×
12.07.2020
220.018.3226

Результат интеллектуальной деятельности: Устройство на основе суперконденсатора для получения электрической энергии из внутриатомной

Вид РИД

Изобретение

Аннотация: Изобретение относится к средству прямого преобразования атомной энергии в электрическую. Используется явление локально-неравновесной эмиссии электронов, возникающее под действием α- или β-распада изотопов. Необходимый эффект преобразования ядерной энергии в электрическую достигается путем введения радионуклида в материал одного из электродов суперконденсатора. В приэлектродной области за счет кинетической энергии α, β-частиц возникают области возбуждения, из которых испускаются вторичные электроны, что приводит к появлению заряда двойного электрического слоя в приэлектродной области. В изобретении дорогостоящее изготовление устройств с радиоактивными веществами заменено на получение радионуклидов непосредственно внутри готовых суперконденсаторов с помощью их облучения нейтронами. Специально введенные в материал электрода вещества превращаются в радиоактивные изотопы, и суперконденсаторы превращается в источники электрической энергии. Техническим результатом является высокая удельная мощность при повышении радиационной безопасности в ходе изготовления, транспортировки и эксплуатации устройства.

Изобретение относится к области прямого преобразования атомной энергии в электрическую, а именно к конструкции устройства, используемого в качестве автономного источника электрической энергии, для изделий микросистемной техники, для применения в труднодоступных и экстремальных условиях, для систем мониторинга, связи, навигации, где требуются источники энергии с большим сроком автономной эксплуатации и постоянной готовности.

Известны β-вольтаические источники питания, содержащие β-активные изотопы (Ni-63, Се-144, Cs-137, Pm-147, Kr-85, Н-3 и др.), в которых испускаемые изотопами электроны или позитроны попадают на полупроводник. Например, известен компактный β-вольтаический источник тока длительного пользования с β-эмиттером на базе радиоизотопа 63Ni и способ его получения (патент RU 2641100). В области р-n перехода происходит генерация электрон-дырочных пар, которые разделяются областью пространственного заряда. В результате на р- и n-поверхностях полупроводника возникает разность электрического потенциала. Период полураспада используемых изотопов может быть от 2,64 (Pm-147) до 100 (Ni-63) лет, поэтому срок службы β-вольтаических источников может составлять годы и десятки лет. Удельная мощность β-вольтаических источников питания может достигать 1 кВт/кг. Недостатком вышеуказанных источников питания является их высокая стоимость, что приводит к малому их использованию. Высокая цена обусловлена дороговизной выделения нужных изотопов (β или α активных) и сложностью работы с радиоактивным материалом. Изготовление одной функциональной батарейки на, например, 63Ni (β-излучатель) обойдется в миллионы рублей. Даже перевод в серийное производство не приблизит цену известных автономных источников электроэнергии на разработанных принципах преобразования к цене химических источников. По этой причине источники энергии на радиоактивных изотопах использовали и используют, в основном, там, где большие затраты приемлемы (на космических объектах, в военной технике).

Известны также автономные радиоизотопные термоэлектрические генераторы, содержащие соединения радиоактивных изотопов (Ро-210, Pu-238, Sr-90 и др.) и в которых энергия радиоактивного распада переходит в тепло, а затем тепловая энергия преобразуется в электрическую (Э. Кэбин статья «Радиоизотопные источники электрической энергии и тепла» интернет сайт http://nuclphvs.sinp.msu.ru/nuc_techn/isotopes/index.html, дата обращения 7.12.2018). Для преобразования тепловой энергии в таких генераторах используют термоэмиссионные, динамические или термоэлектрические устройства. В термоэмиссионных устройствах разделение электрического заряда происходит в результате эмиссии электронов из нагретого катода. В динамических устройствах последовательность преобразования энергии дополняется механической стадией, на которой нагреваемое рабочее тело совершает механическую работу, которая преобразуется в электрическую энергию. В термоэлектрических устройствах используется эффект Зеебека возникновения ЭДС в термопарах при наличии градиента температуры. Такие генераторы энергии являются наиболее близкими по техническим решениям к заявленному изобретению и описаны во многих патентах (SU 1175312, SU 1325572, RU 2458420 и др.). Радиоизотопные термоэлектрические генераторы имеют КПД~3-5%, мощность до 100 Вт и используются в космических аппаратах, в маяках, бакенах и медицине. Недостатком таких радиоизотопных термоэлектрических генераторов является маленькая удельная мощность до 3 Вт/кг и высокая стоимость изделия. Задачей заявленного изобретения является создание устройства на основе суперконденсатора для получения электрической энергии из внутриатомной в котором электрическая энергия генерируется в суперконденсаторе, один из электродов которого содержит активируемые/активируемое нейтронами вещества / вещество, способные/способное к превращению в радионуклид/радионуклиды при облучении суперконденсатора нейтронами и имеющие/имеющее концентрацию в материале электрода, выбранную с учетом параметров суперконденсатора на основе результатов физического моделирования.

