×
18.07.2020
220.018.34b3

Результат интеллектуальной деятельности: Способ совместной гидропереработки растительного и нефтяного сырья

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу гидрогенизационной переработки растительного и нефтяного сырья. В качестве растительного компонента используют липидную фракцию, извлеченную из микроводорослей, или непищевые растительные масла, а в качестве нефтяного компонента используют прямогонную дизельную фракцию в смеси с легкими газойлями каталитического крекинга и коксования. Процесс совместной гидропереработки осуществляют в три стадии: на первой стадии сырье, состоящее из прямогонной дизельной фракции и смеси легких газойлей каталитического крекинга и коксования в соотношении 60,0-80,0:20,0-40,0% мас., соответственно, подвергают гидроочистке в присутствии кобальтмолибденового катализатора на основе оксида алюминия или алюмосиликата с получением гидрогенизата с содержанием серы в интервале 150-500 ppm. Далее на второй стадии гидропереработки сырье, состоящее из гидрогенизата первой стадии и растительного компонента в соотношении 80,0-95,0:5,0-20,0% мас., соответственно, подвергают процессу гидродеоксигенации совмещенному с гидродесульфуризацией в присутствии пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе оксида алюминия или алюмосиликата во втором слое. На третьей стадии процесса проводят каталитическую гидродепарафинизацию в присутствии цеолитсодержащего никельмолибденового катализатора. Полученный продукт подвергают стабилизации и фракцию 180-кк °С выводят как компонент дизельного топлива. Технический результат- производство дизельных топлив с улучшенными низкотемпературными свойствами. 3 з.п. ф-лы, 7 пр.

Изобретение относится к области нефтепереработки, а именно к области совместной гидропереработки растительного и нефтяного углеводородного сырья с целью получения компонента дизельного топлива с улучшенными низкотемпературными свойствами.

Производство биотоплив из растительного сырья является одним из интенсивно развивающихся направлений исследований сегодня, что связано с необходимостью снижения экологической нагрузки на окружающую среду и поиском альтернативной сырьевой базы для производства моторных топлив.

На сегодняшний день существует два способа переработки возобновляемого сырья: индивидуальная переработка растительных компонентов (переэтерификация или гидродеоксигенация триглицеридов жирных кислот и др.) и совместная переработка нефтяного и растительного сырья. Второй способ имеет ряд преимуществ по сравнению с первым в части отсутствия капитальных затрат на строительство новых технологических установок и меньшие эксплуатационные затраты, что приводит к меньшей себестоимости получаемых биотоплив. Ограничение на широкое использование биомассы в качестве компонента сырья установки гидроочистки обусловлено спецификой ее химического состава, а именно высоким содержанием кислородорганических и непредельных соединений, которые даже в мягких условиях ведения процесса, с одной стороны, приводят к быстрой дезактивации промышленных катализаторов [D. Kubicka, J. Ногасек // Appl. Catal. А. 2011. V. 394. P. 9-17], а, с другой стороны, к ингибированию кислород-содержащими соединениями целевых реакций удаления серы и гидрирования полициклических ароматических углеводородов. Поэтому для совместной переработки ископаемого и возобновляемого сырья необходима разработка оптимальной технологии, сочетающей в себе высокоактивные стабильные каталитические системы и эффективные технологические решения.

Известен способ получения дизельного топлива из возобновляемого сырья растительного происхождения [Патент РФ №2558948, 10.08.2015 г.].

Способ осуществляют путем одностадийной гидропереработки и изомеризации с использованием сырья растительного (биологического) происхождения, выбранного из растительных масел или липидов микроводорослей, в присутствии бифункционального гетерогенного катализатора. Катализатором является кристаллический силикоалюмофосфат с цеолитоподобной структурой, модифицированный металлом VIII группы Периодической таблицы, с дисперсностью введенного в состав катализатора металла - 14-60%, в количестве не более 10 мас. %. Предпочтительным является катализатор на основе силикоалюмофосфата со структурой SAPO-31. В способе используют смеси сырья растительного происхождения (жиры, масла, липиды микроводорослей) с гидроочищенным дизельным топливом. Процесс проводят при температуре не выше 400°С, давлении не более 10 МПа, массовой скорости подачи сырья не более 10 ч-1, объемном отношении водород/сырье не более 2000.

Технический результат - разбавление растительного сырья минеральным позволяет повысить стабильность действия бифункционального катализатора и увеличить время его работы.

