×
09.07.2020
220.018.30e5

Микросистема терморегулирования малых космических аппаратов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к микромеханическим устройствам преимущественно малых космических аппаратов (МКА). Микросистема содержит неподвижную кремниевую рамку (10), приклеиваемую к поверхности (1) МКА, шарнирные (6) створки жалюзи (2) с внешним высокоотражающим металлическим покрытием, а также биморфные актюаторы. Актюаторы имеют полиимид-кремниевую изгибную структуру (5), закреплены основаниями (3) на рамке (10), а хвостовиками (4) связаны со створками (2) посредством полиимидных связок (7) с отражающим покрытием. Створки заземлены на корпус МКА через металлизированные шарниры и токопроводящие отверстия в неподвижной рамке (10). Техническим результатом является увеличение эффективности, в том числе надёжности системы, а также упрощение технологии её изготовления. 1 н. и 1 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к области микроэлектроники, а именно к устройствам микросистемной техники и может быть использовано для систем терморегулирования малых космических аппаратов (КА), отдельных блоков больших КА и систем, предохраняющих участки поверхности КА от воздействия солнечного излучения.

Из уровня техники известны жалюзи, установленные над радиаторами космического аппарата ROSETTA S/C (https://www.esa.int/speacinimages/Images/2015/08/Rosetta_thermal_louvres). Конструкция жалюзи платформы Rosetta SENER состоит из обрамленного массива (397 x 430 mm) сильно отражающих лопастей, которые поворачиваются чувствительным к температуре приводами. Новые приводы представляют собой триметаллические спиральные пружины, заключенные в корпус, который хорошо изолирован от внешней среды, но который поддерживает хороший тепловой контакт с монтажной панелью, требующей терморегулирования.

Недостатками системы являются сложность и большие массогабаритные характеристики конструкции, не позволяющие применить ее для МКА и «неправильный» алгоритм работы при освещении солнцем жалюзи открываются, а не закрываются.

Из уровня техники известно также микроэлектромеханическое устройство (US6538796, опубл. 25.03.2003), которое содержит миниатюрные механические жалюзи, называемые жалюзи микроэлектромеханических систем (MEMS), используются для достижения функции терморегулирования космических аппаратов и приборов. Жалюзи MEMS представляют собой еще одну форму покрытия с регулируемым коэффициентом излучения и используют микроэлектромеханическую технологию. В функции, аналогичной традиционным макроскопическим тепловым жалюзи, жалюзи MEMS по настоящему изобретению изменяют излучательную способность поверхности. В жалюзи MEMS, как и в традиционных макроскопических жалюзи, механическая лопасть или окно открываются и закрываются, чтобы обеспечить изменяемый радиационный обзор пространства.

Недостатком известного технического решения является сложность конструкции, энергозатратность, обусловленная необходимостью дополнения системы активным приводом, организующим линейное перемещение точки приложения усилий, а также технологически сложным сочленением шторок с рычагами и поверхностью основания, на котором они расположены. Кроме того, к недостаткам можно отнести низкую эффективность работы за счет, неполного раскрытия шторок и значительные потери КПД на трение между рычагами и поверхностью основания.

Наиболее близким аналогом заявленного устройства является микроструктурная система терморегулирования космического аппарата (RU2465181, опубл. 10.03.2011). Согласно известному техническому решению терморегуляция осуществляется за счет углового перемещения отражающих экранов, являющихся также тепловыми микроактюаторами. В результате теплового воздействия на деформируемую структуру актюатора, происходит расширение/сужение материалов, входящих в его состав, что и приводит к изменению углового положения последнего относительно неподвижного основания, тем самым изменяется площадь отражающей поверхности, скрытой под актюатором и уменьшается температура защищаемой поверхности.

К недостаткам известной конструкции относится, прежде всего, низкая эффективность, связанная с малым изменением углового положения актюатора.

Техническим результатом заявленного изобретения является увеличение эффективности и работоспособности системы, а также упрощение технологии её изготовления.