Необходимый эффект преобразования ядерной энергии в электрическую достигается путем введения радионуклида в материал одного из электродов суперконденсатора. Принцип прямого преобразования состоит в том, что в приэлектродной области за счет кинетической энергии первичных заряженных частиц (α-, β-частиц) возникают области возбуждения, из которых испускаются вторичные электроны, что приводит к появлению заряда двойного электрического слоя в приэлектродной области. Высокая удельная мощность достигается за счет большой межфазной площади, на которой происходит радиационно-индуцированное разделение заряда в суперконденсаторе, и зависит от концентрации радионуклида в материале электрода. В данном изобретении дорогостоящее изготовление систем с радиоактивными веществами заменено на получение радиоактивных изотопов непосредственно внутри готовых суперконденсаторов с помощью их облучения нейтронами. В результате взаимодействия с нейтронами специально введенные в материал электрода вещества превращаются в радионуклиды, и суперконденсатор превращается в источник электрической энергии. Устройство безопасно в изготовлении и эксплуатации, поскольку представляет собой закрытый радиоактивный источник а, Р и f излучения в результате деления радионуклида/радионуклидов.

Сущность изобретения раскрывается в нижеследующих пояснениях и примерах практического применения:

Пример 1.

Изготовлен суперконденсатор емкостью 100 Ф и внутренним сопротивлением 0,1 Ом, в которых площадь электродов составляла ~40 см, эффективная площадь ~2000 м. Электроды состояли из активированного угля со связующими:

фторопластом, бутадиенстирольным латексом, карбоксиметил-целлюлозой КМЦ. Органический электролит - раствор TEATFB в пропиленкарбонате с различной концентрацией 0,1-1 М. Один из электродов содержал наноструктурированный оксид SrO в количестве 1 мг/см2. В процессе облучения нейтронами в результате реакции 88Sr(n,g)89Sr в материале одного электрода появляются β-активные изотопы. По результату измерений рост разности потенциалов между электродами в зависимости от поглощенной нейтронной дозы составляет около 1 мкВ/Гр.

Устройство на основе суперконденсатора для получения электрической энергии из внутриатомной отличается тем, что электрическая энергия генерируется в суперконденсаторе, один из электродов которого содержит активируемые/активируемое нейтронами вещества/вещество, способные/способное к превращению в радионуклид/радионуклиды при облучении суперконденсатора нейтронами и имеющие/имеющее концентрацию в материале электрода, выбранную с учетом параметров суперконденсатора на основе результатов физического моделирования.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 16.
27.04.2013
№216.012.3bbe

Способ получения катодной обкладки оксидно-полупроводникового конденсатора

Изобретение может быть использовано в электронной промышленности, в технологии пропитки пористых материалов, в частности при производстве оксидно-полупроводниковых конденсаторов, в том числе чип-конденсаторов. Способ получения катодной обкладки из диоксида марганца заключается в нанесении...
Тип: Изобретение
Номер охранного документа: 0002480855
Дата охранного документа: 27.04.2013
20.05.2014
№216.012.c64e

Способ получения катодной обкладки оксидно-полупроводникового конденсатора

Изобретение относится к области электротехники, а именно к технологии нанесения покрытия из диоксида марганца на оксидированные объемно-пористые аноды вентильного металла, например тантала, ниобия. Способ получения катодной обкладки оксидно-полупроводникового конденсатора заключается в...
Тип: Изобретение
Номер охранного документа: 0002516525
Дата охранного документа: 20.05.2014
10.08.2015
№216.013.6e61

Способ получения высокоразвитой поверхности на рекристаллизованной алюминиевой электродной фольге для электролитического конденсатора

Заявленное изобретение относится к производству алюминиевых электролитических конденсаторов с высоким удельным зарядом, в частности к способу получения электродной фольги с высокоразвитой поверхностью. Способ получения высокоразвитой поверхности на рекристаллизованной алюминиевой электродной...
Тип: Изобретение
Номер охранного документа: 0002559815
Дата охранного документа: 10.08.2015
10.07.2016
№216.015.4a69

Способ получения травленой катодной алюминиевой фольги, изготовленной из алюминия высокой чистоты, легированного скандием.