К недостаткам способа следует отнести необходимость использования гидроочищенного дизельного топлива для переработки в смеси с растительным сырьем, что требует либо проведения глубокой гидроочистки при жестких параметрах работы, либо не позволяет вовлекать в сырье гидроочистки большое количества низкокачественных газойлей вторичного происхождения.

Также известен способ совместной обработки дизельного топлива и растительного масла для получения гибридного дизельного биотоплива с низкой температурой помутнения [Патент РФ №2487923, 29.09.2009 г.].

Способ получения гибридного дизельного топливного продукта включает следующие стадии: объединение растительного масла с дизельной фракцией с образованием первой смеси с содержанием растительного масла не более 10 мас. %; гидроочистка первой смеси с образованием гидроочищенной второй смеси, содержащей дезоксигенированные триглицеридные компоненты, со степенью удаления серы не менее 95%; изомеризация гидроочищенной второй смеси в присутствии катализатора изомеризации с образованием третьей смеси, включающей гибридное дизельное топливо, имеющее пониженную температуру помутнения.

Технический результат - не требуется межкаскадного удаления H2S и NH3 между стадиями гидроочистки и изомеризации, образуется гибридный дизельный продукт с низкой температурой помутнения, повышение производительности при снижении общих производственных затрат.

К недостаткам данного способа следует отнести вовлечение в процесс пищевого растительного сырья с невысоким содержанием чего? (до 10% масс.). К недостаткам способа также следует отнести использование дорогих катализаторов на основе платины и палладия на стадии изомеризации, а также невозможность использовать сернистые и высокосернистые дизельные фракции, так как заявленная степень удаления серы (не менее 95%) не позволит получить продукт, удовлетворяющий современным спецификациям по остаточному содержанию серы.

Известен способ и катализатор гидропереработки для производства высококачественных дизельного и нефтяного топлив из сырья, которое содержит кислородсодержащие компоненты, полученные из возобновляемых органических материалов [Патент РФ №2495082, 23.07.2009 г.].

Способ производства углеводородного топлива из возобновляемого органического материала биологического происхождения включает следующие стадии:

1. Формирование исходного сырья путем комбинирования ископаемого углеводородного топлива с возобновляемым органическим материалом, где содержание возобновляемого органического материала составляет от 1 до 35 об. %;

2. Смешение исходного сырья из стадии (1) с обогащенным водородсодержащим газом и подача объединенного потока на стадию гидродеоксигенации путем контакта указанного объединенного потока с катализатором гидродеоксигенации. При этом катализатор гидродеоксигенации представляет собой нанесенный молибденовый катализатор с содержанием Мо от 0,1 до 20 мас. %, носитель выбран из ряда оксид алюминия, диоксид кремния, диоксид титана и их комбинации (указанный носитель имеет бимодальную пористую структуру с порами с диаметром более 50 нм, которые составляют по меньшей мере 2 об. % общего объема пор).

Кроме того, после гидродеоксигенации полученный продукт подвергается дополнительной гидроочистке и гидроизомеризации. В качестве возобновляемого органического материала используют животные жиры, талловое масло, рапсовое масло. Стадию гидродеоксигенации проводят при давлении водорода 1-200 бар (0,1-20 МПа), при температуре 50-350°С и при объемной скорости подачи сырья 0,1-10 ч-1. Стадии гидроочистки и гидроизомеризации проводят при давлении водорода 1-200 бар (0,1-20 МПа), при температуре 50-450°С и при объемной скорости подачи сырья 0,1-10 ч-1.

Технический результат - снижается склонность к образованию кокса вследствие низкого локального парциального давления водорода.

Недостатком указанного способа является вовлечение в процесс пищевого растительного сырья. К недостаткам также следует отнести, что при использовании высокосернистого сырья не удается получить продукт, соответствующий современным требованиям по содержанию серы.

Наиболее близким к заявляемому является способ гидрооблагораживания триглицеридов жирных кислот и прямогонной дизельной фракции на сульфидных катализаторах с целью получения низкосернистых углеводородных фракций [Патент РФ 2652991, 04.05.2018]

В соответствии с изобретением гидрооблагораживания триглицеридов жирных кислот в смеси с нефтяными фракциями осуществляется на сульфидных катализаторах MoS2/Al2O3 и NiMo/Al2O3 в две стадии. На первой стадии проводят гидроочистку прямогонной дизельной фракции в присутствии сульфидного NiMo/Al2O3 катализатора, затем полученную смесь углеводородов, водорода и сероводорода смешивают с триглицеридами жирных кислот и проводят реакцию гидродеоксигенации в присутствии сульфидного катализатора MoS2/Al2O3. Гидрооблагораживание сырья проводят при температуре 340°С, давлении водорода 4,0 МПа, объемной скорости расхода сырья - 1,1-1,25 ч-1, суммарном объемном соотношении водород/сырье - 510-600 Нм33.

