×
10.07.2020
220.018.30f4

Результат интеллектуальной деятельности: Листовой прокат, изготовленный из высокопрочной стали

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к листовому прокату толщиной до 50 мм из высокопрочной стали для судостроения, краностроения, транспортного и тяжелого машиностроения. Сталь содержит элементы при следующем соотношении, мас.%: углерод 0,08-0,10, кремний 0,15-0,35, марганец 1,20-1,35, хром 0,80-1,00, никель 1,85-2,00, медь 0,40-0,50, молибден 0,25-0,35, ванадий 0,07-0,09, алюминий 0,018-0,05, кальций 0,0001-0,005, барий 0,0001-0,005, сера не более 0,005, фосфор не более 0,010, азот не более 0,007, олово не более 0,010, висмут не более 0,010, железо остальное, при этом величина углеродного эквивалента СЕТ, рассчитываемая по выражению СЕТ=С+(Mn+Мо)/10+(Cu+Cr)/20+Ni/40, составляет не более 0,40%. После закалки доля реечного мартенсита в середине по толщине проката составляет не менее 25%, а разница Δ между долей реечного мартенсита на поверхности и в середине по толщине проката составляет не более Δ=0,043t-1,46t+23, где t - толщина листового проката, мм. Обеспечивается получение проката с требуемыми механическими свойствами, а именно гарантированным пределом текучести 960 МПа, величиной относительного удлинения не менее 10%, величиной относительного сужения в направлении толщины не менее 35%, средним значением работы удара при температуре испытаний -20 и -40°С не менее 46 Дж. 2 табл., 1 пр.

Изобретение относится к области металлургии, а именно к производству листового проката из высокопрочной стали для судостроения, краностроения, транспортного и тяжелого машиностроения и других отраслей промышленности. Изготовление листового проката в толщинах до 50 мм по технологии термомеханической обработки с прямой закалкой (ускоренным охлаждением с прокатного нагрева) с последующим отпуском или без него.

В НД № 2-020101-104 Правила классификации и постройки морских судов // Российский морской регистр судоходства. – Санкт-Петербург, 2018 г. [1] установлены требования к сталям с нормируемым пределом текучести 890 и 960 МПа (РСА890, PCD890, РСЕ890, РСА960, PCD960, РСЕ960). Помимо высокой прочности, стали должны обладать высокой пластичностью, в том числе при испытаниях на растяжение в направлении толщины проката (что характеризует сопротивляемость слоистым разрушениям), высокой работой удара при низких температурах. Стали, в полной мере удовлетворяющие данным требованиям, к настоящему моменту отсутствуют. Применение стали с высокими прочностными характеристиками позволяет существенно сократить металлоемкость сложных сварных конструкций, при этом их надежная эксплуатация обеспечивается стабильными вязко-пластическими свойствами, в том числе при низких температурах.

Известна сталь (патент РФ № 2243288) [2] следующего химического состава, масс., %:

углерод 0,12-0,20
марганец 1,0-1,8
кремний 0,4-0,7
хром 0,4-0,8
алюминий 0,02-0,05
ванадий 0,04-0,08
азот не более 0,015
медь 0,1-0,4
никель не более 2,5
кальций 0,002-0,050
ниобий не более 0,06
титан не более 0,03
бор 0,001-0,005
фосфор не более 0,020
сера не более 0,015
железо остальное.

Сталь [2] обеспечивает в листовом прокате предел текучести не менее 1100 МПа, высокую пластичность и ударную вязкость при температуре испытаний -40°С на уровне не менее 52 Дж/см2. Однако недостатком стали является обеспечение указанных характеристик в прокате толщиной только до 25 мм.

Также известна высокопрочная сталь (патент РФ № 2258762) [3] следующего химического состава, масс., %:

углерод 0,02-0,10
кремний не более 0,6
марганец 1,5-2,5
фосфор не более 0,015
сера не более 0,003
никель 0,01-2,0
молибден 0,1-0,6
ниобий менее 0,010
титан не более 0,030
бор 0,0003-0,0030
алюминий не более 0,070
азот не более 0,0060
ванадий 0,0010-0,10
медь 0,01-1,00
хром 0,01-1,00
кальций 0,0001-0,01
редкоземельный металл (РЗМ) 0,0001-0,02
магний 0,0001-0,006
железо остальное.

