×
21.06.2020
220.018.28a1

Результат интеллектуальной деятельности: Модель для исследования посадки самолёта на воду

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной гидродинамики и аэродинамики. Модель для исследования посадки самолета на воду содержит фюзеляж гладкой формы с приподнятой хвостовой частью. В хвостовой части установлены охватывающие фюзеляж модели кольцевые риблеты, изготовленные из проволоки диаметром 2-3 мм и установленные с шагом 0,2-0,3 ширины фюзеляжа модели на участке длиной 05-1 ширины фюзеляжа модели, начиная от места подъема хвостовой части. Изобретение направлено на упрощение конструкции модели. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области экспериментальной гидродинамики и аэродинамики, а именно к исследованиям на моделях процесса аварийной посадки на воду самолётов.

Для исследования процесса аварийной посадки самолёта на воду используются динамически подобные свободно летающие модели, запускаемые катапультой. [Fisher L.J. and Hoffman EX. Ditching Investigation of Dynamic Models and Effects of Design Parameters on Ditching Characteristics. NACA Report 1958, №1347 (Технический перевод ЦАГИ №9885, 1959 г.)]. Модель подобна натурному самолёту по геометрии, массе, положению центра масс и моментам инерции. Моделирование динамики v посадки требует соблюдения подобия по критерию Фруда где V - скорость посадки натурного самолёта или модели, - характерный размер самолёта или модели, - ускорение силы тяжести. При этом скорость посадки модели где VH - скорость посадки самолёта. Масштаб модели М выбирается в соответствии с возможностями существующих экспериментальных комплексов и составляет обычно от М=1:8 до М=1:30. Основным фактором, влияющим на обтекание фюзеляжа самолёта или модели водой, является его гладкая форма, которая приводит к очень сильной зависимости характера обтекания фюзеляжа от скорости движения. Для тел гладких форм могут существовать два основных режима обтекания - безотрывный и отрывной. При малых скоростях вода плавно обтекает погруженную часть тела со сходом струй с кормовой оконечности. В этом случае имеет место обширная зона разрежений. При очень больших скоростях реализуется «отрывное» обтекание, обычно в этом случае линия отрыва близка к линии перехода цилиндрической центральной части фюзеляжа в сужающуюся хвостовую. В зависимости от этого гидродинамическая подъемная сила меняется в очень широких пределах с изменением знака. Натурная скорость посадки самолёта имеет величину порядка 60+80 м/с. При таких скоростях процесс взаимодействия самолёта с поверхностью воды происходит примерно так же, как при посадке гидросамолёта - поток воды отрывается от поверхности днища фюзеляжа и хвостовая его часть не взаимодействует с водой, а на фюзеляже в зоне контакта с водой возникают только положительные давления. При посадке модели со скоростями порядка 15+25 м/с, соответствующими моделированию по критерию Фруда, отрыва потока не происходит, и на нижней поверхности центральной части фюзеляжа возникают зоны положительных давлений, а на нижней поверхности хвостовой части - отрицательных давлений. Возникновение зон отрицательных давлений на нижней поверхности хвостовой части приводит к засасыванию в воду хвостовой части модели и несоответствию динамики движения модели динамике натурного самолёта. При движении модели по воде, вследствие засасывания в воду хвостовой части, происходит увеличение угла тангажа до значений более 60°. В то время как при известных натурных посадках самолёта на воду значительного увеличения угла тангажа не наблюдалось, из-за невыполнения подобия по критерию Эйлера (где Р0 - атмосферное давление). Число Эйлера является определяющим при моделировании отрывных течений. [Шорыгин О.П., Беляевский А.Н., ГонцоваЛ.Г. Моделирование вынужденной посадки авиационно-космической техники на воду, Журнал «Полет», М., 2008, стр. 104-105]. Для устранения этого масштабного эффекта необходимо при испытаниях модели со скоростями, выбранными из условия подобия по числу Фруда, искусственно организовать отрывное обтекание водой хвостовой части фюзеляжа, соответствующее условиям натурной посадки самолёта.

