×
04.06.2020
220.018.23f9

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ, СОДЕРЖАЩЕГО ВОДОРОД И УГЛЕВОДОРОДЫ C1-C4

Вид РИД

Изобретение

№ охранного документа
0002722590
Дата охранного документа
02.06.2020
Аннотация: Изобретение относится к способу обработки углеводородного сырья, содержащего водород и углеводороды, в том числе углеводороды C-C, в котором: a) разделяют углеводородное сырье на газовую фазу (6), содержащую в основном водород, и жидкую фазу (4), содержащую углеводороды; b) осуществляют первый этап повторного контактирования сначала газовой фазы, полученной на этапе a) с рециркулирующим газовым потоком (23), полученным на этапе e), чтобы извлечь газ (10), который контактирует с жидкой фазой (4), полученной на этапе a), при температуре меньше или равной 55°C; c) разделяют поток с повторного контактирования на этапе b) на газовую фазу (15), обогащенную водородом, и жидкую фазу (16); d) осуществляют второй этап повторного контактирования жидкой фазы (16), выходящей с этапа c), с газовой фазой (21), выходящей с этапа g), при температуре меньше или равной 55°C; e) разделяют поток с повторного контактирования на этапе d) на газовую фазу (23), которую возвращают на этап b), и жидкую фазу (24), содержащую углеводороды; и f) фракционируют жидкую фазу (24), выходящую с этапа e), во фракционной колонне (25), чтобы выделить газообразную головную фракцию (27) и жидкую кубовую фракцию (26), содержащую углеводороды с числом атомов углерода больше 4; g) конденсируют газообразную головную фракцию (27) с этапа f) и отделяют жидкую фазу (30), содержащую преимущественно углеводороды C и C, и газовую фазу (21), которую возвращают на этап d). Технический результат - максимальное повышение извлечения водорода и углеводородов C и C. 7 з.п. ф-лы, 2 пр., 3 табл., 1 ил.

Настоящее изобретение относится к области обработки потоков, поступающих с установок конверсии или нефтеочистки или нефтехимии, содержащих одновременно водород и углеводороды, такие, как метан, этан, пропан, бутан, фракции углеводородов с 5-11 атомами углерода (обозначенные C5-C11) и, необязательно, более тяжелые углеводороды, например, содержащие от 12 до 30 атомов углерода (C12-C30) и даже больше, часто в незначительных количествах.

Речь может идти, в частности, об обработке потока с каталитического риформинга или с ароматизации фракций с интервалом кипения в диапазоне бензина (содержащих в основном от 6 до 11 атомов углерода, то есть с интервалом кипения от 80°C до 200°C), которая позволяет получить ароматический продукт риформинга, газ, обогащенный водородом, и сжиженный нефтяной газ (или СНГ), содержащий главным образом углеводороды с тремя или четырьмя атомами углерода (пропан, и/или пропилен, и/или бутан, и/или бутены, и/или бутадиен, а также их смеси). Присутствие углеводородов C3 и C4 в потоках с каталитического риформинга связано, в частности, с реакциями гидрокрекинга, которые сопутствуют реакциям дегидрирования.

Изобретение также относится к потокам с дегидрирования, например, бутана, или пентана, или высших углеводородов, например, фракций, содержащих в основном углеводороды с 10-14 атомами углерода, олефины из которых используются позднее для получения линейных алкилбензолов.

Способ по изобретению можно также применять для гидрообработки (и/или гидрообессеривания, и/или гидродеметаллизации, и/или полного или селективного гидрирования) любых углеводородных фракций, таких как нафта, бензин, керосин, легкий газойль, тяжелый газойль, вакуумный дистиллят, вакуумные остатки. В целом, способ применим к любому потоку, содержащему водород, легкие углеводороды (метан и/или этан), углеводороды C3 и C4, а также более тяжелые углеводороды.