Данная сталь [3] обеспечивает высокие значения предела текучести - не менее 800 МПа в листовом прокате толщиной 10-20 мм.

В качестве прототипа выбрана высокопрочная свариваемая сталь (патент РФ № 2397269) [4], содержащая следующие компоненты, масс. %:

углерод 0,08-0,10
кремний 0,20-0,40
марганец 0,20-0,40
хром 0,60-1,00
никель 3,00-3,90
медь 0,8-1,30
молибден 0,40-0,60
ниобий 0,02-0,05
сера 0,001-0,005
фосфор 0,005-0,012
железо остальное.

Сталь [4] обладает высокой вязкостью до температуры -60°С (работа удара не менее 125 Дж) и пределом текучести не ниже 780 МПа в прокате толщиной 70 мм, однако не гарантирует требуемый уровень прочностных характеристик, предъявляемый к сталям категорий прочности 890-960 МПа.

Техническим результатом изобретения является разработка листового проката из высокопрочной стали толщиной до 50 мм из нее, который обеспечивает гарантированный предел текучести 960 МПа, величину относительного удлинения не менее 10%, величину относительного сужения в направлении толщины не менее 35%, средние значения работы удара при температуре испытаний -20 и -40°С - не менее 46 Дж.

При этом в листовом прокате толщиной до 50 мм разница Δ между долей реечного мартенсита на поверхности и в середине по толщине проката после закалки (ускоренного охлаждения) составляет не более Δ=0,043t2-1,46t+23, где t - толщина листового проката (в миллиметрах); доля реечного мартенсита в середине по толщине проката должна составлять не менее 25%. Подобный структурный критерий необходим для обеспечения изотропности структуры по толщине, что, в свою очередь, гарантирует требуемую работу удара при низких температурах как на поверхности проката, так и в середине по толщине (для листов толщиной более 40 мм).

Технический результат достигается тем, что листовой прокат изготовлен из высокопрочной стали, содержащей углерод, кремний, хром, никель, медь, молибден, серу, фосфор, марганец, ванадий, азот, алюминий, кальций, олово, висмут, барий и железо при следующем соотношении элементов, масс. %:

углерод 0,08-0,10
кремний 0,15-0,35
марганец 1,20-1,35
хром 0,80-1,00
никель 1,85-2,00
медь 0,40-0,50
молибден 0,25-0,35
ванадий 0,07-0,09
алюминий 0,018-0,05
кальций 0,0001-0,005
барий 0,0001-0,005
сера не более 0,005,
фосфор не более 0,010,
азот не более 0,007,
олово не более 0,010,
висмут не более 0,010,
железо остальное,

и имеющей величину углеродного эквивалента СЕТ, рассчитываемого по формуле СЕТ=С+(Mn+Мо)/10+(Cu+Cr)/20+Ni/40, не превышающую 0,40%.

Технический результат достигается за счет баланса легирующих и микролегирующих элементов, оказывающих влияние на формирование структуры в процессе горячей пластической деформации и фазового превращения при охлаждении.

Содержание углерода в выбранных пределах 0,08-0,10% достаточно для обеспечения требуемого уровня предела текучести и временного сопротивления. Превышение верхней границы содержания углерода негативно сказывается на свариваемости стали, а также приводит к понижению работы удара при низких температурах испытаний.

Кремний в количестве 0,15-0,35% благоприятно воздействует на прочность и вязкость за счет твердорастворного упрочнения. Также кремний при закалке снижает критическую скорость охлаждения, повышает отпускоустойчивость и подавляет образование цементита. Содержание кремния менее 0,15% нецелесообразно из-за необходимости его применения в качестве раскислителя. Содержание кремния более 0,35% ухудшает ударную вязкость и негативно влияет на свариваемость.