Технический результат достигается за счет создания микросистем терморегулирования малых КА, отдельных блоков выходящих за габариты больших космических аппаратов, и систем, предохраняющих участки поверхности КА от воздействия солнечного излучения. Система содержит кремниевую плату, состоящую из неподвижной рамки, приклеиваемой с помощью клея с малым коэффициентом теплопроводности к поверхности, подвижных элементов, имеющих форму створок жалюзи, с нанесенным на их внешнюю сторону металлическим покрытием с высоким коэффициентом отражения, шарниров, соединяющих створки жалюзи с неподвижной рамкой, выполненных из полиимидной пленки, с тем же металлическим покрытием, биморфных актюаторов, закрепленных основаниями на неподвижной рамке; гибкую полиимидную связку, армированную кремниевыми балками, соединяющую хвостовики актюаторов со створками жалюзи, участки с высокой поглощательной способностью солнечного излучения и малой излучательной способностью сформированные на хвостовиках и основаниях биморфных актюаторов, при этом подвижные элементы «заземлены» на корпус космического аппарата через металлизированные шарниры и сформированные в неподвижной рамке токопроводящие отверстия «заземляющие» на корпус космического аппарата подвижные элементы, имеющие форму створок жалюзи и терморегулирующее покрытие с высокой излучательной способностью в инфракрасном (ИК) диапазоне, сформированное на поверхности КА под створками жалюзи.

В частном варианте выполнения устройства в качестве металлического покрытия внешних створок жалюзи используют алюминий или серебро.

Заявленное изобретение проиллюстрировано следующими фигурами:

На фиг.1 представлена схема заявленного элемента микросистемы терморегулирования;

На фиг. 2 представлена плата с жалюзи (вид сверху);

На фиг.3 представлен биморфный актюатор;

На фиг.4 представлена армированная кремнием полиимидная связка.

Позиции на фигурах обозначают следующее:

1 – поверхность МКА;

2 – створка жалюзи;

3 – основание актюатора, с черным покрытием;

4 – хвостовик актюатора;

5 – полиимид-кремниевая изгибная структура актюатора;

6 – поворотная ось;

7 – гибкие полиимидные связки, покрытые отражающим покрытием;

8 – терморегулирующее покрытие на поверхности МКА;

9 – полиимидные шарниры с отражающим металлическим покрытием;

10 – неподвижная кремниевая рамка;

11 – кремниевый армирующий элемент (ребро жесткости);

12 – полиимидная пленка;

α – угол поворота створки жалюзи;

β – динамический угол поворота актюатора.

Заявленная микросистема терморегулирования малых космических аппаратов содержит:

– неподвижную рамку с шинами «заземления» и металлизированными отверстиями, приклеиваемую с помощью клея с малым коэффициентом теплопроводности к поверхностям малых КА или приборов;

– подвижные отражающие излучение экраны, имеющие форму створок жалюзи, с нанесенным на их внешнюю сторону металлическим покрытием с высоким коэффициентом отражения (Al, Ag);

– металлизированные шарниры, соединяющие створки жалюзи с неподвижной рамкой, выполненных из полиимидной пленки;

– биморфные актюаторы с основаниями и хвостовиками;

– гибкие полиимидные связки, армированные кремниевыми балками, соединяющие хвостовики актюаторов со створками жалюзи;

– участки с высокой поглощательной способностью солнечного излучения и малой излучательной способностью сформированные на хвостовиках и основаниях биморфных актюаторов;

– отражающие экраны, имеющие форму створок жалюзи, «заземлённые» на корпус МКА через металлизированные шарниры, шины заземления и сформированные в неподвижной рамке токопроводящие отверстия;

– сформированное на поверхности малых КА и приборов, под жалюзи терморегулирующее покрытие с высокой излучательной способностью в области инфракрасного диапазона излучения.

Заявленное изобретение способно работать в условиях дестабилизирующих факторов космического пространства (ДФКП), понижать температуру поверхности КА и его составных частей, обеспечивая закрывание отражающих поверхностей при наличии и открытие при отсутствии солнечного излучения. Для повышения эффективности устройство должно обеспечивать угол поворота отражающей поверхности створок жалюзи близкий к 90 угл. град. В качестве исполнительного элемента компонента устройства применяются биморфные полиимид-кремниевые тепловые микромеханические актюаторы.

Разработанные на данный момент актюаторы имеют малые размеры и достаточный крутящий момент для поворота отражающих поверхностей. Функционирование предлагаемых микромеханических устройств основано на большой разности температурных коэффициентов линейного расширения кремния и полиимида. Конструкция микросистемы позволяет получить большие угловые перемещения при разности температур на солнечной и теневой стороне.

Большие угловые перемещения достигаются за счет большой разницы линейных размеров актюаторов и расстояний от осей вращения жалюзи до точек закрепления гибких связок.

