R(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τ, τ=τ и τ=τ, соответствующие максимуму корреляционных функций, сигнал, принимаемый второй полевой станцией С, пропускают через четвертый и пятый блоки регулируемой задержки и перемножают с сигналами, принимаемыми третьей С и четвертой С полевыми станциями соответственно, выделяют низкочастотные напряжения, пропорциональные четвертой R(τ) и пятой R(τ) корреляционным функциям, изменением временной задержки τ обеспечивают максимальные значения четвертой R(τ) и пятой R(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τ и τ=τ, соответствующие максимуму корреляционных функций, сигнал, принимаемый третьей С полевой станцией, пропускают через шестой блок регулируемой задержки и перемножают с сигналом, принимаемым четвертой С полевой станцией, выделяют низкочастотное напряжение, пропорциональное шестой R(τ) корреляционной функции, изменением временной задержки τ обеспечивают максимальное значение шестой R(τ) корреляционной функции, поддерживают ее на максимальном уровне и фиксируют временную задержку τ=τ, соответствующую максимуму корреляционной функции, по зарегистрированным временным задержкам формируют временные шкалы отсчета угловых координат очага трещинообразования и разрушения α, β, γ, μ, ϕ и ψ: грубые, но однозначные, по измеренным угловым координатам точно и однозначно определяют местоположение очага трещинообразования и разрушения.
Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби
Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби
Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби
Источник поступления информации: Роспатент

Показаны записи 11-20 из 106.
27.10.2013
№216.012.7b7d

Кодовая шкала

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, и может быть использовано для преобразования угла поворота вала в код. Техническим результатом является обеспечение осуществления обработки информации в обычном двоичном коде. Кодовая шкала содержит m...
Тип: Изобретение
Номер охранного документа: 0002497275
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7f5e

Способ дистанционного обнаружения вещества

Предложен способ поиска и обнаружения наркотиков и взрывчатых веществ, находящихся в неметаллической оболочке и в укрывающих средах. Техническим результатом является повышение точности определения местоположения наркотического вещества. В веществе возбуждают магнитный резонанс с последующим...
Тип: Изобретение
Номер охранного документа: 0002498279
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.81bd

Припой для бесфлюсовой пайки

Изобретение относится к пайке диффузионно-отверждающимся припоем на основе галлия и может быть использовано для получения неразъемных соединений разнородных материалов, в частности для низкотемпературной бесфлюсовой пайки металлов и керамики с металлами. Припой для бесфлюсовой пайки включает...
Тип: Изобретение
Номер охранного документа: 0002498889
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.84f4

Способ и система радиочастотной идентификации и позиционирования железнодорожного транспорта

Группа изобретений относится к области организации и управления движением на железных дорогах. Способ радиочастотной идентификации и позиционирования железнодорожного транспорта состоит в том, что на каждом участке пути располагают, как минимум, две радиочастотные метки. Первую метку размещают...
Тип: Изобретение
Номер охранного документа: 0002499714
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.89f7

Устройство для определения фазового состояния газожидкостного потока

Использование: для определения фазового состояния газожидкостного потока в контрольной точке вертикального сечения трубопровода. Сущность: заключается в содержании устройством для определения фазового состояния газожидкостного потока измерительного устройства и терморезистивного датчика...
Тип: Изобретение
Номер охранного документа: 0002501001
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e0b

Индукционный датчик углового положения

Изобретение относится к измерительной технике и может быть использовано для измерения угловых положений преобразователем положения индукционного типа. Технический результат: расширение диапазона измерений, упрощение конструкции датчика, повышение точности измерений. Сущность: датчик содержит...
Тип: Изобретение
Номер охранного документа: 0002502046
Дата охранного документа: 20.12.2013
10.02.2014
№216.012.9e1e

Устройство считывания информации с подвижных объектов железнодорожных составов

Изобретение относится к области управления железнодорожным транспортом. Устройство считывания информации с подвижных объектов железнодорожных составов содержит считывающее устройство, кодовые датчики и размещенные на локомотиве приемоответчики, блок питания и управления, генератор и блок приема...
Тип: Изобретение
Номер охранного документа: 0002506186
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f83

Датчик контроля дискретных уровней жидкости с функцией измерения температуры и контроля массового расхода жидкой среды

Изобретение относится к приборостроению, а именно к дискретным измерителям уровня, и может быть использовано для контроля уровня и массового расхода компонентов топлива при заправке, расходовании и хранении в химической, космической и других областях промышленности. Датчик контроля дискретных...
Тип: Изобретение
Номер охранного документа: 0002506543
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a31f