Марганец в выбранном диапазоне 1,20-1,35% позволяет достичь высоких прочностных характеристик стали, а также уменьшает критическую скорость охлаждения и способствует образованию закалочных структур в улучшаемых сталях. При увеличении содержания марганца свыше 1,35% возможно понижение значений работы удара при отрицательных температурах, повышается вероятность растрескивания и коробления листового проката при закалке (ускоренном охлаждении). Содержание марганца менее 1,2% недостаточно для обеспечения необходимого соотношения доли реечного мартенсита к доле других продуктов низкотемпературного превращения, а, следовательно, уровня прочности стали.

Хром, благодаря его карбидообразующей способности и вкладу в дисперсионное твердение при отпуске, относят к элементам, повышающим прочность. В сочетании с марганцем и молибденом хром повышает прокаливаемость стали. Содержание хрома в количестве более 1% отрицательно влияет на работу удара при низких температурах. При содержании хрома менее 0,8% не обеспечивается требуемый уровень прочности.

Никель и медь одновременно повышают вязкость и прочность стали за счет твердорастворного упрочнения, однако вместе с тем введение никеля существенно повышает стоимость стали. Содержание никеля в пределах 1,85-2,00% и меди в пределах 0,40-0,50% оптимально для обеспечения высокой хладостойкости и необходимого уровня прочности, достигаемых благодаря образованию реечного бейнита и мартенсита в процессе γ→α превращения при закалке (ускоренном охлаждении).

Содержание никеля менее 1,85% и меди менее 0,40% не позволяет обеспечить требуемую долю реечного мартенсита в структуре, что одновременно сказывается как на прочностных, так и на вязко-пластических характеристиках. Превышение верхнего предела содержания данных химических элементов (в сочетании с выбранным содержанием марганца) приводит к снижению температуры мартенситного превращения и, как следствие, к появлению пластинчатого (двойникового) мартенсита в стали, что резко ухудшает пластичность и вязкость.

Молибден в улучшаемых сталях увеличивает закаливаемость и прокаливаемость, а также ослабляет склонность стали к отпускной хрупкости. Содержание молибдена более 0,35% неблагоприятно влияет на ударную вязкость вследствие образования карбидов легированного цементита при отпуске, что повышает температуру их сфероидизации. Содержание молибдена менее 0,25% не обеспечивает требуемого уровня прочности и вязкости листового проката толщиной до 50 мм.

Ванадий вносит вклад в упрочнение стали при отпуске за счет образования дисперсных карбидов и карбонитридов ванадия. Кроме того, использование ванадия вместо ниобия или титана понижает температуру рекристаллизации, что при прокатке позволяет проводить термодеформационную обработку в более широком температурном интервале, способствует протеканию статической рекристаллизации аустенита для измельчения зерна при более низких температурах и обусловливает достаточную прокаливаемость стали по всей толщине. Введение в сталь ванадия более 0,09% неблагоприятно сказывается на распределении карбидных выделений при сварке, что понижает вязкость зоны термического влияния. Использование ванадия менее 0,07% не обеспечивает требуемого уровня прочности стали после отпуска и приводит к росту зерна аустенита при технологических нагревах.

Ограничение доли серы и фосфора в указанных пределах обеспечивает повышение изотропности стали (особенно в направлении толщины) и увеличение стойкости к слоистым разрушениям, а также препятствует появлению отпускной хрупкости при отпуске.

Содержание азота более 0,007% уменьшает работу удара стали и приводит к проявлению склонности к деформационному старению.

Алюминий в указанных пределах обеспечивает качественное раскисление стали.

Добавки бария и кальция в количестве от 0,0001 до 0,005% каждого способствуют повышению пластичности и ударной вязкости за счет замедления выделения избыточных фаз по границам зерен, а также глобуляризации неметаллических включений, в том числе сульфидных, и их равномерному распределению. Это предотвращает склонность к слоистому разрушению в сварных конструкциях. Содержание бария и кальция в количестве более 0,005% каждого приводит к формированию грубых включений, которые ухудшают вязко-пластические свойства стали.

Олово и висмут при содержании не более 0,010% каждого не приводят к деградации вязко-пластических характеристик, способствуют повышению прочности матрицы за счет твердорастворного упрочнения.

Ограничение величины углеродного эквивалента СЕТ (не более 0,40%) обеспечивает хорошую свариваемость стали и снижает риск образования холодных трещин в сварных соединениях.