Уровень техники

В данной области техники известен документ US 4673488, в котором раскрывается способ извлечения легких углеводородов из реакционного потока, содержащего водород, образованного в результате реакции конверсии углеводородного сырья, включающий:

- подачу частично сконденсированного потока, содержащего углеводороды C5+, метан, этан, пропан, бутан и водород, в зону разделения парожидкостных смесей, которая содержит по меньшей мере два парожидкостных сепаратора и в которой осуществляют по меньшей мере этап повторного контактирования пара с жидкостью;

- разделение потока, полученного после зоны парожидкостного разделения, на газовый поток, обогащенный водородом, и поток жидких углеводородов;

- подачу потока жидких углеводородов в зону фракционирования, содержащую по меньшей мере одну фракционную колонну, чтобы извлечь поток тяжелых углеводородов, головной поток пара, и головной жидкий поток; и

- возвращение части головного потока пара в указанную зону парожидкостного разделения.

В других известных способах, в частности, в способе, описанном в документе FR 2873710, углеводородный поток после выделения газа, обогащенного водородом, направляют на этап разделения в колонну повторного контактирования, чтобы отделить первый газовый поток от жидкого потока, который направляют на этап стабилизации, где получают стабилизированный продукт риформинга, сжиженный нефтяной газ и второй газовый поток, который, в свою очередь, возвращают на этап разделения. Первый газовый поток, полученный на этапе разделения и содержащий значительные количества углеводородов C1, C2, а также водород и углеводороды C3 и C4, классически используют как топливо (по-английски Fuel Gas). Термин "стабилизированный" означает для продукта риформинга (или для другой жидкости, стабилизированной согласно изобретению), что продукт риформинга (или другая жидкость) был дистиллирован, чтобы удалить максимально большую часть, обычно по существу все соединения с 4 или менее атомами углерода (C4-).

Целью изобретения является разработка способа, позволяющего максимально повысить извлечение водорода и углеводородов C3 и C4, которые можно в дальнейшем использовать с большей пользой, чем просто сжигать как топливо на нефтеперерабатывающих заводах

Сущность изобретения

Настоящее изобретение относится к способу обработки углеводородного сырья, содержащего водород и углеводородную фазу, включающую углеводороды C1-C4, согласно которому:

a) разделяют углеводородное сырье на газовую фазу, содержащую в основном водород, и жидкую фазу, содержащую углеводороды;

b) осуществляют первый этап повторного контактирования газовой фазы, выходящей с этапа a), в смеси с рециркулирующим газовым потоком с этапа e), и с жидкой фазой, выходящей с этапа a), при температуре меньше или равной 55°C;

c) разделяют поток с повторного контактирования на этапе b) на газовую фазу, обогащенную водородом, и жидкую фазу;

d) осуществляют второй этап повторного контактирования жидкой фазы, выходящей с этапа c), с газовой фазой, выходящей с этапа g), при температуре меньше или равной 55°C;

e) разделяют поток с повторного контактирования на этапе d) на газовую фазу, которую возвращают на этап b), и жидкую фазу, содержащую углеводороды;

f) фракционируют жидкую фазу, выходящую с этапа e), во фракционной колонне, чтобы отделить газообразную головную фракцию и жидкую кубовую фракцию, содержащую углеводороды с числом атомов углерода больше 4;

g) частично конденсируют газообразную головную фракцию с этапа f) и отделяют жидкую фазу, содержащую преимущественно углеводороды C3 и C4, и газовую фазу, которую возвращают на этап d).

Таким образом, благодаря возврату газовой фракции, полученной в результате фракционирования на этапе g) (или стабилизации) на втором этапе повторного контактирования, позволяющем извлечь газовый поток, который в свою очередь возвращают на первый этап повторного контактирования, улучшается степень извлечения углеводородных соединений C3 и C4, а также извлечения водорода.

Термин "повторное контактирование" означает операцию, которая позволяет извлечь соединения, содержащиеся в газовой фазе, с помощью жидкой фазы, обладающей абсорбционной способностью, благодаря контактированию между этими двумя фазами. Например, повторное контактирование можно обеспечить, осуществляя прямой контакт путем смешения в линии жидкой и газовой фаз.

Предпочтительно, углеводородное сырье, которое обрабатывают данным способом, является потоком, полученным в процессе каталитического риформинга.

В одном предпочтительно варианте осуществления этапы разделения c) и e) осуществляют в сепараторе.

Упомянутые выше варианты осуществления предпочтительны с точки зрения их внедрения, так как они более просты в управлении и не требуют дорогостоящего оборудования, в частности, по сравнению с колонной повторного контактирования.

