×
12.06.2020
220.018.25e6

Результат интеллектуальной деятельности: Аддитивный способ и устройство внешнего возбуждения механической колебательной системы вибровискозиметра

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования свойств жидкостей с помощью вибровискозиметров. Сущность: колебательную систему приводят в режим колебаний посредством устройства возбуждения, непрерывно изменяют частоту колебаний устройства возбуждения до достижения собственной частоты ω, которую определяют по достижении заданного на каждой частоте в рабочем диапазоне частот фазового сдвига между колебаниями устройства возбуждения и колебаниями выходного усиленного и частотно-отфильтрованного сигнала датчика положения и сохраняют в памяти микроконтроллера, периодически изменяют действующую жесткость колебательной системы на известную величину путем добавления к возбуждающему сигналу устройства возбуждения известной доли выходного сигнала датчика положения зонда, и определяют новые значения собственной частоты колебательной системы ω, а по значениям частот ω и ω расчетным путем определяют текущие действующие значения колеблющейся массы m и коэффициента жесткости k колебательной системы по формулам. Устройство содержит устройство возбуждения колебаний зонда вибровискозиметра, устройство регистрации и управления на базе микроконтроллера, в памяти которого записаны управляющая программа для устройства возбуждения и частотно-фазовая характеристика частотно-фильтрующей цепи, датчик положения зонда, выход которого соединен с входом электронного усилителя, выход которого соединен с входом частотно-фильтрующей цепи, двухвходовый сумматор с коммутатором по второму входу, первый вход сумматора соединен с выходом устройства возбуждения, выход электронного усилителя также соединен со вторым входом сумматора через коммутатор, управляющий вход которого соединен с одним из управляющих выходов устройства регистрации и управления вибровискозиметра. Технический результат: повышение точности определения измеряемых вибровискозиметром параметров исследуемой жидкости путем дополнительного определения с учетом упругих свойств жидкости, динамических параметров механической колебательной системы вибровискозиметра. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области исследования свойств жидкостей с помощью вибровискозиметров. Может успешно использоваться для исследования динамических процессов термостимулированной структурной перестройки многокомпонентных жидкостей: нефтепродуктов, растительных масел и др.

Известен способ внешнего резонансного возбуждения механической колебательной системы вибровискозиметра [патент РФ №2607048 МПК G01N 25/00], при котором зонд вибровискозиметра, снабженный датчиком геометрического положения зонда, с заданной вынуждающей силой приводят в режим механических колебаний посредством устройства возбуждения, вырабатывающего гармонический сигнал постоянной заданной амплитуды и заданной частоты. При этом выходной сигнал датчика положения зонда преобразовывают путем усиления и частотной фильтрации. Далее, сохраняя амплитуду, непрерывно изменяют частоту гармонических колебаний возбудителя до достижения собственной частоты механической колебательной системы, которую определяют по достижению заданного на каждой частоте в рабочем диапазоне частот фазового сдвига ϕз между колебаниями возбудителя и колебаниями выходного усиленного и частотно отфильтрованного сигнала датчика положения, определяемого по уравнению ϕз(ω)=ϕф(ω)+π/2, где ϕф(ω) - значение на частоте ω фазового сдвига частотно фильтрующих цепей сигнала датчика положения зонда вибровискозиметра.

Данный способ возбуждения обеспечивает высокую точность определения текущего значения собственной частоты механической колебательной системы, необходимой для измерения вязкостных параметров жидкости, и достаточно просто автоматизируем современными средствами.

Известно устройство [там же] внешнего резонансного возбуждения механической колебательной системы вибровискозиметра, включающее возбудитель колебаний механической колебательной системы вибровискозиметра, датчик положения зонда и устройство регистрации и управления вибровискозиметра, выполненное на базе микроконтроллера. При этом выход датчика положения зонда соединен с входом электронного усилителя, выход которого соединен с входом частотно фильтрующей цепи, выход которой соединен с микроконтроллером, выход микроконтроллера подключен к управляющему входу возбудителя колебаний зонда. Кроме того, в постоянной памяти программируемого микроконтроллера записаны управляющая программа для возбудителя колебательной системы и частотно фазовая характеристика частотно фильтрующей цепи. Указанные способ и устройство являются наиболее близкими изобретению.