Испытания листового проката толщиной до 50 мм показали, что выбранный химический состав стали, изготовленной по технологии с внепечной обработкой и вакуумированием, обеспечивает достижение высокой прочности, пластичности, вязкости и изотропности свойств.

Пример. Сталь изготавливали в условиях конвертерного производства с применением установки десульфурации чугуна, установки «Печь-ковш», установки вакуумирования стали и установки непрерывной разливки стали в слябы толщиной 315 мм.

Стали 4 и 5 выплавлены с отклонениями в содержании химических элементов от вышеуказанных. Прокатку осуществляли на толщину 16, 35 и 50 мм с последующим охлаждением потоками воды в установке контролируемого охлаждения (до заданной или комнатной температуры) или в баке, после чего осуществляли отпуска по различным режимам (при температурах на 100-200°С ниже Ac1) для получения гарантированного предела текучести 890 и 960 МПа.

Испытания на растяжение проводили по ГОСТ 1497 на образцах, вырезанных поперек направления прокатки (тип III №6 при толщине проката 16 мм и тип III №3 при толщине проката свыше 25 мм). Испытания на ударный изгиб проводили по ГОСТ 9454 на образцах с V-образным надрезом, вырезанных поперек направления прокатки с поверхности проката. Испытания на растяжение в направлении толщины проводили по ГОСТ 28870.

Помимо механических испытаний проводили исследования микроструктуры шлифов из листовых прокатов, закаленных с прокатного нагрева (до отпуска), методом дифракции обратно отраженных электронов (EBSD). Определяли долю реечного мартенсита не менее чем в трех точках по толщине проката (поверхность, четверть, середина по толщине).

Химический состав сталей 1-5 приведен в таблице 1.

Результаты испытаний и исследований микроструктуры опытного листового проката приведены в таблице 2.

Стали 1, 2, 3 в виде листового проката в толщинах 16-50 мм обладают высокими прочностными и вязко-пластическими свойствами как в состоянии после закалки с прокатного нагрева, так и после отпуска, что достигается за счет создания необходимой структуры по толщине проката, обеспечиваемой, в свою очередь, корректным сочетанием легирующих и микролегирующих элементов. Для всех прокатов, изготовленных из сталей 1-3, разница Δ между долей реечного мартенсита на поверхности и в середине по толщине проката после закалки с прокатного нагрева (ускоренного охлаждения) составляет не более 11% для листов толщиной 16 мм, не более 25% для листов толщиной 35 мм и не более 58% для листов толщиной 50 мм, что соответствует критерию Δ=0,043t2-1,46t+23, где t - толщина листового проката (в мм). При этом доля реечного мартенсита в середине по толщине проката во всех случаях составляет не менее 25%.

Результаты испытаний показывают, что предлагаемая сталь обеспечивает более высокий уровень прочности, чем известная, при обеспечении удовлетворительных пластичности и работы удара при пониженных температурах.

Сталь 4 с более низким содержанием некоторых компонентов не обеспечивает предел текучести на уровне 890 и 960 МПа.

Сталь 5, содержащая повышенное количество марганца и хрома, обладает высокими прочностными характеристиками, однако работа удара при температуре -40°С составляет менее 46 Дж, а пластичность - не более 10,6%, что связано с избыточной искаженностью ОЦК-решетки вследствие повышенного содержания марганца в твердом растворе и отрицательного влияния большого количества карбидов хрома после отпуска.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 154.
27.05.2016
№216.015.41e4

Способ профилирования опорных валков стана кварто

Изобретение относится к прокатному производству на толстолистовых и широкополосных станах. Способ включает профилирование опорных валков в виде нескольких кривых, одна из которых расположена в средней части бочки симметрично относительно ее середины, а остальные - по краям бочки. Снижение...
Тип: Изобретение
Номер охранного документа: 0002585594
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.4488

Способ производства горячекатаных листов из низколегированной стали с гарантией свойств в направлении толщины