Технический результат - высокая эффективность процесса совместного гидрооблагораживания дизельных фракций и триглицеридов жирных кислот.

К недостаткам данного способа относится невозможность расширения сырьевой базы за счет использования высокосернистых газойлей вторичных процессов переработки, а также невозможность получения низкозастывающих углеводородных фракций.

Задачей настоящего изобретения является разработка способа гидрогенизационной переработки смесей непищевого растительного и нефтяного сырья с получением дизельного топлива с требуемыми низкотемпературными характеристиками, предусматривающего расширение сырьевой базы для получения дизельного топлива за счет вовлечения низкокачественных газойлей вторичных процессов.

Для решения поставленной задачи предлагается способ совместной гидрогенизационной переработки растительного и нефтяного сырья, который отличается тем, что процесс гидрогенизационной переработки осуществляют в три стадии: на первой стадии нефтяное сырье, содержащее до 40% низкокачественных газойлей вторичного происхождения, подвергают гидроочистке на нанесенном СоМо катализаторе с получением гидрогенизата с содержанием серы в интервале 150-500 ppm. На второй стадии гидрогенизат первой ступени смешивается с липидной фракцией, извлеченной из микроводорослей, или с растительным маслом непищевого назначения в количестве не более 20%, полученную смесь подвергают процессу гидродеоксигенации на пакете катализаторов, состоящем их массивного MoS2 и нанесенного триметаллического NiCoMo катализатора. На третьей стадии полученный продукт второй ступени подвергается процессу гидродепарафинизации на цеолитсодержащем NiMo катализаторе для достижения требуемых низкотемпературных характеристик.

Первую стадию гидропереработки осуществляют при давлении 4-7 МПа, температуре 330-380°С, объемной скорости подачи сырья 1,5-3,0 час-1, соотношении водородсодержащий газ /сырье - 600-1000 н.об./об.

Вторую стадию гидропереработки осуществляют при давлении 4-7 МПа, температуре 320-380°С, объемной скорости подачи сырья 0,5-1,5 час-1, соотношении водородсодержащий газ/сырье - 800-1200 н.об./об.

Третью стадии гидропереработки осуществляют при давлении 4-5 МПа, температуре 270-380°С, объемной скорости подачи сырья 2-3 час-1, соотношении водородсодержащий газ/сырье 800-1000 н.об./об.

Достоинством способа является возможность вовлечения в состав сырья сернистых и высокосернистых вторичных газойлей и одновременное исключение из состава сырья ценных пищевых масел и жиров - они заменяются непищевыми маслами и липидами, полученными из водорослей. Проведение гидроочистки на первой стадии до остаточного содержания серы в интервале 150-500 ppm позволяет, с одной стороны, вести процесс при более мягких условиях, с другой стороны, отсутствует необходимость дополнительно вводить осерняющий агент на вторую стадию для поддержания катализаторов в активной форме. Кроме того, использование MoS2 в качестве первого катализаторного слоя на второй стадии позволяет проводить процесс гидродеоксигенации преимущественно по маршруту прямого гидрирования без образования оксидов углерода, ингибирующих реакции гидродесульфуризации [D. Kubicka, L. Kaluza // Appl. Catal. A:Gen. 2010. V. 372. P. 199-208].

Техническим результатом настоящего изобретения является высокоэффективная технология, позволяющая перерабатывать смесь прямогонных дизельных фракций, низкокачественных газойлей вторичного происхождения и растительного сырья, для производства дизельных топлив с улучшенными низкотемпературными свойствами. Технический результат достигается за счет трехстадийной переработки сырья с применением нанесенного СоМо, массивного MoS2, нанесенного NiCoMo и цеолитсодержащего NiMo катализаторов.

Ниже приведены примеры конкретной реализации способа.