Принцип действия системы поясняется фиг.1 и состоит в следующем: при движении КА по орбите при нахождении жалюзи с актюаторами на солнечной стороне происходит нагрев актюаторов и, как следствие, изгиб балки актюатора и перемещение створок жалюзи, выполняющих роль отражающего зеркала в горизонтальное положение, тем самым поверхность под зеркалом со стороны солнечного излучения закрывается.

Актюаторы при нагревании (на солнце) закрывают створки жалюзи, покрытые высокоотражающим покрытием (алюминий) и отражают 90 % лучистого теплового потока; при охлаждении (в тени) – створки жалюзи открываются и за счет излучения селективных поверхностей с высокой излучательной способностью в области инфракрасного диапазона излучения понижают температуру. Поток солнечного излучения на околоземной орбите составляет 1360 Вт/м2. Поглощение поверхностями с полностью закрытыми створками жалюзи, имеющими коэффициент коротковолнового поглощения алюминия составит 136 (Вт/м2).

Отражающая способность металлического покрытия жалюзи равна не менее 0,9. в горизонтальном положении оно отражает не менее 90% солнечного излучения и защищает рабочую поверхность от перегрева. При нахождении малого КА или прибора на неосвещенном участке створки находятся в поднятом положении, открывая поверхность с селективной излучательным покрытием под зеркалом.

Устройство с актюаторами представляет собой единую систему, состоящую из прямоугольной кремниевой площадки толщиной 30 мкм с алюминиевым покрытием, играющую роль зеркала, которая соединяется с кремниевой рамкой посредством гибких полиимидных перемычек-шарниров, а с актюатором посредством полиимидной связки. Для предотвращения сворачивания полиимидной перемычки под ней поперечно расположены (V-образные) кремниевые ребра жесткости.

Уменьшение температуры КА на солнечной стороне достигается за счет увеличения площади отражения поворотных жалюзи, вызванное разгибанием тепловых актюаторов при их нагреве. Изменение площади отражающей поверхности происходит по закону косинуса. Скорость изменения отражающей площади максимальна при угле α близком к 90 угл. град.

Повышение динамического угла поворота β актюатора (фиг.1) достигается за счет формирования на основаниях и хвостовиках актюаторов селективного покрытия с высокой поглощающей способностью солнечного излучения и низкой излучательной способностью в ИК диапазоне излучения.

Изменение угла поворота хвостовика актюатора зависит от разницы температур в горячем и холодном состоянии. Для увеличения разницы температур на внешней поверхности актюаторов сформированы участки с селективным покрытием с большим соотношением интегральной поглощательной способностью солнечного излучения (As) и малой интегральной излучательной способностью в ИК диапазоне(Ɛ).

Микромеханическая система изготавливается на стандартном оборудовании, использующемся при изготовлении микросхем, по групповой технологии. Методом формирования селективного покрытия выбрано реактивное ионное травление (РИТ) кремния по маске фоторезиста на установке плазменного травления SENTECH SI 500 при определенном соотношении концентраций SF6 и O2. В отличие от терморегулирующих лакокрасочных покрытий данная поверхность представляет собой кремниевые иглы, покрытые пленкой оксифторида кремния. Поверхность подвержена меньшей эрозии атомарным кислородом (основной фактор эрозии полимерных материалов на низких орбитах), чем краски, содержащие в составе органические компоненты. Плазменную обработку пластин с актюаторами можно проводить по фоторезистивной маске в едином технологическом цикле изготовления микросистемного устройства терморегулирования поверхности.

Данный технологический процесс легко встраивается в процесс изготовления системы терморегулирования. По результатам отработки травления получено покрытие, со значениями As=0,93; Ɛ=0,43 и соотношением As/Ɛ=2,16. Для чистого полированного кремния As=0,61; Ɛ=0,43 и соотношение As/Ɛ=1,42.

Температуру для идеально теплоизолированных поверхностей можно рассчитать с помощью формулы Стефана-Больцмана.

Таким образом, подбирая время реактивного ионного травления поверхностей на актюаторах можно:

– увеличить поглощение солнечного излучения актюаторами в 1,52 раза;

– поднять температуру актюаторов с 432 К до 480 К;

– увеличить угол отклонения отражающих поверхностей при солнечном излучении и без него.