Недостатком известного способа является невозможность раздельного определения текущих значений колеблющейся массы и жесткости (упругости) колебательной системы при размещении измерительного зонда в жидкости с изменяющейся температурой. Их определение в ряде случаев весьма желательно, так как при опускании измерительного зонда вибровискозиметра в жидкость изменяется не только колеблющаяся масса за счет присоединенной массы жидкости, но в ряде случаев и действующая жесткость (упругость) колебательной системы за счет внутренней структурной упругости жидкости при переходе ее в гелеподобное состояние. Не учет изменения жесткости колебательной системы при нахождении зонда в жидкости приводит к погрешностям определения как присоединенной массы, так и вязкости жидкости. Кроме того определение текущего значения внутренней структурной упругости жидкости представляет самостоятельный научный и практический интерес для специалистов в области коллоидной химии и нефтехимии.

Техническая задача изобретения заключается в том, чтобы повысить точность определения измеряемых вибровискозиметром параметров исследуемой жидкости путем дополнительного определения с учетом упругих свойств жидкости, динамических параметров механической колебательной системы вибровискозиметра.

Для решения поставленной задачи предлагается:

Аддитивный способ внешнего возбуждения механической колебательной системы вибровискозиметра, при котором механическую колебательную систему вибровискозиметра, снабженного датчиком положения зонда, с заданной вынуждающей силой приводят в режим механических колебаний посредством устройства возбуждения, выходной сигнал датчика положения зонда преобразовывают путем усиления и частотной фильтрации, непрерывно изменяют частоту колебаний устройства возбуждения до достижения собственной частоты ω0, которую определяют по достижении заданного на каждой частоте в рабочем диапазоне частот фазового сдвига φз между колебаниями устройства возбуждения и колебаниями выходного усиленного и частотно-отфильтрованного сигнала датчика положения по формуле φз(ω)=φф(ω)+π/2, где φф(ω) - фазовый сдвиг частотно фильтрующих цепей сигнала датчика, отличающийся тем, что текущую собственную частоту ω0 механической колебательной системы вибровискозиметра сохраняют в памяти микроконтроллера, в процессе регистрации собственной частоты ω0 периодически изменяют действующую жесткость колебательной системы на известную величину Δkm, определяемую в процессе начальной калибровки вибровискозиметра, путем добавления к возбуждающему сигналу устройства возбуждения известной доли выходного сигнала датчика положения зонда, преобразованного усилителем, и определения при этом нового значения собственной частоты колебательной системы ω0m, а по полученным значениям частот ω0 и ω0m расчетным путем определяют текущие действующие значения колеблющейся массы mL и коэффициента жесткости kL колебательной системы по формулам:

и

где ω0 - собственная частота колебаний непогруженного зонда; ωL - собственная частота колебаний зонда в жидкости, ωLm - собственная частота колебаний зонда в жидкости при добавочном изменении возбуждающей силы; Δkm - изменение коэффициента жесткости под действием изменения возбуждающей силы.

Согласно заявляемому способу, в процессе исследования жидкости к возбуждающему гармоническому сигналу с устройства возбуждения на короткий измерительный интервал времени периодически добавляется доля напряжения с выхода датчика положения. Доля добавляемого напряжения, измерительный интервал в режиме добавочного напряжения и периодичность смены режимов могут быть заданы и оператором в процессе измерения, или программными средствами. Доля добавляемого напряжения определяется чувствительностью зонда к измененному напряжению устройства возбуждения. Измерительный интервал должен быть достаточным для проведения измерений и определения параметров исследуемой жидкости.

Заявляется устройство, реализующее аддитивный способ возбуждения колебательной системы вибровискозиметра.

Устройство внешнего возбуждения механической колебательной системы вибровискозиметра, включающее устройство возбуждения колебаний механической колебательной системы зонда вибровискозиметра, устройство регистрации и управления вибровискозиметра, выполненное на базе микроконтроллера, в постоянной памяти которого записаны управляющая программа для устройства возбуждения и частотно-фазовая характеристика φ(ω) частотно-фильтрующей цепи, датчик положения зонда, выход которого соединен с входом электронного усилителя, выход которого соединен с входом частотно-фильтрующей цепи, отличающееся тем, что

устройство дополнительно содержит двухвходовый сумматор с коммутатором по второму входу, а первый вход сумматора соединен с выходом устройства возбуждения, выход электронного усилителя также соединен со вторым входом сумматора через коммутатор, управляющий вход которого соединен с одним из управляющих выходов устройства регистрации и управления вибровискозиметра.