Пример 1

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (60% масс.) и легких газойлей каталитического крекинга (20% масс.) и коксования (20% масс.) с содержанием серы 10361 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 155 мг/кг смешивают с липидной фракцией, извлеченной из микроводорослей, соотношение растительного сырья и гидрогенизата составляет 5:95% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 5 МПа, температуре 360°С, объемной скорости подачи сырья 1,5 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 700 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 5 МПа, температуре - 350°С, объемной скорости подачи сырья 1,5 ч-1, соотношении ВСГ/сырье - 1000 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе оксида алюминия во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4 МПа, температуре - 270°С, объемной скорости подачи сырья 3,0 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 35,3°С, содержанием серы 9 мг/кг.

Пример 2

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (80% масс.) и легкого газойля каталитического крекинга (20% масс.) с содержанием серы 7895 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 276 мг/кг смешивают с техническим рапсовым маслом, соотношение растительного сырья и гидрогенизата составляет 15:85% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 4,5 МПа, температуре 340°С, объемной скорости подачи сырья 2,5 ч-1, соотношении водородсодержащий газ (ВСГ)/сырье - 600 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 4,5 МПа, температуре - 340°С, объемной скорости подачи сырья 0,5 ч-1, соотношении ВСГ/сырье - 900 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе алюмосиликата во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4 МПа, температуре - 290°С, объемной скорости подачи сырья 2,0 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 36°С и содержанием серы 8 мг/кг.

Пример 3

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (80% масс.) и легкого газойля замедленного коксования (20% масс.) с содержанием серы 10635 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 160 мг/кг смешивают с липидной фракцией, извлеченной из микроводорослей, соотношение растительного сырья и гидрогенизата составляет 10:90% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 4,5 МПа, температуре 350°С, объемной скорости подачи сырья 2 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 600 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 4,5 МПа, температуре - 330°С, объемной скорости подачи сырья 1,0 ч-1, соотношении ВСГУсырье - 800 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе оксида алюминия во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4.5 МПа, температуре - 280°С, объемной скорости подачи сырья 2,0 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 35,5°С, содержанием серы 8 мг/кг.

Пример 4

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (80% масс.) и легкого газойля каталитического крекинга (40% масс.) с содержанием серы 7621 мг/кг. Далее гидрогенизат первой ступени с содержанием серы 351 мг/кг смешивают с непищевым нерафинированным пальмовым маслом, соотношение растительного сырья и гидрогенизата составляет 20:80% масс. соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 5 МПа, температуре 340°С, объемной скорости подачи сырья 2,0 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 700 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 5 МПа, температуре - 350°С, объемной скорости подачи сырья 0,5 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе алюмосиликата во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 5 МПа, температуре - 270°С, объемной скорости подачи сырья 2.5 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 37,8°С, содержанием серы 7 мг/кг.

Пример 5

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (80% масс.) и легкого газойля замедленного коксования (40% масс.) с содержанием серы 13101 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 197 мг/кг смешивают с липидной фракцией, извлеченной из микроводорослей, соотношение растительного сырья и гидрогенизата составляет 20:80% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 5 МПа, температуре 360°С, объемной скорости подачи сырья 1,5 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 700 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 5 МПа, температуре - 340°С, объемной скорости подачи сырья 1,0 ч-1, соотношении ВСГ/сырье - 1200 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе оксида алюминия во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4 МПа, температуре - 270°С, объемной скорости подачи сырья 2,0 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 37,6°С, содержанием серы 8 мг/кг.

Пример 6

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (80% масс.) и легких газойлей каталитического крекинга (10% масс.) и коксования (10% масс.) с содержанием серы 9265 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 232 мг/кг смешивают с непищевым нерафинированным соевым маслом, соотношение растительного сырья и гидрогенизата составляет 15:85% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 6 МПа, температуре 360°С, объемной скорости подачи сырья 2,3 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 800 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 6 МПа, температуре - 360°С, объемной скорости подачи сырья 1,2 ч-1, соотношении ВСГ/сырье - 1100 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе алюмосиликата во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4 МПа, температуре - 290°С, объемной скорости подачи сырья 2,5 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 36,7°С, содержанием серы 6 мг/кг.

Пример 7

Гидрогенизационной переработке подвергают смесь прямогонной дизельной фракции (70% масс.) и легких газойлей каталитического крекинга (15% масс.) и коксования (15% масс.) с содержанием серы 9813 мг/кг). Далее гидрогенизат первой ступени с содержанием серы 412 мг/кг смешивают с смешивают с липидной фракцией, извлеченной из микроводорослей, соотношение растительного сырья и гидрогенизата составляет 10:90% масс, соответственно. После гидродеоксигенации гидрогенизат 2 ступени подвергают гидродепарафинизации.