Первый этап повторного контактирования предпочтительно осуществляют при температуре в интервале от -20°C до 55°C. Второй этап повторного контактирования предпочтительно осуществляют при температуре в интервале от 10°C до 55°C.

Предпочтительно, этап b) осуществляют с газовой фазой, сжатой до давления от 1,6 до 4,0 МПа.

Предпочтительно, жидкую кубовую фракцию, содержащую углеводороды, полученную на этапе f), подают в теплообменное устройство, чтобы нагреть жидкую фазу, содержащую углеводороды, выходящую с этапа e).

Предпочтительно, газовую фазу, обогащенную водородом, и/или жидкую фазу, выходящую с этапа c), подают в по меньшей мере один теплообменник, чтобы охладить смесь газ/жидкость на этапе b).

Подробное описание изобретения

Другие характеристики и преимущества изобретения следуют из представленного ниже описания, приводимого исключительно в иллюстративных целях, со ссылкой на фигуру 1, которая представляет собой схему конфигурации способа по изобретению.

Сырье, которое обрабатывают данным способом, является, например, потоком с установки каталитического риформинга, потоками с дегидрирования, например, бутана, или пентана, или высших углеводородов, например, фракций, содержащих в основном углеводороды с 10-14 атомами углерода, олефины из которых используются позднее для получения линейных алкилбензолов (называемых обычно LAB).

Способ согласно изобретению можно также применять для потоков с установок гидрообработки (гидрообессеривание, гидродеметаллизация, полное или селективное гидрирование) любых углеводородных фракций, таких, как нафта, бензин, керосин, легкий газойль, тяжелый газойль, вакуумный дистиллят, вакуумный остаток. В целом, способ применим к любому потоку, содержащему водород, легкие углеводороды (метан и/или этан), СНГ (пропан и/или бутан), а также более тяжелые углеводороды.

Предпочтительно, способ согласно изобретению позволяет обрабатывать потоки, поступающие с установок каталитического риформинга.

Согласно фигуре 1, углеводородное сырье, содержащее газовую фазу, включающую водород, и углеводородную фазу, включающую углеводороды C1, C2, C3 и C4, направляют по линии 1 в устройство 2 разделения газожидкостных смесей, которое может представлять собой газожидкостной сепаратор, известный специалисту. Устройство разделения 2 позволяет выделить газовую фазу 3 и жидкую фазу углеводородов 4, соответственно в голове и в кубе указанного устройства 2. Как указано на фигуре 1, головную газовую фракцию 3, которая содержит преимущественно водород и легкие углеводороды C1, C2, C3 и C4, можно разделить на два потока 5 и 6. Поток 5 возвращают как рециркулирующий газ в реакционную установку, находящуюся выше по потоку, например, в установку каталитического риформинга. Что касается газового потока 6, его сжимают в компрессоре 7 и затем направляют в систему охлаждения 8. Газ 6 обычно сжимают до давления от 0,6 до 1,0 МПа. Согласно изобретению, сжатый газ 6 смешивают с рециркулирующим газом, доставляемым по линии 23, о происхождении которого подробнее будет говориться ниже. Упомянутую выше смесь охлаждают, например, до температуры ниже 55°C. Поток, выходящий из системы охлаждения 8, подают в сепаратор, чтобы извлечь газ 10, очищенный от жидких углеводородов, которые сконденсировались в результате охлаждения.

Охлажденный газ 10 сжимают в компрессоре 7’ до давления, обычно составляющего от 1,6 до 4,0 МПа. Сжатый газ 10 подвергают этапу повторного контактирования при низкой температуре в присутствии жидкой фазы углеводородов 4, выходящей из устройства 2 газожидкостного разделения.

Жидкую фазу углеводородов 4 используют в качестве абсорбента для извлечения легких углеводородов (C1-C4), присутствующих в газе 10. Для этого газ 10 смешивают с фракцией жидких углеводородов 4, чтобы осуществить повторное контактирование, затем смесь охлаждают до температуры меньше или равной 55°C, предпочтительно от -20°C до 55°C. Как видно из фигуры 1, охлаждение смеси можно осуществить с помощью воздушного охладителя 12 и холодильной установки 13. Смесь газ/жидкость подают в сепаратор 14, в котором происходит газожидкостное разделение, чтобы получить в жидкой фазе углеводороды C3 и C4, содержащиеся в газе 10. Таким образом, из верхней части сепаратора 14 отбирают газ 15, обогащенный водородом, в смеси с углеводородами C1 и C2, а из куба отбирают жидкий поток углеводородов 16, в том числе углеводороды C3 и C4. Таким образом, повторное контактирование имеет место в линии, что позволяет подать смесь газ/жидкость из воздушного охладителя 12 к сепаратору 14.