На фиг. 1 представлена структурная схема, поясняющая заявляемые способ и устройство.

Устройство включает в себя последовательно подключенные электрический управляемый возбудитель колебаний 1 механической колебательной системы вибровискозиметра, механическую колебательную систему вибровискозиметра (зонд) 2, датчик положения 3 измерительного зонда вибровискозиметра, линейный электронный усилитель 4 сигнала датчика положения, 5 - частотно фильтрующую цепь, содержащую линейные фильтры частот в диапазоне нижних и верхних рабочих частот механической колебательной системы (зонда). Частотно фазовая характеристика ϕ(ω) фильтрующей цепи должна быть заранее известна или экспериментально измерена. 6 - программируемый микроконтроллер, в постоянной памяти которого записаны управляющая программа для коммутатора, возбудителя колебаний и частотно-фазовая характеристика ϕ(ω) фильтрующей цепи. Также устройство включает управляемый двухвходовый сумматор 7 с коммутатором 8, при этом выход возбудителя колебаний 1 подключен к первому входу сумматора 7, выход электронного усилителя 4 соединен со вторым входом сумматора через коммутатор 8, управляющий вход которого соединен с одним из выходов микроконтроллера 6 в качестве устройства регистрации и управления вибровискозиметра.

Заявляемое изобретение осуществляется следующим образом.

На первом этапе -

Микроконтроллер 6 размыкает коммутатор 8 на втором входе сумматора 7 и под действием выходных сигналов микроконтроллера возбудитель 1 механических колебаний зонда 2 формирует периодическую вынуждающую силу Fv(t) постоянной амплитуды с текущей частотой ω и начальной фазой ϕ0. Под действием этой силы на выходе датчика положения зонда 3 формируется гармонический сигнал, сдвинутый по фазе на величину ϕд(ω) относительно фазы ϕ0. Этот сигнал пропорционально усиливается усилителем 4, фильтруется по частоте посредством фильтрующей цепи 5 и подается на вход микроконтроллера 6 с результирующей фазой ϕрез(ω). Микроконтроллер 6, в памяти которого записана частотно фазовая характеристика ϕф(ω) частотно фильтрующей цепи, определяет разницу фаз ϕрез(ω) и ϕ0 в соответствии с заложенной в нем управляющей программой. Если эта разница равна ϕз(ω)=ϕф(ω)+π/2, то частота выходного сигнала микроконтроллера 6, подаваемого на вход возбудителя колебаний 1, соответствует собственной частоте ω0 колебательной системы и ω0 сохраняется в памяти микроконтроллера 6.

Если разница меньше, чем ϕз(ω), то микроконтроллер 6 пошагово увеличивает частоту своих выходных сигналов одновременно контролируя разницу указанных фаз на каждом шаге. Если разница фаз ϕрез(ω) и ϕ0 больше, чем ϕз(ω), то микроконтроллер 6 пошагово уменьшает частоту своих выходных сигналов, одновременно контролируя разницу указанных фаз на каждом шаге. То есть, на первом этапе постоянно обеспечивается работа вискозиметра на собственной частоте ω0 механической колебательной системы вибровискозиметра.

На втором этапе -

Через заданный интервал времени микроконтроллер 6 замыкает коммутатор 8 на втором входе сумматора 7 и к возбуждающему сигналу добавляется выходной сигнал усилителя 4, пропорциональный сигналу датчика положения зонда 3, затем аналогично первому этапу определяется новое значение собственной частоты ω0m колебательной системы в данном режиме, ω0m сохраняется в памяти микроконтроллера; затем микроконтроллер 6 снова размыкает коммутатор 8, то есть переходит к первому этапу. Интервал может быть задан или программой или оператором, повторное последовательное проведение первого и второго этапов требуется при непрерывном изменении параметров жидкости, например при изменении ее температуры, периодичность определяется скоростью измерения параметров жидкости. По значениям собственных частот ω0 и ω0m расчетным путем (который достаточно подробно описан ниже) определяют текущие действующие значения колеблющейся массы 0 зонда и коэффициента жесткости k0 колебательной системы и коэффициента затухания (или механическое сопротивление жидкости). Эти расчетные величины необходимы для точного определения с помощью вибровискозиметра характеристики жидкости.