Изобретение относится к производству толстых листов из кремнемарганцовистой стали на реверсивных станах. Для обеспечения относительного сужения при испытании на растяжение в направлении толщины не менее 35% для изготовления сварных металлоконструкций используют непрерывнолитую заготовку...
Тип: Изобретение
Номер охранного документа: 0002586955
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4664

Способ производства стали

Изобретение относится к области черной металлургии, в частности к регулированию химического состава стали для получения непрерывнолитой заготовки с ограничением относительного сужения. В способе осуществляют выплавку металла в сталеплавильном агрегате, выпуск металла в стальковш, ввод в...
Тип: Изобретение
Номер охранного документа: 0002586963
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.684e

Способ производства горячекатаного листового проката из низколегированной стали

Изобретение относится к области металлургии, а именно к низколегированным сталям повышенной теплоустойчивости, применяемым при производстве плавниковых труб, предназначенных для паровых котлов, труб пароперегревателей, трубопроводов и коллекторных установок высокого давления, деталей цилиндров...
Тип: Изобретение
Номер охранного документа: 0002591922
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6b39

Способ производства холоднокатаного проката для упаковочной ленты

Изобретение относится к технологии производства холоднокатаного проката, предназначенного для изготовления упаковочной ленты. Повышение механических свойств, их стабильности и однородности по длине полосы обеспечивается за счет того, что способ включает горячую прокатку полосы из стали, имеющей...
Тип: Изобретение
Номер охранного документа: 0002592609
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.70cb

Способ холодной прокатки полос

Изобретение относится к технологии дрессировки отожженных стальных полос на одноклетевом дрессировочном стане с использованием моталки и разматывателя. Способ включает прокатку с относительными обжатиями 0,5-2% с приложением заднего и переднего натяжений. Снижение энергозатрат обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002596566
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7151

Способ производства горячеоцинкованного проката

Изобретение относится к области производства горячеоцинкованного проката для изготовления кузовных деталей автомобиля методом холодной штамповки с последующим нанесением лакокрасочных покрытий. Способ включает холодную прокатку, химическую очистку поверхности полосы, предварительный нагрев,...
Тип: Изобретение
Номер охранного документа: 0002596565
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71c0

Способ производства стальных мелющих шаров

Изобретение относится к изготовлению мелющих шаров. Осуществляют нагрев непрерывнолитой заготовки, прокатку на сортовом стане горячей прокатки круглых заготовок соответствующего размера, последующий их нагрев в индукционном устройстве, прокатку из них шаров на стане поперечно-винтовой прокатки...
Тип: Изобретение
Номер охранного документа: 0002596737
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71ec

Способ изготовления электросварных прямошовных профильных труб квадратного или прямоугольного сечения.

Изобретение относится к области производства квадратных или прямоугольных прямошовных сварных труб. Профилирование цилиндрической трубной заготовки осуществляют в четырех валковых неприводных калибрах. Повышение точности размеров трубы, в особенности внешнего радиуса сопряжения полок,...
Тип: Изобретение
Номер охранного документа: 0002596734
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.80b0

Способ производства горячекатаного проката для автомобильных колес

Изобретение относится к области металлургии и может быть использовано при производстве горячекатаного и горячекатаного травленого проката толщиной 3,0-6,0 мм, предназначенного для изготовления дисков и ободьев колес автомобилей методом холодной штамповки. Способ включает выплавку стали,...
Тип: Изобретение
Номер охранного документа: 0002602206
Дата охранного документа: 10.11.2016
Показаны записи 41-50 из 59.
09.06.2019
№219.017.7bfe

Способ получения биметаллов из низколегированной стали и алюминиевых сплавов

Изобретение может быть использовано при производстве многослойных материалов, в частности, на основе алюминия и железа. Алюминиевую заготовку, предварительно плакированную слоем из технически чистого алюминия, нагревают до температуры, равной (0,65-0,75) температуры плавления алюминия....
Тип: Изобретение
Номер охранного документа: 0002368475
Дата охранного документа: 27.09.2009
09.06.2019
№219.017.7fbe

Металл сварного шва для соединения основных металлов из медно-никелевых сплавов с содержанием никеля 9,0-41,0 мас. %