Как видно из фигуры 1, чтобы снизить мощность, требующуюся для работы холодильной установки 13, применяют по меньшей мере одну систему косвенного теплообмена, в которую подают, например, охлажденный газ 15 и/или жидкий поток углеводородов 16, для охлаждения смеси газ/жидкость. В варианте осуществления показанном на фигуре 1 задействовано две системы косвенного теплообмена 17 и 18, в которых в качестве теплоносителя используют соответственно охлажденный газ 15 и жидкий поток углеводородов 16.

Обогащенный водородом газ 15, выводят из блока обработки по линии 20, необязательно после проведения через защитный слой 19, чтобы адсорбировать хлор, присутствующий в газе, когда углеводородное сырье, обрабатываемое настоящим способом, является потоком с каталитического риформинга.

В соответствии со способом по изобретению, жидкий поток углеводородов 16, который еще содержит углеводороды C3 и C4, используют в качестве жидкого абсорбента на втором этапе повторного контактирования с рециркулирующим газом, который подводят по линии 21, что подробнее поясняется ниже. Целью второго повторного контактирования является извлечение углеводородов C3 и C4, содержащихся в рециркулирующем газе 21, с помощью жидкого потока углеводородов 16 в качестве жидкого абсорбента.

Второй этап повторного контактирования осуществляют при температуре выше, чем температура на первом этапе повторного контактирования, которая предпочтительно составляет от 10°C до 55°C. Указанная температура определяется из термодинамического равновесия абсорбции жидкости 16 и пара 21. Предпочтительно не применять никаких средств контроля температуры (например, типа теплообменника). Таким образом, повторное контактирование осуществляется в линии, которая обеспечивает доставку смеси (жидкий поток углеводородов и рециркулирующий газ) к зоне разделения фаз газ/жидкость. Как указано на фигуре 1, зона разделения фаз газ/жидкость содержит сепаратор 22, который работает так, чтобы максимально повысить извлечение водорода и углеводородов C1 и C2 в головную газовую фракцию. Согласно изобретению, газовый поток, содержащий водород и углеводороды C1 и C2, отбирают по линии 23, чтобы вернуть полностью в цикл в смеси с сжатым газом 6, выходящим из сепаратора 2.

Снизу второй сепарационной емкости 22 извлекают жидкий поток 24, частично освобожденный от водорода и углеводородов C1 и C2 и содержащий в основном углеводороды с тремя или более атомами углерода (C3+), а также, необязательно, в меньшей степени углеводороды C1 и C2.

Жидкий поток 24 нагревают, для подачи его на установку стабилизации, которая служит для получения стабилизированного жидкого потока углеводородов и жидкого дистиллята, выходящего из флегмового сосуда стабилизационной установки и содержащего преимущественно углеводороды C3 и C4. Установка стабилизации включает фракционную колонну 25, куб которой снабжен линией циркуляции, оборудованной контуром рециркуляции, содержащим ребойлер (не показан), и линией отвода 26 стабилизированного жидкого потока. Газ из верхней части колонны 25 движется в линии 27, соединенной с системой конденсации, содержащей устройство охлаждения 28 головной газовой фракции и флегмовый сосуд 29. Сконденсированную жидкость, отделенную во флегмовом сосуде 29 и содержащую преимущественно углеводороды C3 и C4 (или жидкий дистиллят), отбирают по линии 30 и разделяют на два потока, причем один поток возвращают в колонну 25 по линии 31, а второй, не возвращаемый поток отбирают по линии 32. Остаточный газ, отбираемый из головы флегмового сосуда 29, не сконденсированный и потенциально содержащий заметные количества углеводородов C3 и C4, отводят по линии 21 и возвращают, как указано выше, в емкость 22, чтобы подвергнуть этапу повторного контактирования.