Первую стадию гидрогенизационной переработки - гидродесульфуризацию, осуществляют при давлении 5 МПа, температуре 330°С, объемной скорости подачи сырья 3,0 ч-1, соотношении водородсодержащий газ (ВСГ) /сырье - 700 н.об./об., в присутствии алюмокобальтмолибденового катализатора гидроочистки. Полученный гидрогенизат направляют на вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку.

Вторую стадию процесса - каталитическую гидродеоксигенацию и гидроочистку осуществляют при давлении - 5 МПа, температуре - 360°С, объемной скорости подачи сырья 1,1 ч-1, соотношении ВСГ/сырье - 1000 н.об./об., в присутствии каталитической системы, состоящей из пакета катализаторов: массивного дисульфида молибдена в первом слое и никелькобальтмолибденового катализатора на основе оксида алюминия во втором слое. Полученный гидрогенизат направляют на третью стадию процесса - каталитическую гидродепарафинизацию.

Третью стадию процесса - каталитическую гидродепарафинизацию осуществляют при давлении - 4 МПа, температуре - 270°С, объемной скорости подачи сырья 2 ч-1, соотношении ВСГ/сырье - 800 н.об./об., в присутствии никельмолибденового катализатора на цеолитсодержащем носителе.

Полученный продукт подвергают стабилизации и фракцию 180°С - КК выводят в качестве компонента дизельного топлива с температурой помутнения минус 37,3°С, содержанием серы 8 мг/кг.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 191.
29.05.2018
№218.016.56d2

Каркасная панель

Изобретение относится к области строительства, в частности к стеновым панелям и панелям покрытий. Каркасная панель содержит жестко соединенные между собой каркас и обшивку с полостью между ними, заполненной теплоизоляционным материалом, и имеет профиль стыка. При этом панель выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002655058
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.58f3

Способ производства двойных съедобных пленок с использованием в одном слое яблочного сока и альгината натрия

Изобретение относится к пищевой промышленности, преимущественно двойным съедобным пленкам. Способ производства двойных съедобных пленок из яблочного сырья предусматривает удаление у яблок несъедобных частей, обработку яблок водяным паром в течение 10-30 мин, добавление к полученной массе...
Тип: Изобретение
Номер охранного документа: 0002655216
Дата охранного документа: 24.05.2018
29.05.2018
№218.016.5977

Способ активации катализатора селективного гидрообессеривания бензина каталитического крекинга

Изобретение относится к способу активации катализатора селективного гидрообессеривания бензина каталитического крекинга. Данный способ сочетает в себе разделение процесса активации на две стадии: на первой стадии осуществляют сульфидирование катализатора путем пропускания через слой...
Тип: Изобретение
Номер охранного документа: 0002655030
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5cbe

Способ синтеза триамил цитрата

Изобретение относится к способу синтеза триамил цитрата - продукта с хорошими пластифицирующими свойствами, имеющего температуру вспышки 205-210°C, 4 класс опасности, вследствие чего он может быть использован в качестве нетоксичного пластификатора для ПВХ-композиций в детских игрушках, изделиях...
Тип: Изобретение
Номер охранного документа: 0002656105
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d19

Способ электромагнитного контроля сварных соединений и устройство для его осуществления

Группа изобретений относится к неразрушающим методам контроля и может быть использована для дефектоскопии сварных соединений труб и листовых изделий из ферромагнитных материалов. Сущность изобретений заключается в том, что возбуждение переменных магнитных потоков в сварном шве и околошовной...
Тип: Изобретение
Номер охранного документа: 0002656112
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5ddf

Кумулятивно-торпедный перфоратор

Изобретение относится к области нефтяных скважин и, в частности, к взрывным устройствам для перфорации обсадных труб и цементного кольца для создания в породе каналов, по которым нефть и газ могут поступать в ствол скважины. Кумулятивно-торпедный перфоратор состоит из корпуса, электрического...
Тип: Изобретение
Номер охранного документа: 0002656262
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5e64

Баллистическая установка для создания высокотемпературных высокоскоростных потоков частиц

Изобретение относится к устройствам для создания высокотемпературных высокоскоростных потоков частиц, которые могут быть использованы, в частности для нанесения порошкового покрытия на изделия любой формы. Установка для нанесения порошкового покрытия с использованием высокотемпературных...
Тип: Изобретение
Номер охранного документа: 0002656316
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5f8c