Индукционный датчик положения

Относится к измерительной технике и может быть использовано для измерения линейных перемещений с помощью преобразователя перемещения индукционного типа. Техническим результатом заявленного изобретения является существенное повышение надежности работы индукционного датчика положения. Технический...
Тип: Изобретение
Номер охранного документа: 0002507474
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a33e

Способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей. Технической...
Тип: Изобретение
Номер охранного документа: 0002507505
Дата охранного документа: 20.02.2014
Показаны записи 11-20 из 189.
20.04.2013
№216.012.3829

Станция радиотехнического контроля

Предлагаемая станция относится к области радиотехники. Достигаемый технический результат - осуществление радиотехнического контроля радиоэлектронных средств (РЭС) противника (РЛС, радиолинии связи и управления и др.). Указанный результат достигается за счет того, что анализатор параметров...
Тип: Изобретение
Номер охранного документа: 0002479930
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3bf2

Приемник сигналов спутниковых радионавигационных систем глонасс и навстар

Изобретение относится к спутниковой радионавигации и может быть использовано на подвижных объектах, например для управления движением судов как надводных, так и воздушных в сложных метеоусловиях, для первичной обработки информации, поступающей от двух взаимно рассинхронизированных спутниковых...
Тип: Изобретение
Номер охранного документа: 0002480907
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.4018

Система защиты от несанкционированного доступа для транспортных средств

Изобретение относится к транспортной технике и предназначена для использования с целью предотвращения несанкционированного доступа к транспортным средствам, в частности автомобилям. Система содержит логический модуль (1), считыватель (2) транспондера, транспондер (3), блок (4) памяти...
Тип: Изобретение
Номер охранного документа: 0002481978
Дата охранного документа: 20.05.2013
20.06.2013
№216.012.4bed

Система определения места катастрофы самолета

Изобретение относится к области авиации. Система содержит "черный ящик" с сигнализацией и поисковый прибор, размещенный на борту вертолета. "Черный ящик" с сигнализацией в случае катастрофы самолета выбрасывается с парашютом, излучая при этом электромагнитные волны и звуковые сигналы. Во время...
Тип: Изобретение
Номер охранного документа: 0002485019
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e7e

Устройство для дистанционного измерения параметров атмосферы

Изобретение относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении, температуре и влажности атмосферы (воздуха). Технический результат заключается в расширении функциональных возможностей за счет одновременного дистанционного измерения...
Тип: Изобретение
Номер охранного документа: 0002485676
Дата охранного документа: 20.06.2013
27.07.2013
№216.012.5a95

Способ дистанционного обнаружения вещества

Использование: для поиска и обнаружения наркотиков и взрывчатых веществ посредством магнитного резонанса. Сущность: заключается в том, что осуществляют электромагнитное зондирование предполагаемого места закладки наркотического вещества плоскополяризованным сигналом и прием сигналов с правой и...
Тип: Изобретение
Номер охранного документа: 0002488810
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.5ff5

Система для дистанционного контроля за мусорными контейнерами

Изобретение может быть использовано для контроля за переполнением контейнеров, их возгоранием, несанкционированным доступом к ним, для контроля мест загрузки и опорожнения контейнеров. Изобретение обеспечивает повышение достоверности распознавания контейнеров, в том числе и «проблемных», путем...
Тип: Изобретение
Номер охранного документа: 0002490197
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.68fc

Способ контроля движения специальных транспортных средств

Изобретение относится к области контроля движения городского наземного транспорта, мусоровозов, обеспечивающих вывоз бытового и промышленного мусора на специальные свалки или в места их переработки, инкассаторских машин, перевозящих денежные средства из банка различным организациям и из...
Тип: Изобретение
Номер охранного документа: 0002492523
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d10

Переносной амплитудный радиопеленгатор

Изобретение относится к области радиотехники и может быть использовано при решении задач радиопеленгации с помощью переносных (малогабаритных) средств в декаметровом и метровом диапазонах радиоволн. Технический результат - повышение точности определения азимута на источник радиоизлучений и...
Тип: Изобретение
Номер охранного документа: 0002493571
Дата охранного документа: 20.09.2013
27.10.2013
№216.012.7afd

Способ обнаружения и идентификации разыскиваемых транспондеров из множества пассивных транспондеров и система для его осуществления

Предлагаемые способ и система относятся к системам радиочастотной идентификации подвижных и неподвижных объектов (RFID-системы). Технической задачей изобретения является расширение функциональных возможностей известных технических решений путем автоматического определения местоположения...
Тип: Изобретение
Номер охранного документа: 0002497147
Дата охранного документа: 27.10.2013
+ добавить свой РИД