В качестве прототипа рассмотрим модель самолёта, в которой отрывной режим обтекания фюзеляжа обеспечивается при испытаниях путём подвода воздуха в зону разрежений из полости фюзеляжа через систему дренажных отверстий, расположенных на нижней поверхности хвостовой части фюзеляжа модели в зоне возникновения отрицательных давлений. [Шорыгин О.П., Беляевский А.Н., Гонцова Л.Г. Моделирование вынужденной посадки авиационно-космической техники на воду, Журнал «Полет», М., 2008, стр. 104-105]. Для организации подачи воздуха в зону разрежений, в хвостовой части модели изготавливается специальный отсек с дренированной нижней поверхностью, отделённый от остальной полости модели герметичными перегородками. В верхней части отсека изготавливаются воздухозаборные отверстия для организации подачи воздуха в зону дренажа.

Модель с системой дренажа имеет ряд недостатков:

- В процессе посадки на воду модели самолёта изменяется её положение относительно поверхности воды, в том числе угол тангажа и величина погружения части фюзеляжа, находящейся в соприкосновении с водой. В результате зона контакта с водой в процессе посадки изменяет свою геометрию и расположение относительно фюзеляжа. При этом в зоны дренажа могут частично попадать не только зоны разрежения, но и зоны положительных давлений. В результате этого в процессе посадки возникают не только потоки воздуха в зоны разрежений, но и потоки воды, направленные вверх и попадающие внутрь модели.

- В процессе приводнения вода, попадая в дренажные отверстия, образует фонтан. Этот фонтан может какое -то время препятствовать поступлению воздуха в дренажную систему. Кроме того, вода, попавшая внутрь корпуса модели, изменяет её вес и центровку, а потеря импульса, унесённого водяным фонтаном, приводит к изменению величины гидродинамической силы и смещению положения её равнодействующей. Создание дренажной системы увеличивает трудоёмкость изготовления модели и подготовки модели к испытаниям, так как помимо изготовления специального отсека внутри модели, сверления множества отверстий, требует проведения предварительных исследований по определению положения и формы дренированной части фюзеляжа, диаметра отверстий и расстояний между ними.

Техническим результатом предложенного изобретения является устранение указанных недостатков прототипа и повышение точности моделирования вынужденной посадки самолётов на воду, а также уменьшение трудоёмкости изготовления модели и подготовки её к испытаниям.

Технический результат достигается тем, что в модели для исследования посадки самолёта на воду, содержащей фюзеляж гладкой формы с приподнятой хвостовой частью, в хвостовой части установлены кольцевые риблеты, охватывающие фюзеляж модели. Риблеты установлены с шагом 0,2-0,3 ширины фюзеляжа модели на участке длиной 0,5-1 ширины фюзеляжа модели, начиная от места подъёма хвостовой части. Риблеты изготовлены из проволоки диаметром 2-3 мм.

На Фиг. 1 изображена модель самолёта, с установленными кольцевыми риблетами.

На Фиг. 2 приведена фотография посадки на воду модели, не имеющей специальных устройств для создания отрывного обтекания.

На Фиг. 3 приведена фотография посадки на воду модели с риблетами.

На Фиг. 4 приведена схема обтекания водой фюзеляжа натурного самолёта с распределением давлений вдоль его нижней поверхности при движении по поверхности воды.

На Фиг. 5 приведена схема обтекания водой фюзеляжа модели, не имеющей специальных устройств для создания отрывного обтекания, и распределения давлений вдоль нижней поверхности

На Фиг. 6 приведена схема обтекания водой фюзеляжа модели с установленными в хвостовой части кольцевыми риблетами.