Ниже рассмотрены математические и физические принципы, лежащие в основе заявляемого способа, которые также приведены в описании патента РФ №2663305 для случая использования в качестве зонда вискозиметра шарика, погруженного в жидкость и достаточно удаленного от стенок кюветы.

Чувствительный элемент вибровискозиметра представляет собой миниатюрный зонд, погружаемый в исследуемую жидкость. Зонд жестко связан с колебательной системой, представляющей собой механическое колебательное звено второго порядка. В ненагруженном состоянии параметры колебаний данного звена полностью определяются тремя собственными физическими параметрами: колеблющейся массой m0, коэффициентом демпфирования h0 и коэффициентом жесткости k0. Механические колебания в данной системе создаются по команде микроконтроллера электромеханическим устройством возбуждения 1, преобразующим электрическое напряжение Uv(t) в возбуждающую силу Fv(t):

где t - время, α - коэффициент преобразования, (Н⋅В-1).

Отклик механической колебательной системы вибровискозиметра 2 на возбуждающую силу оценивают с помощью датчика положения 3 по величине напряжения UD(t) на его выходе, пропорциональному геометрическому отклонению x(t) колеблющейся массы m0 от равновесного положения:

где β - коэффициент преобразования, (В⋅м-1).

В общем случае значения параметров ненагруженной колебательной системы являются функциями текущей температуры T: m0(T), h0(T) и k0(T). Данные функциональные зависимости параметров колебательной системы от температуры могут быть теоретически или экспериментально получены на стадии ее проектирования и изготовления.

Отклик x(t) колебательной системы на возбуждающую силу Fv(t) находят путем решения следующего линейного дифференциального уравнения (см. патент РФ 2663305):

При Fv(t)=F0sin(ωt) отклик x(t) имеет вид:

x(t)=xmax(ω)sin(ωt+ϕv(ω)).

где F0 - амплитуда возбуждающей силы, ω - круговая частота гармонической возбуждающей силы, ϕv(ω) - фазовый сдвиг между возбуждающей силой и откликом.

Для колебательного звена второго порядка, чем и является механическая колебательная система вибровискозиметра, справедливы следующие соотношения (см. патент РФ 2663305), при этом фазовый сдвиг между возбуждающей силой и откликом на собственной частоте колебательной системы всегда равен π/2:

Здесь ω0 - собственная частота ненагруженной колебательной системы, Q0 - ее добротность.

При полном или частичном погружении колеблющейся массы вибровискозиметра в жидкость параметры колебательной системы изменяются и приобретают новые значения:

где mL, hL, kL - соответственно масса, коэффициент демпфирования и коэффициент жесткости колебательной системы, взаимодействующей с исследуемой жидкостью. Изменение массы и коэффициента жесткости колебательной систем приводит и к изменению собственной частоты, которая приобретает значение ωL.

Величины Δm, Δh, Δk - это изменения параметров колебательной системы, вызванные исследуемой жидкостью. Δm - это так называемая присоединенная масса, т.е. масса окружающей зонд жидкости, участвующая в колебаниях. Трение о жидкость вызывает изменение коэффициента демпфирования Δh. Величина Δk - это изменение коэффициента жесткости (его естественно назвать присоединенной жесткостью), связанное с упругими свойствами жидкости, контактирующей с зондом. Величины Δm и Δh широко используются для определения свойств исследуемой жидкости, а их точное и оперативное определение является основной задачей вибровискозиметрии. В тоже время, влияние жидкости на коэффициент жесткости колебательной системы при расчетах обычно не учитывается, в частности, отсутствует определение Δm и Δh в прототипе.

Поясним недостаточность ранее используемых методик. Так, величину присоединенной массы Δm, которая используется в известных методиках для определения объемной плотности жидкости ρL и сдвиговой (динамической) вязкости ηL, определяют из уравнения (4) по значению собственной частоты ωL колебательной системы при погружении измерительного зонда в исследуемую жидкость:

Считая по методике прототипа, что изменение частоты связано только с изменением массы, с учетом (6) для присоединенной массы получают Δm=mL-m0. То есть, ранее не учитывалось, что коэффициент жесткости k0 колебательной системы, взаимодействующей с жидкостью, может измениться.