Также согласно фигуре 1, стабилизированный жидкий поток 26, извлеченный из куба фракционной колонны, эффективно используют для питания системы косвенного теплообмена 33,34, для предварительного нагрева жидкого потока 24 перед его подачей в фракционную колонну 25. Таким образом, упомянутая выше тепловая интеграция позволяет уменьшить мощность нагрева, необходимую для ребойлера, чтобы управлять работой фракционной колонны.

Как видно из фигуры 1, предпочтительно разместить до фракционной колонны 25 защитный слой 35, предназначенный для улавливания хлора, возможно присутствующего в жидком потоке 24 в случае, когда углеводородное сырье, обрабатываемое настоящим способом, является потоком с установки каталитического риформинга.

Примеры

Пример 1

Пример 1 (сравнительный) иллюстрирует принцип действия способа обработки, показанного на фигуре 1, но в котором газовый поток 23 не возвращают на первый этап повторного контактирования, как предлагается изобретением.

Обрабатываемое углеводородное сырье представляет собой поток (или продукт риформинга), поступающий с каталитического риформинга, его состав приведен в таблице 1.

Таблица 1
Состав продукта риформинга
кг/ч Продукт риформинга
H2 7200
C1 1540
C2 2540
C3 4660
C4 разветвленный 2840
C4 линейный 2860
C5+ 178360
Всего, кг/ч 200000

Углеводородное сырье сначала обрабатывают в сепараторе, чтобы отделить газовую фазу, содержащую преимущественно водород, и жидкую фазу, содержащую углеводороды.

Газовую фазу 6, выходящую с этапа разделения, сжимают в компрессорах с промежуточным охлаждением, необходимым для нормальной работы компрессоров, и отправляют на первый этап повторного контактирования с жидкой фазой 4, выходящей с этапа разделения. Повторное контактирование смеси газ/жидкость осуществляют в линии, и смесь газ/жидкость, охлажденную до температуры 0°C, отделяют в сепараторе, который работает при давлении 3,18 МПа. Из сепаратора этапа повторного контактирования отбирают газовую фазу 20, обогащенную водородом, и жидкую фазу 16, содержащую углеводороды.

Затем жидкую фазу 16 приводят в контакт с рециркулирующей газовой фазой 21, поступающей из флегмового сосуда стабилизационной колонны. Второе повторное контактирование осуществляют в линии и смесь газ/жидкость разделяют в сепараторе, который работает при давлении 1,03 МПа, получая газ 23, который не возвращают на первое повторное контактирование, и жидкую фазу 24. Согласно уровню техники, газ 23 применяют в качестве топлива в печах.

Жидкую фазу 24 фракционируют во фракционной колонне (стабилизационной колонне), чтобы извлечь газообразную головную фракцию 27 и жидкую кубовую фракцию 26, содержащую углеводороды с более чем 4 атомами углерода. Упомянутая выше колонна работает при давлении 1,05 МПа и температуре 43°C во флегмовом сосуде.

Таким образом, газообразную головную фракцию 27 конденсируют во флегмовом сосуде, с отделением жидкой фазы 30 и газовой фазы 21, возвращаемой на второе повторное контактирование.

В таблице 2 приводятся составы различных потоков, создаваемых способом по примеру 1.

Таблица 2
Поток (20)
(кг/ч)
Поток (23)
(кг/ч)
Поток (32)
(кг/ч)
Поток (26)
(кг/ч)
H2 7156 44 0,02 <0,02
C1 1426 112 2 0
C2 1766 630 144 0
C3 1607 1121 1931 1
C4 разветвленный 430 243 1788 379
C4 линейный 52 12 2 1694
C5+ 463 149 60 177687
Всего, кг/ч 13157 2437 5460 178945
Давление, МПа 3,1 1,03 2,6 0,9
Температура, °C 43 48 43 43

Пример 2

Пример 2 иллюстрирует способ обработки углеводородного сырья в соответствии с изобретением, который отличается от способа из примера 1 тем, что газ 23, полученный в результате второго повторного контактирования, полностью возвращают на первое повторное контактирование. Рабочие условия, указанные в примере 1, такие же как для примера 2.

В таблице 3 приводятся составы различных потоков, создаваемых способом по примеру 2.