Жалюзи соединены с неподвижной кремниевой рамкой с помощью металлизированных пленочных полиимидных шарниров, расположенных на оси вращения подвижной поверхности. Жалюзи приводятся в движение с помощью полиимид-кремниевых биморфных актюаторов, закрепленных основаниями на неподвижной кремниевой плате и хвостовиками соединенными с подвижными поверхностями с помощью гибкой полиимидно-кремниевой связки. Хвостовик акюатора при изменении температуры перемещается по спиральной траектории и с помощью гибкой связки передает вращающий момент на жалюзи. За счет малого расстояния от оси вращения до точки приложения силы актюатора достигается большой угол поворота подвижной поверхности.

На поверхность с помощью термоизолирующего клея наклеивается пластина, содержащее подвижные кремниевые поверхности (жалюзи) с нанесенным на внешнюю сторону отражающим покрытием.

Жалюзи соединяются электрически с «заземлением» КА через металлизированные шарниры, контактные шины, металлизированные проводящие отверстия с контактными площадками и токопроводящий клей, соединяющий контактные площадки кремниевой пластины с контактными площадками шин «заземления» КА.

На поверхности под жалюзи сформировано терморегулирующее покрытие с высокой излучательной способностью в области инфракрасного диапазона излучения.

В качестве покрытия с высокой излучательной способностью в ИК диапазоне можно использовать лакокрасочное терморегулирующее покрытие эмаль ЭКОМ 2 белую.

Таким образом:

– применение жалюзи с актюаторами позволяет изменять коэффициенты поглощения поверхностей КА при наличии/ отсутствии солнечного излучения;

– снизить лучистый тепловой поток от солнца на поверхность МКА в шесть раз;

– увеличить лучистый теплоотвод с теневой стороны КА и его составных частей;

– уменьшить температурную нестабильность малого КА или прибора на околоземной орбите.


Микросистема терморегулирования малых космических аппаратов
Микросистема терморегулирования малых космических аппаратов
Микросистема терморегулирования малых космических аппаратов
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
02.03.2020
№220.018.0822

Многослойная коммутационная плата свч-гибридной интегральной микросхемы космического назначения и способ её получения (варианты)

Изобретение относится к электронной технике, а именно к области СВЧ микроэлектроники. Техническим результатом заявленного изобретения является повышение адгезионной прочности монтажных соединений в коммутационной плате и технологичности коммутационной СВЧ-платы. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002715412
Дата охранного документа: 28.02.2020
07.06.2020
№220.018.253a

Способ формирования структуры полевого силового радиационно-стойкого тренч-транзистора

Изобретение относится к области силовых полупроводниковых приборов, а именно к технологии производства тренч-транзисторов, и может быть использовано для изготовления силовых полевых радиационно-стойких тренч-транзисторов. Способ формирования структуры полевого силового радиационно-стойкого...
Тип: Изобретение
Номер охранного документа: 0002722859
Дата охранного документа: 04.06.2020
24.06.2020
№220.018.29ee

Контактное устройство для испытания микросхем

Изобретение относится к области микроэлектронной техники, в частности к способам электрического и функционального контроля и испытаний микросхем в корпусах. Контактное устройство для испытания микросхем содержит основание сепаратора, на котором размещен сепаратор с контактами, прижим контактов...
Тип: Изобретение
Номер охранного документа: 0002724129
Дата охранного документа: 22.06.2020
11.07.2020
№220.018.3182

Система обеспечения навигационными данными

Изобретение относится к области спутниковой навигации и спутникового позиционирования, а именно к системам, обеспечивающим доступ пользователей к информационным ресурсам, которые могут быть получены от спутниковых навигационных систем. Система обеспечения навигационными данными содержит сеть...
Тип: Изобретение
Номер охранного документа: 0002726191
Дата охранного документа: 09.07.2020
16.06.2023
№223.018.7d14

Быстроразъёмное соединение волноводов

Изобретение относится к радиотехнике и может быть использовано для быстрого соединения волноводов, подвергаемых механическим воздействиям, например, в составе контрольно-испытательной или быстроразвёртываемой мобильной аппаратуры. Быстроразъёмное соединение перового и второго волноводов...
Тип: Изобретение
Номер охранного документа: 0002741777
Дата охранного документа: 28.01.2021
16.06.2023
№223.018.7d2b

Система измерения электрических параметров больших антенных систем

Изобретение относится к антенной технике, в частности к системам измерения электрических параметров антенн с диаметром рефлектора более 20 метров при соблюдении условия «дальней зоны». Техническим результатом изобретения является измерение радиотехнических параметров исследуемых антенн с...
Тип: Изобретение
Номер охранного документа: 0002746688
Дата охранного документа: 19.04.2021
Показаны записи 1-10 из 40.
10.12.2013
№216.012.8a2a