Изобретение относится к металлургии, в частности к получению травленой конденсаторной алюминиевой фольги. Способ получения травленой катодной конденсаторной алюминиевой фольги, содержащей 0,001-0,1 мас.% скандий, толщиной 20-60 мкм, включает легирование алюминия высокой чистоты скандием,...
Тип: Изобретение
Номер охранного документа: 0002588942
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.ab8f

Рабочий электролит для конденсатора с двойным электрическим слоем, способ его приготовления и конденсатор с этим электролитом

Изобретение относится к производству конденсатора с двойным электрическим слоем. Техническим результатом изобретения является создание конденсатора с двойным электрическим слоем с низким эквивалентным последовательным сопротивлением на номинальное напряжение 2,5 В с диапазоном рабочих...
Тип: Изобретение
Номер охранного документа: 0002612192
Дата охранного документа: 03.03.2017
26.08.2017
№217.015.daa9

Способ изготовления катодных обкладок объемно-пористых танталовых электролитических конденсаторов

Изобретение относится к области электронной техники и может быть использовано в производстве конденсаторов. Способ включает подготовку поверхности катодной танталовой обкладки перед нанесением покрытия, нанесение гальванического рутениевого покрытия на поверхность обкладки и анодное...
Тип: Изобретение
Номер охранного документа: 0002623969
Дата охранного документа: 29.06.2017
20.02.2019
№219.016.c0ac

Способ получения стеклотанталового изолятора для объемно-пористого конденсатора

Изобретение относится к производству изделий электронной техники, конкретно - к производству конденсаторов. В предлагаемом способе, заключающемся в отжиге танталовой арматуры, сборке стеклотаблетки и танталовой арматуры с образованием стеклотанталового изолятора, спекании и формировании...
Тип: Изобретение
Номер охранного документа: 0002300155
Дата охранного документа: 27.05.2007
10.04.2019
№219.017.0525

Рабочий электролит для конденсатора, способ его приготовления и алюминиевый электролитический конденсатор с таким электролитом

Изобретение относится к электротехнике, в частности к рабочему электролиту для конденсатора, способу его приготовления и алюминиевому электролитическому конденсатору с таким электролитом, работающему при напряжениях 16-63 В в интервале рабочих температур от минус 60 до 105°С. В состав...
Тип: Изобретение
Номер охранного документа: 0002307417
Дата охранного документа: 27.09.2007
29.05.2019
№219.017.643c

Способ изготовления ниобиевого объемно-пористого анода повышенного рабочего напряжения

Изобретение относится к производству ниобиевых оксидно-полупроводниковых конденсаторов, в частности повышенного рабочего напряжения. Согласно изобретению способ изготовления ниобиевого объемно-пористого анода заключается в прессовании анодных таблеток из подготовленного гидрированного...
Тип: Изобретение
Номер охранного документа: 0002287869
Дата охранного документа: 20.11.2006
29.05.2019
№219.017.6490

Способ получения переходного катодного слоя в оксидно-полупроводниковом конденсаторе

Изобретение относится к производству оксидно-полупроводниковых конденсаторов с объемно-пористым анодом из вентильных металлов. Согласно изобретению способ заключается в нанесении углеродного электропроводного покрытия на конденсаторный элемент между слоем твердого полупроводникового электролита...
Тип: Изобретение
Номер охранного документа: 0002290709
Дата охранного документа: 27.12.2006
Показаны записи 1-10 из 37.
27.04.2013
№216.012.3bbe

Способ получения катодной обкладки оксидно-полупроводникового конденсатора

Изобретение может быть использовано в электронной промышленности, в технологии пропитки пористых материалов, в частности при производстве оксидно-полупроводниковых конденсаторов, в том числе чип-конденсаторов. Способ получения катодной обкладки из диоксида марганца заключается в нанесении...
Тип: Изобретение
Номер охранного документа: 0002480855
Дата охранного документа: 27.04.2013
10.12.2013
№216.012.88b8