Таблица 3
Поток (20)
(кг/ч)
Поток (32)
(кг/ч)
Поток (26)
(кг/ч)
H2 7200 0,02 <0,02
C1 1539 1 0
C2 2395 145 0
C3 2285 2374 1
C4 разветвленный 483 1986 371
C4 линейный 327 1645 888
C5+ 463 69 177828
Всего, кг/ч 14690 6221 179088
Давление, МПа 3,1 2,6 0,9
Температура, °C 43 43 43

Из сравнения таблиц 2 и 3 следует, что способ согласно изобретению позволяет улучшить извлечение водорода в обогащенный водородом поток 20, повысить на 7% извлечение углеводородов C3 и C4 в поток 32 и на 0,1% извлечение фракции C5+ в поток 26.


СПОСОБ ОБРАБОТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ, СОДЕРЖАЩЕГО ВОДОРОД И УГЛЕВОДОРОДЫ C1-C4
СПОСОБ ОБРАБОТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ, СОДЕРЖАЩЕГО ВОДОРОД И УГЛЕВОДОРОДЫ C1-C4
Источник поступления информации: Роспатент

Показаны записи 91-100 из 159.
05.09.2018
№218.016.831f

Способ получения бензина с малым количеством серы и меркаптанов

Изобретение относится к способу обработки бензина, содержащего соединения серы и олефины, причем способ включает по меньшей мере следующие этапы: a) взаимодействие, в по меньшей мере одном реакторе, бензина, водорода и катализатора гидродесульфирования при температуре от 270 до 400°C, давлении...
Тип: Изобретение
Номер охранного документа: 0002665701
Дата охранного документа: 04.09.2018
09.09.2018
№218.016.853d

Гранулированный цеолитный материал со связной структурой

Группа изобретений относится к гранулированному цеолитному материалу с цеолитной структурой, связной во всем объеме материала, способу его получения и применения. Материал используют в качестве адсорбента в прямоточных или противоточных процессах разделения в жидкой фазе, обычно в...
Тип: Изобретение
Номер охранного документа: 0002666447
Дата охранного документа: 07.09.2018
13.09.2018
№218.016.86dd

Способ декарбонизации углеводородного газа

Изобретение относится к газообрабатывающей промышленности. Для декарбонизации углеводородного газа путем промывки растворителем газ приводят в контакт с поглотительным раствором для получения газа, обедненного CO, и поглотительного раствора, наполненного CO. Поглотительный раствор нагревают и...
Тип: Изобретение
Номер охранного документа: 0002666865
Дата охранного документа: 12.09.2018
22.09.2018
№218.016.8963

Адсорбент на основе цеолита и глины с высоким содержанием кремнезема и способ очистки углеводородного сырья, содержащего ненасыщенные молекулы

Изобретение относится к цеолитным адсорбентам. Предложен адсорбент для очистки углеводородного сырья. Адсорбент содержит цеолит типа NaX и связующее, содержащее глину с величиной массового отношения Si/Al, превышающей 2, причем связующее содержит глину типа монтмориллонит. Предложен также...
Тип: Изобретение
Номер охранного документа: 0002667292
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.89a3

Способ гидроочистки газойля в последовательных реакторах с рециркуляцией водорода

Изобретение относится к способу гидроочистки углеводородного сырья, содержащего сернистые и азотистые соединения, при котором осуществляют следующие стадии: а) разделяют (SEP) углеводородное сырье на фракцию, обогащенную тяжелыми углеводородными соединениями, и фракцию, обогащенную легкими...
Тип: Изобретение
Номер охранного документа: 0002666589
Дата охранного документа: 18.09.2018
05.10.2018
№218.016.8f78

Способ очистки синтез-газа путем промывки водными растворами аминов

Изобретение относится к способу очистки синтез-газа. Способ включает следующие стадии: a) стадия разделения синтез-газа на по меньшей мере один первый и по меньшей мере один второй поток синтез-газа одинакового состава, b1) стадия паровой конверсии моноксида углерода в первом потоке...
Тип: Изобретение
Номер охранного документа: 0002668925
Дата охранного документа: 04.10.2018
19.10.2018
№218.016.93f9

Пробоотборник среды под давлением для мониторинга использования геологических объектов