Теплоноситель

Изобретение относится к органическому теплоносителю, который может быть использован для обогрева технологической аппаратуры в широких областях промышленности. Теплоноситель включает, мас.%: дифенил 9,00-11,00; дифенилоксид 17,50-18,50; н-тридекан 71,50-72,50. Изобретение обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002656666
Дата охранного документа: 06.06.2018
14.06.2018
№218.016.61ee

Образец для испытания на внецентренное сжатие

Изобретение относится к области строительства, в частности к испытаниям образцов на внецентренное сжатие. Образец выполнен в виде четырехугольной призмы с двумя симметричными парными сферическими лунками для центрирующих элементов, находящимися на верхней и нижней опорной поверхности образца,...
Тип: Изобретение
Номер охранного документа: 0002657299
Дата охранного документа: 13.06.2018
14.06.2018
№218.016.61f9

Способ оценки огнестойкости ограждающей конструкции здания по критерию теплоизолирующей способности

Изобретение относится к области пожарной безопасности зданий и может быть использовано для классификации ограждающих конструкций зданий по их показателям сопротивления воздействию высоких температур при пожаре. Оценку огнестойкости ограждающей конструкции здания проводят без разрушения, по...
Тип: Изобретение
Номер охранного документа: 0002657328
Дата охранного документа: 13.06.2018
Показаны записи 51-57 из 57.
23.02.2020
№220.018.05b1

Способ селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (корс), их применение в качестве жидкого органического носителя водорода и водородный цикл на его основе

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования и представляющих собой продукты селективного...
Тип: Изобретение
Номер охранного документа: 0002714810
Дата охранного документа: 19.02.2020
03.07.2020
№220.018.2e1c

Жидкий органический носитель водорода, способ его получения и водородный цикл на его основе

Изобретение относится к области водородной энергетики, органической химии и катализа, а именно к жидкому органическому носителю водорода (ЖОНВ) и способу его получения, а также к водородному циклу, включающему связывание водорода и его высвобождение в процессе применения ЖОНВ. ЖОНВ представляет...
Тип: Изобретение
Номер охранного документа: 0002725230
Дата охранного документа: 30.06.2020
20.04.2023
№223.018.4ae2

Смеси ароматических углеводородов, содержащие c-c-циклы, как жидкий органический носитель водорода и водородный цикл на его основе

Изобретение относится к жидкому органическому носителю водорода, представляющему собой смесь ароматических углеводородов, содержащих С-С-циклы, способных в присутствии катализаторов присоединять атомы водорода, причем смеси содержат по крайней мере одно соединение, выбранное из ряда:...
Тип: Изобретение
Номер охранного документа: 0002771200
Дата охранного документа: 28.04.2022
20.04.2023
№223.018.4b4c

Смеси азоторганических соединений, содержащих ароматические c-c-циклы, как жидкий органический носитель водорода и водородный цикл на его основе

Изобретение относится к жидкому органическому носителю водорода, представляющему собой смесь азоторганических соединений, содержащих ароматические С-С-циклы, способных в присутствии катализаторов присоединять атомы водорода, имеющую более низкие тепловые эффекты реакций...
Тип: Изобретение
Номер охранного документа: 0002773218
Дата охранного документа: 31.05.2022
16.05.2023
№223.018.6166

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к области производства катализаторов гидроочистки. Описан катализатор гидроочистки нефтяных фракций, включающий в свой состав никель, молибден, вольфрам и носитель, отличающийся тем, что NiO, MoO и WO наносят на прокаленный носитель из совместного раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002741303
Дата охранного документа: 25.01.2021
21.05.2023
№223.018.6995

Способ пропитки носителя катализатора гидроочистки

Изобретение относится к области производства катализаторов переработки углеводородного сырья. Описан способ пропитки носителя катализатора гидроочистки пропиточным раствором, в состав которого входят оксиды молибдена и кобальта, осуществляющийся в емкостном пропитывателе, при котором избыточный...
Тип: Изобретение
Номер охранного документа: 0002794669
Дата охранного документа: 24.04.2023
23.05.2023
№223.018.6c05

Способ получения реактивных и дизельных топлив из смеси растительного и нефтяного сырья

Изобретение описывает способ получения реактивных и компонентов дизельных топлив путем гидрогенизационной переработки сырья, состоящего из смеси дистиллята растительного происхождения с дистиллятом нефтяного происхождения при соотношении 5,0-40,0:95,0-60,0% масс. соответственно, при этом в...
Тип: Изобретение
Номер охранного документа: 0002737724
Дата охранного документа: 02.12.2020
+ добавить свой РИД