Используя вычисленное значение массы mL колебательной системы, из выражения (5) определяют коэффициент демпфирования в жидкости:

где QL - добротность колебательной системы взаимодействующей с жидкостью. Для определения коэффициента демпфирования, вызванного влиянием жидкости, с учетом (6) получают Δh=hL-h0.

Из приведенных примеров очевидно, что игнорирование упругих свойств жидкости, окружающей зонд, может привести к существенным погрешностям при анализе экспериментальных данных. Эта проблема связана с тем, что для низкочастотных вибровискозиметров отсутствуют общепринятые методы и средства экспериментального определения коэффициента жесткости колебательной системы, взаимодействующей с жидкостью.

В заявляемом аддитивном способе возбуждения колебательной системы вибровискозиметра предложено изменять возбуждающую силу так, чтобы такое изменение было эквивалентно изменению коэффициента жесткости колебательного звена.

Согласно заявляемому способу, в процессе исследования жидкости к возбуждающему гармоническому сигналу Uv(t) на короткий измерительный интервал времени, достаточный для проведения измерений, периодически добавляется напряжение с выхода датчика положения, преобразованное усилителем 4, которое пропорционально смещению x(t) колеблющейся массы m от равновесного положения:

где γ - безразмерный весовой коэффициент, показывающий, какая доля напряжения с выхода датчика положения добавляется в сигнал возбуждения.

В соответствии с выражением (1) возбуждающая сила также изменится:

Подставляя полученное значение возбуждающей силы в уравнение (3) получаем:

Анализ выражения показывает, что предложенное изменение возбуждающей силы эквивалентно изменению коэффициента жесткости колебательного звена от значения k0 до значения km=(k0-α⋅γ⋅β)=k0-Δkm. Изменение коэффициента жесткости Δkm приведет, в соответствии с (4), к изменению собственной частоты колебательного звена от значения ω0 до значения ω0m в режиме изменения возбуждающей силы путем добавления напряжения с выхода датчика положения (выше описан второй этап измерения).

Значение Δkm может быть определено расчетом по результатам измерения: k0(Т) - при калибровке ненагруженной колебательной системы вибровискозиметра (это достаточно сделать однократно) по известной паспортной зависимости, а также по измеренным значениям собственных частот ω0 и ω0m:

Отметим, что значение Δkm определяется значением весового коэффициента γ в уравнении (9) в процессе начальной калибровки вибровискозиметра. При последующей эксплуатации вибровискозиметра параметр Δkm остается постоянным вне зависимости от температуры и свойств исследуемой жидкости, а также амплитуды возбуждающего напряжения.

Появившаяся возможность управлять коэффициентом жесткости колебательной системы позволяет в процессе испытания жидкости определить, какая часть в изменении текущего значения собственной частоты вызвана изменением присоединенной массы, а какая связана с влиянием жидкости на коэффициент жесткости системы. Для этого необходимо повторить операции, аналогичные проводимым при начальной калибровке ненагруженной колебательной системы. Измерения собственной частоты ωL до изменения возбуждающей силы и частоты ωLm после изменения возбуждающей силы проводятся для колебательной системы, взаимодействующей с исследуемой жидкостью. Выражение для величины изменения коэффициента жесткости данной колебательной системы будет аналогично (12):

Учитывая, что изменение коэффициента жесткости Δkm под действием изменения возбуждающей силы не зависит от текущего значения коэффициента жесткости, можно приравнять правые части выражений (12) и (13) и получить выражение для коэффициента жесткости колебательной системы под действием жидкости:

Вычисленное из (14) значение коэффициента жесткости kL(T) позволяет, используя (7), определить величину колеблющейся массы:

Полученное значение колеблющейся массы mL позволяет, используя (8), вычислить изменение коэффициента затухания, вызванное жидкостью:

Таким образом, заявляемый аддитивный способ позволяет раздельно экспериментально и при необходимости непрерывно определять текущие действующие значения колеблющейся массы и коэффициента жесткости колебательной системы вибровискозиметра с учетом влияния исследуемой жидкости, что позволяет повысить точность определения измеряемых вибровискозиметром параметров исследуемой жидкости таких как Δm и Δh, а также расширить перечень определяемых параметров.