Модель состоит из центральной цилиндрической части фюзеляжа гладкой формы 1 и сужающейся приподнятой хвостовой части 2. На поверхности фюзеляжа в области зоны разрежений, расположенной в хвостовой части 2, установлены поперечные кольцевые риблеты 3, изготовленные из проволоки, охватывающие фюзеляж модели. Риблеты 3 установлены с шагом 0,2-0,3 ширины фюзеляжа 1 модели на участке длиной 0;5-1 ширины фюзеляжа модели, начиная от места подъёма хвостовой части 2 (места перехода цилиндрической центральной части фюзеляжа в оживальную хвостовую часть). Риблеты 3 изготовлены из проволоки диаметром 2-3 мм.

Устройство работает следующим образом. При движении модели по поверхности воды воздух, с помощью риблетов, поступает по боковой поверхности фюзеляжа в зону разрежений на нижней поверхности хвостовой части и вызывает там отрыв потока, соответствующий условиям посадки натурного самолёта. При посадке модели на поверхность воды риблеты выполняют роль мини-кавитаторов, за которыми вначале возникают каверны небольшой протяжённости в горизонтальном направлении, но охватывающие всю погружённую часть риблета. Через эту каверну, открытую в области пересечения фюзеляжа со свободной поверхностью воды, воздух по боковой поверхности фюзеляжа устремляется в зону разрежений и создаёт общую обширную каверну, то есть зону отрыва потока воды, соответствующую натурным условиям посадки самолёта на воду. Установка риблетов позволяет устранить возможность попадания воды внутрь фюзеляжа, изменяющей массу и центровку модели, и позволяет более точно моделировать величину гидродинамической подъёмной силы и точку её приложения при движении модели по поверхности воды.

Конструкция модели с риблетами намного проще конструкции модели с дренажем, и не требует проведения предварительных исследований, что значительно снижает трудоёмкость изготовления модели и подготовки её к испытаниям.

Эффективность предложенной модели подтверждается результатами катапультных испытаний динамически подобной модели самолёта. При посадке на воду модели без риблетов (Фиг. 2) сразу после приводнения происходило засасывание в воду хвостовой части фюзеляжа, что приводило к резкому увеличению угла тангажа. Это свидетельствует о наличии значительной зоны разрежений на нижней поверхности хвостовой части. Приводнение модели с риблетами, при той же посадочной скорости, происходило с небольшими углами тангажа, что свидетельствует о наличии отрыва потока от нижней поверхности хвостовой части. Таким образом обеспечивается обтекание водой фюзеляжа, соответствующее условиям посадки на воду натурного самолёта (Фиг. 3).


Модель для исследования посадки самолёта на воду
Модель для исследования посадки самолёта на воду
Модель для исследования посадки самолёта на воду
Модель для исследования посадки самолёта на воду
Источник поступления информации: Роспатент

Показаны записи 181-190 из 255.
29.03.2019
№219.016.f76c

Способ измерения температуры режущей кромки лезвийного инструмента при высокоскоростном фрезеровании металла

Изобретение относится к измерительной технике, в частности к измерениям температуры в зоне резания лезвийным инструментом с использованием термопары. Техническим результатом является определение температуры детали в фактической точке резания (на режущей кромке инструмента) с максимальной...
Тип: Изобретение
Номер охранного документа: 0002445588
Дата охранного документа: 20.03.2012
04.04.2019
№219.016.fcf9

Термомолекулярный насос (варианты)

Изобретение относится к области физики, в частности к устройствам для прокачки газа. Предлагается термомолекулярный насос, насос без движущихся частей и без рабочих жидкостей. Предлагается двухслойная мембрана, слои которой изготовлены из различных или одинаковых термоэлектрических материалов....
Тип: Изобретение
Номер охранного документа: 0002441174
Дата охранного документа: 27.01.2012
04.04.2019
№219.016.fd13

Способ коррекции результатов измерения тензометрическим мостовым датчиком с инструментальным усилителем