Триалкоксисиланы, способ получения катодной обкладки на основе полиэтилендиокситиофена с силановым подслоем и оксидный конденсатор с такой катодной обкладкой

Изобретение относится к производству изделий электронной техники, конкретно - к производству оксидных конденсаторов с твердым электролитом на основе полимера. Предложены триалкоксисиланы общей формулы I, где R - Si(OAlk) или R=-CH=N-CHCHCHSi(OAlk), R=R=-OCHCHO-, в качестве кремнийсодержащих...
Тип: Изобретение
Номер охранного документа: 0002500682
Дата охранного документа: 10.12.2013
20.04.2014
№216.012.bb46

Способ повышения коррозионной стойкости нелегированной стали

Изобретение относится к обработке поверхности металлов. Способ получения коррозионно-стойкого покрытия на поверхности нелегированной стали включает подготовку порошка в виде нанокомпозитных частиц Fe-Ni, содержащих 3-10 мас.% никеля, и послойное нанесение его на поверхность нелегированной стали...
Тип: Изобретение
Номер охранного документа: 0002513670
Дата охранного документа: 20.04.2014
27.04.2014
№216.012.bd6d

Способ обработки поверхности стали

Изобретение относится к способу обработки поверхности стали. Осуществляют подготовку поверхности путем очистки от окалины и обработку лазерным лучом. Лазерную обработку поверхности проводят импульсной генерацией лазерного излучения с длиной волны 0,8-1,2 мкм, мощностью излучения 10-10 Вт/см,...
Тип: Изобретение
Номер охранного документа: 0002514233
Дата охранного документа: 27.04.2014
10.06.2014
№216.012.cdd7

Материал электрода на основе железа для электрохимического получения водорода и способ его изготовления

Изобретение относится к способу изготовления материала электрода для электрохимического получения водорода, который заключается в том, что на поверхность электрода наносят порошкообразную композицию Fe-C и осуществляют синтез нанокристаллических элементов Fe-C со средним размером в пределах...
Тип: Изобретение
Номер охранного документа: 0002518466
Дата охранного документа: 10.06.2014
10.01.2015
№216.013.1b98

Способ изготовления катодной обкладки танталового объемно-пористого конденсатора

Изобретение относится к способу изготовления катодной обкладки, представляющей собой танталовую плоскую пластину или танталовый корпус конденсатора, с оксидированным рутениевым покрытием для танталового объемно-пористого конденсатора. Способ включает в себя подготовку поверхности катодной...
Тип: Изобретение
Номер охранного документа: 0002538492
Дата охранного документа: 10.01.2015
20.06.2015
№216.013.56bf

Катод для электрохимического получения водорода и способ его изготовления

Изобретение относится к области металлургии, а именно к катодным материалам на основе нанокристаллических частиц Fe-Ni. Катод для электрохимического получения водорода выполнен в виде стальной подложки с нанесенным на ее поверхность нанокомпозитным покрытием железо-никель. Покрытие...
Тип: Изобретение
Номер охранного документа: 0002553737
Дата охранного документа: 20.06.2015
10.07.2016
№216.015.4a69

Способ получения травленой катодной алюминиевой фольги, изготовленной из алюминия высокой чистоты, легированного скандием.

Изобретение относится к металлургии, в частности к получению травленой конденсаторной алюминиевой фольги. Способ получения травленой катодной конденсаторной алюминиевой фольги, содержащей 0,001-0,1 мас.% скандий, толщиной 20-60 мкм, включает легирование алюминия высокой чистоты скандием,...
Тип: Изобретение
Номер охранного документа: 0002588942
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6173

Способ нанесения окисно-металлических покрытий на поверхность нелегированной стали

Изобретение относится к материаловедению, а именно к лазерной обработке поверхности металлов для снижения скорости коррозии и повышения коррозионной стойкости поверхности нелегированной стали. Способ нанесения оксидно-металлического покрытия на поверхность нелегированной стали включает...
Тип: Изобретение
Номер охранного документа: 0002588962
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.678c

Способ нанесения коррозионно-стойкого углеродного покрытия на поверхности стали

Изобретение относится к области нанесения защитных покрытий на металлические поверхности методом высокоэнергетического воздействия на поверхность обрабатываемого металла и может быть использовано для обработки металлических поверхностей, в частности нелегированных сталей. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002591826
Дата охранного документа: 20.07.2016
+ добавить свой РИД