Микросистема оптического излучения

Изобретение относится к области оптики и может быть использовано в устройствах и системах для отклонения пучка квазимонохроматического оптического излучения по двум пространственным направлениям, создания плоских изображений с помощью пучка квазимонохроматического оптического излучения,...
Тип: Изобретение
Номер охранного документа: 0002501052
Дата охранного документа: 10.12.2013
10.06.2014
№216.012.cd07

Микросистемное устройство терморегуляции поверхности космических аппаратов

Изобретение относится к области микроэлектроники - устройствам микросистемной техники, выполненным по технологиям микрообработки кремния, и может быть использовано при создании систем терморегуляции нагреваемой поверхности космических аппаратов, либо иных систем, обеспечивающих микроперемещения...
Тип: Изобретение
Номер охранного документа: 0002518258
Дата охранного документа: 10.06.2014
20.08.2014
№216.012.e97d

Электронный датчик тока и напряжения на высоком потенциале

Изобретение относится к области электроизмерительной техники и может быть использовано для измерения токов и напряжений. Электронный датчик тока и напряжения на высоком потенциале содержит измерительный модуль, высоковольтный токопровод, соединенные с аналого-цифровым преобразователем. Вход...
Тип: Изобретение
Номер охранного документа: 0002525581
Дата охранного документа: 20.08.2014
10.02.2015
№216.013.26ea

Микросистемный ёмкостной датчик измерения физических величин

Изобретение относится к области микроэлектроники - устройствам микросистемной техники, выполненным по технологиям микрообработки кремния, и может выполнять роль исполнительного элемента датчиковой аппаратуры в части измерения параметров перемещения, ускорения, температуры, механической силы,...
Тип: Изобретение
Номер охранного документа: 0002541415
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3b4d

Устройство дистанционного слежения в исследовательской радиационно-защитной "горячей" камере

Изобретение относится к устройству видеонаблюдения и может быть использовано для слежения за технологическими процессами в радиационно-защитных «горячих» камерах. Технический результат: расширение диапазона видеонаблюдения за счет вращения исполнительного механизма в двух взаимно...
Тип: Изобретение
Номер охранного документа: 0002546669
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4092

Способ извлечения из мишени плоской формы полученных в результате облучения целевых компонентов и устройство для его осуществления

Изобретение относится к средствам извлечения компонентов из облученной мишени. В заявленном способе мишень, выполненную в виде загерметизированного в оболочку плоского сепаратора, сначала подвергают поперечной разрезке путем отсечения конечных частей мишени, а затем производят двухстороннее...
Тип: Изобретение
Номер охранного документа: 0002548018
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4093

Способ и устройство извлечения из цилиндрической мишени полученных в результате облучения целевых компонентов

Изобретение относится к средствам извлечения полученных в результате облучения целевых компонентов из мишени. В заявленном способе предусмотрено выполнение мишени (19) в виде цилиндра с центральным стержнем, позиционированным по центру цилиндра двумя пробками, герметизация мишени с двух сторон...
Тип: Изобретение
Номер охранного документа: 0002548019
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.5209

Способ дезактивации капсулы с источником ионизирующего излучения

Изобретение относится к способам удаления радиоактивных отложений с поверхностей капсул с источником ионизирующего излучения. Способ включает в себя последовательную обработку капсулы раствором кислоты и промывку капсулы водным раствором, которые нагревают до режима пузырькового кипения....
Тип: Изобретение
Номер охранного документа: 0002552522
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.5e90

Способ герметизации источника ионизирующего излучения и устройство для его реализации

Изобретение относится к средствам получения источников ионизирующего излучения. Заявленный способ герметизации источника ионизирующего излучения (ИИИ) включает герметизацию ИИИ, помещенного в капсулу (19), загерметизированную аргонодуговой сваркой. В качестве ИИИ используется заготовка из...
Тип: Изобретение
Номер охранного документа: 0002555749
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6a3f

Способ сборки источников ионизирующего излучения на основе радионуклида кобальта-60 и устройство для его осуществления

Изобретение относится к ядерной технике и может быть использовано при изготовлении источников для медицинских целей. Источники ионизирующего излучения (ИИИ) в виде заготовок из кобальта диаметром 1 мм и длиной 1 мм, заранее складированные в открытом бункере, порционно транспортируются...
Тип: Изобретение
Номер охранного документа: 0002558752
Дата охранного документа: 10.08.2015
+ добавить свой РИД