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрического мостового датчика с инструментальным усилителем, запитанных постоянным током. Технический результат: исключение систематических аддитивных и...
Тип: Изобретение
Номер охранного документа: 0002468334
Дата охранного документа: 27.11.2012
10.04.2019
№219.017.0333

Прямоточный воздушно-реактивный двигатель с распределенным по длине тепломассоподводом

Прямоточный воздушно-реактивный двигатель содержит воздухозаборник, газогенератор с топливом, камеру сгорания с блоком горючего и выходное сопло. В камере сгорания установлены подсоединенные к блоку управления топливонесущие секции с соплами для истечения топливных струй из внутренних полостей...
Тип: Изобретение
Номер охранного документа: 0002315193
Дата охранного документа: 20.01.2008
10.04.2019
№219.017.035d

Магнитогазодинамический канал

Изобретение относится к технической физике, к технологии эксплуатации магнитогазодинамических каналов, как МГД-генераторов, так и МГД-ускорителей, и может быть использовано в электротехнической и авиационно-космической промышленности, а также и в других областях техники. В предлагаемом...
Тип: Изобретение
Номер охранного документа: 0002387067
Дата охранного документа: 20.04.2010
10.04.2019
№219.017.0560

Гофрированный газопровод с подавлением шума и вибрации (варианты)

Изобретение относится к гофрированным трубам (в том числе к шлангам), предназначенным для транспортирования газов и газожидкостных смесей. Технический результат, достигаемый при использовании изобретения, - подавление шума и вибрации, возникающих за счет турбулентности внутреннего потока среды...
Тип: Изобретение
Номер охранного документа: 0002369798
Дата охранного документа: 10.10.2009
19.04.2019
№219.017.2d2d

Гидропресс для соединения частей камеры высокого давления

Изобретение относится к области техники высоких давлений и может быть использовано при разработке крупногабаритного оборудования. Гидропресс содержит две поперечины, скрепленные между собой, и гидропривод с поршнем. Он снабжен дополнительным цилиндром с поршнем, диаметр которого равен диаметру...
Тип: Изобретение
Номер охранного документа: 0002250826
Дата охранного документа: 27.04.2005
25.04.2019
№219.017.3b27

Устройство для испытания панелей

Изобретение относится к области испытаний летательных аппаратов на прочность при сложном многокомпонентном нагружении, в частности к испытаниям подкрепленных панелей силового каркаса планера самолета, для определения фактической прочности и устойчивости, а также для выбора их рациональной...
Тип: Изобретение
Номер охранного документа: 0002685792
Дата охранного документа: 23.04.2019
24.05.2019
№219.017.5d97

Способ изготовления маложестких лопаток роторов при одноопорном закреплении на станках с чпу

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера лопаток роторов концевыми фрезами на фрезерных станках с числовым программным управлением (ЧПУ). Способ включает обработку концевой торовой фрезой, перемещаемой эквидистантно обрабатываемой поверхности...
Тип: Изобретение
Номер охранного документа: 0002688987
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5dc6

Способ регулирования давления в замкнутом объеме и устройство для его реализации

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Предлагается способ и устройство для его реализации, в ходе определения разницы между заданным и измеренным давлением могут рассчитывать фиктивную или реальную площадь сечения щели...
Тип: Изобретение
Номер охранного документа: 0002688950
Дата охранного документа: 23.05.2019
Показаны записи 1-1 из 1.
29.11.2019
№219.017.e767

Способ создания противопожарной полосы орошения

Изобретение относится к области пожаротушения, в частности к авиации специального назначения, самолетам-пожарным со сливом жидкости в спутный поток. Способ заключается в создании противопожарной заградительной полосы орошения с помощью авиатанкера за счет слива пламягасящей жидкости из...
Тип: Изобретение
Номер охранного документа: 0002707321
Дата охранного документа: 26.11.2019
+ добавить свой РИД