Заявляемые способ и устройство могут быть реализованы и автоматизированы известными средствами.


Аддитивный способ и устройство внешнего возбуждения механической колебательной системы вибровискозиметра
Аддитивный способ и устройство внешнего возбуждения механической колебательной системы вибровискозиметра
Аддитивный способ и устройство внешнего возбуждения механической колебательной системы вибровискозиметра
Аддитивный способ и устройство внешнего возбуждения механической колебательной системы вибровискозиметра
Источник поступления информации: Роспатент

Показаны записи 51-60 из 91.
29.05.2018
№218.016.56f5

Волноводное устройство для измерения параметров жидкостей

Изобретение относится к области СВЧ-техники и может быть использовано для измерения и контроля жидкостей, в частности водных растворов и суспензий веществ химической и биологической природы в различных технологических процессах, исследованиях структуры водных растворов, определения...
Тип: Изобретение
Номер охранного документа: 0002655028
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5bba

Акустический эхолокатор

Изобретение относится к акустическим эхолокационным системам подповерхностного зондирования и может быть использовано для обнаружения локальных неоднородностей в акустически прозрачной среде. Решаемая техническая задача состоит в повышении достоверности и точности определения места расположения...
Тип: Изобретение
Номер охранного документа: 0002655711
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5f7d

Способ зондирования плазменного слоя геомагнитного хвоста и ионосферы земли

Изобретение относится к геофизике, может использоваться для зондирования плазменного слоя геомагнитного хвоста и ионосферы Земли и предназначено для мониторинга окружающей среды, обеспечения радиосвязи и навигации, информационного обеспечения сельского хозяйства, здравоохранения, безопасности...
Тип: Изобретение
Номер охранного документа: 0002656617
Дата охранного документа: 06.06.2018
14.07.2018
№218.016.714a

Способ генерации свч шумовых колебаний

Изобретение относится к радиотехнике и может быть использовано при разработке СВЧ-аппаратуры различного назначения, в частности для шумовой радиолокации, радиовидения и медицины. Технический результат заключается в том, что при увеличении уровня модулирующего шумового низкочастотного...
Тип: Изобретение
Номер охранного документа: 0002661283
Дата охранного документа: 13.07.2018
02.08.2018
№218.016.77aa

Необремененный вибровискозиметрический датчик

Изобретение относится к области измерительной техники и может быть использовано для определения вибрационным методом изменения сдвиговой вязкости небольших объемов жидкости в локальной области при одновременном измерении ее температуры. Заявлен вибровискозиметрический датчик, содержащий...
Тип: Изобретение
Номер охранного документа: 0002662948
Дата охранного документа: 31.07.2018
14.09.2018
№218.016.87d7

Частотный фильтр свч сигнала на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотного фильтра. Сущность изобретения заключается в том, что частотный фильтр СВЧ сигнала на магнитостатических волнах содержит магнитный элемент,...
Тип: Изобретение
Номер охранного документа: 0002666968
Дата охранного документа: 13.09.2018
14.09.2018
№218.016.87df

Нелинейный делитель мощности свч сигнала на спиновых волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного делителя мощности с нелинейным эффектом. Делитель мощности СВЧ сигнала содержит единый входной порт, первый и второй выходные порты....
Тип: Изобретение
Номер охранного документа: 0002666969
Дата охранного документа: 13.09.2018
25.09.2018
№218.016.8b5b

Способ зондирования лунного грунта

Изобретение относится к селенофизике и предназначено для зондирования грунта Луны, информационного обеспечения безопасности космической деятельности, к области контрольно-измерительной техники, поиска залежей минеральных ресурсов, подлунного водного льда, исследования лунного реголита. В...
Тип: Изобретение
Номер охранного документа: 0002667695
Дата охранного документа: 24.09.2018
06.12.2018
№218.016.a426

Многоканальный дистанционный дозиметр

Изобретение относится к радиационной безопасности и может быть применено для распределенного контроля уровней ионизирующего излучения. Многоканальный дистанционный дозиметр содержит датчики на основе счетчиков Гейгера-Мюллера, модуль питания, микроконтроллер, каждый датчик снабжен согласующим...
Тип: Изобретение
Номер охранного документа: 0002674119
Дата охранного документа: 04.12.2018
15.12.2018
№218.016.a7d2