Изобретение относится к устройству для отбора проб среды, находящейся под давлением, и применению этого устройства для взятия пробы из контролируемой скважины. Устройство содержит камеру для отбора проб, внутри которой расположен верхний, нижний и промежуточный поршни, средства закрывания и...
Тип: Изобретение
Номер охранного документа: 0002669868
Дата охранного документа: 16.10.2018
27.10.2018
№218.016.974c

Способ мониторинга места разведки и разработки нетрадиционных углеводородов

Изобретение относится к способам мониторинга подземного образования, в котором добывают нетрадиционные углеводороды. Сущность: выбирают модель диффузии инертного газа и модель диффузии целевого углеводорода. Причем каждая модель описывает изменение концентрации в зависимости от времени, глубины...
Тип: Изобретение
Номер охранного документа: 0002670703
Дата охранного документа: 24.10.2018
21.11.2018
№218.016.9eba

Способ получения технического углерода из по меньшей мере одной фракции суспензии с установки каталитического крекинга fcc, включающий особую гидроочистку

Изобретение предназначено для лакокрасочной, резинотехнической, электротехнической, пищевой промышленности, а также может быть использовано при изготовлении адсорбентов. Фракцию С суспензии, полученную на установке каталитического крекинга (FCC или RFCC), направляют на стадию фильтрации (FILT)...
Тип: Изобретение
Номер охранного документа: 0002672751
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9f69

Способ получения бутадиена и водорода из этанола в две реакционные стадии при низком расходе воды и энергии

Изобретение относится к способу получения бутадиена из этанольного сырья, содержащего по меньшей мере 80 вес.% этанола, включающему по меньшей мере стадию A) превращения этанола в ацетальдегид, стадию B) превращения смеси этанол/ацетальдегид в бутадиен, стадию C1) обработки водорода, стадию D1)...
Тип: Изобретение
Номер охранного документа: 0002672877
Дата охранного документа: 20.11.2018
Показаны записи 1-4 из 4.
23.11.2018
№218.016.9fb1

Способ получения легких олефинов и втх с применением установки каталитического крекинга, обрабатывающей тяжелое сырье типа vgo глубокой гидроочистки, в комбинации с установкой каталитического риформинга и ароматическим комплексом, обрабатывающим сырье типа нафты

Изобретение относится к способу получения легких олефинов и BTX из первого сырья типа гидроочищенного VGO или неконвертированной нефти (UCO), выходящей с гидрокрекинга, или любой смеси этих двух видов сырья, и второго сырья типа нафты с начальной точкой кипения выше 30°C и конечной точкой...
Тип: Изобретение
Номер охранного документа: 0002672913
Дата охранного документа: 21.11.2018
06.12.2018
№218.016.a3dc

Способ получения легких олефинов и btx, в котором применяется установка каталитического крекинга ncc, обрабатывающая сырье типа нафты, установка каталитического риформинга и ароматический комплекс

Изобретение относится к способу получения легких олефинов и BTX из фракции нафты с начальной точкой кипения выше 30°C и конечной точкой кипения ниже 220°C, причем с применением установки каталитического крекинга (NCC) для обработки сырья типа легкой нафты (30-T°C), установки каталитического...
Тип: Изобретение
Номер охранного документа: 0002674016
Дата охранного документа: 04.12.2018
29.02.2020
№220.018.0745

Способ обработки углеводородного сырья, содержащего водород и углеводороды

Изобретение относится к способу обработки углеводородного сырья, содержащего водород и углеводороды, в том числе углеводороды C1-C4. Способ включает следующие этапы: a) разделение углеводородного сырья на газовую фазу (6) и жидкую фазу (4), содержащую углеводороды; b) охлаждение жидкой фазы...
Тип: Изобретение
Номер охранного документа: 0002715180
Дата охранного документа: 25.02.2020
22.04.2020
№220.018.16f3

Способ обработки углеводородного сырья

Изобретение касается способа обработки углеводородного сырья, содержащего водород и углеводороды, в том числе углеводороды C1-C4, согласно которому: a) разделяют углеводородное сырье на газовую фазу (6) и жидкую фазу, содержащую углеводороды (4); b) осуществляют первое повторное...
Тип: Изобретение
Номер охранного документа: 0002719459
Дата охранного документа: 17.04.2020
+ добавить свой РИД