Изобретение относится к области металлургии, а именно к металлам сварных швов для соединения между собой медно-никелевых сплавов с содержанием от 9,0 до 41,0 мас.% никеля, и может быть использовано при изготовлении и ремонте судовых трубопроводов систем забортной воды кораблей и судов всех...
Тип: Изобретение
Номер охранного документа: 0002461453
Дата охранного документа: 20.09.2012
29.06.2019
№219.017.9c65

Способ производства штрипса для труб магистральных трубопроводов

Изобретение относится к области металлургии, в частности к производству штрипса толщиной 15- 28 мм ответственного назначения. Для повышения прочности, хладостойкости и низкотемпературной вязкости в зоне термического влияния при сварке штрипса получают сталь, содержащую, мас.%: С - 0,03-0,07, Мn...
Тип: Изобретение
Номер охранного документа: 0002397254
Дата охранного документа: 20.08.2010
29.06.2019
№219.017.9c6e

Способ производства толстолистового проката

Изобретение относится к области металлургии, в частности к производству проката ответственного назначения. Для получения проката ответственного назначения с повышенными показателями прочности, при одновременном повышении хладостойкости и низкотемпературной вязкости в зоне термического влияния...
Тип: Изобретение
Номер охранного документа: 0002393236
Дата охранного документа: 27.06.2010
29.06.2019
№219.017.9f92

Способ дуговой наплавки меди и медных сплавов на сталь

Изобретение может быть использовано при изготовлении узлов, деталей и конструкций из стали с наплавленным рабочим слоем из меди или медного сплава, предназначенным для обеспечения их антифрикционных свойств, коррозионной стойкости, электропроводности и др. На подлежащую наплавке поверхность...
Тип: Изобретение
Номер охранного документа: 0002470750
Дата охранного документа: 27.12.2012
10.07.2019
№219.017.ad15

Способ производства штрипса для труб магистральных трубопроводов

Изобретение относится к области металлургии, конкретнее к производству штрипсовой стали для магистральных трубопроводов диаметром до 1420 мм, толщиной не менее 20 мм и не более 40 мм. Для повышения прочностных свойств и сопротивляемости хрупким разрушениям при температуре до -20°С при...
Тип: Изобретение
Номер охранного документа: 0002383633
Дата охранного документа: 10.03.2010
16.08.2019
№219.017.c080

Способ производства трубного проката повышенной коррозионной стойкости на реверсивном стане

Изобретение относится к области металлургии. Для повышения коррозионной стойкости трубного проката при сохранении высокой прочности, пластичности и ударной вязкости получают непрерывно-литую заготовку из стали, содержащей, мас.%: С 0,04-0,08, Si 0,15-0,35, Mn 0,7-1,0, Ni 0,2-0,5, Cu 0,4-0,6, Nb...
Тип: Изобретение
Номер охранного документа: 0002697301
Дата охранного документа: 13.08.2019
09.10.2019
№219.017.d39d

Высокопрочный титановый сплав для корпусных конструкций атомного реактора с водяным теплоносителем

Изобретение относится к металлургии сплавов на основе титана, предназначенных для изготовления корпусных конструкций атомных энергетических установок с водяным теплоносителем. Высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным...
Тип: Изобретение
Номер охранного документа: 0002702251
Дата охранного документа: 07.10.2019
27.12.2019
№219.017.f3f8

Сплав на основе титана

Изобретение относится к области металлургии, а именно к титановым α сплавам, предназначенным для использования в качестве конструкционного высокотехнологичного теплопроводного материала для энергетических силовых и теплообменных установок, авиационной и космической техники, длительно работающих...
Тип: Изобретение
Номер охранного документа: 0002710407
Дата охранного документа: 26.12.2019
09.02.2020
№220.018.0124

Способ получения беспористого композиционного покрытия

Изобретение относится к области гальванотехники и может быть использовано в машиностроении с целью повышения функциональных характеристик механизмов, работающих в агрессивных средах, а также в изделиях нефтеперерабатывающей промышленности. Способ включает микродуговое оксидирование (МДО)...
Тип: Изобретение
Номер охранного документа: 0002713763
Дата охранного документа: 07.02.2020
+ добавить свой РИД