Монолитный трёхкамерный пневматический сенсор с встроенными дроссельными каналами для непрерывного неинвазивного измерения артериального давления

Изобретение относится к медицинской технике, а именно к сенсору для непрерывного измерения артериального давления. Сенсор содержит аппликатор (10) с контактной площадкой (100) и пневматической камерой (12). Пневматическая камера открыта на плоскую поверхность (17) контактной площадки и...
Тип: Изобретение
Номер охранного документа: 0002675066
Дата охранного документа: 14.12.2018
Показаны записи 11-18 из 18.
20.02.2019
№219.016.bf62

Способ свабирования с мониторингом скважины

Изобретение относится к нефтяной промышленности и может быть использовано при мониторинге скважины, в первую очередь многопластовой, в процессе свабирования. Технический результат - увеличение глубины свабирования, сокращение его времени, а также плавное изменение уровня и давления жидкости в...
Тип: Изобретение
Номер охранного документа: 0002388909
Дата охранного документа: 10.05.2010
13.04.2019
№219.017.0c6b

Датчик аэрометрических давлений

Устройство относится к контрольно-измерительной технике и может быть применено для измерения высоты и скорости полета воздушных судов на основании использования аэрометрического метода. Устройство содержит корпус с двумя отверстиями, две основные мембраны, герметично по периметру прикрепленные...
Тип: Изобретение
Номер охранного документа: 0002684683
Дата охранного документа: 11.04.2019
10.07.2019
№219.017.ace5

Способ мониторинга многопластовой скважины

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для мониторинга многопластовой скважины. Техническим результатом является повышение качества и безопасности многопластовой добычи в скважине путем выявления пластовых перетоков и их устранение до начала добычи в...
Тип: Изобретение
Номер охранного документа: 0002387824
Дата охранного документа: 27.04.2010
10.07.2019
№219.017.ace7

Способ мониторинга скважины и устройство для его осуществления

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при геофизических исследованиях скважин с работающим в них добычным насосом. Техническим результатом изобретения является обеспечение мониторинга скважины под добычным насосом с помощью геофизического кабеля. В...
Тип: Изобретение
Номер охранного документа: 0002387830
Дата охранного документа: 27.04.2010
13.07.2019
№219.017.b3a0

Устройство для добычи нефти и газа

Изобретение относится к нефтегазовой промышленности и используется для добычи нефти и газа из одной скважины как при однопластовой, так и при многопластовой добыче. Техническим результатом является уменьшение рабочего давления жидкости, подаваемой в каждый струйный насос, что повышает...
Тип: Изобретение
Номер охранного документа: 0002398101
Дата охранного документа: 27.08.2010
02.10.2019
№219.017.cf06

Устройство и способ измерения спектральных характеристик волоконно-оптических брэгговских решеток

Группа изобретений относится к волоконной оптике. Устройство измерения спектральных характеристик волоконно-оптических брэгговских решеток включает полупроводниковый лазер со встроенным элементом нагрева-охлаждения. К управляющим выходам блока контроля и управления подключены входы устройства...
Тип: Изобретение
Номер охранного документа: 0002700736
Дата охранного документа: 19.09.2019
04.02.2020
№220.017.fd6a

Датчик аэрометрических давлений

Изобретение относится к контрольно-измерительной технике и может быть применено для измерения высоты и скорости полета воздушных судов на основании использования аэрометрического метода. Датчик аэрометрических давлений содержит корпус, в котором выполнены два отверстия, сообщающихся с...
Тип: Изобретение
Номер охранного документа: 0002712777
Дата охранного документа: 31.01.2020
03.06.2023
№223.018.763c

Способ неразрушающей диагностики дефектов сквозного металлизированного отверстия печатной платы

Изобретение относится к средствам неразрушающего контроля качества сквозных металлизированных отверстий (СМО) печатных плат (ПП). Технический результат - повышение достоверности выявления дефектов и в обеспечение возможности их идентификации. Технический результат достигается тем, что в способе...
Тип: Изобретение
Номер охранного документа: 0002761863
Дата охранного документа: 13.12.2021
+ добавить свой РИД