×
04.06.2020
220.018.23f6

Результат интеллектуальной деятельности: Установка для исследования рулевых винтов вертолета на режиме неуправляемого вращения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиации и касается исследования рулевых винтов вертолета на режиме неуправляемого вращения. В установке, содержащей силовую раму с расположенными на ней моделью вертолета с двигателями несущего и рулевого винтов, на силовой раме установлен с возможностью вращения вертикальный вал, на торце которого закреплена платформа для установки на ней модели вертолета. Вертикальная ось модели вертолета и ось вертикального вала совпадают и проходят через центр втулки несущего винта модели вертолета, обеспечивая моделирование вращения вертолета вокруг вертикальной оси с угловой скоростью вращения ω. Для вращения платформы, несущего и рулевого винтов использованы автономные двигатели. Несущий и рулевой винты приводятся во вращение с помощью вентильных электродвигателей, которые питаются от аккумуляторных батарей и приводятся во вращение с помощью транзисторных коммутаторов. Обеспечивается возможность моделировать на установке режим неуправляемого вращения вертолета. 6 з.п. ф-лы, 6 ил.

Изобретение относится к области авиации и касается исследования рулевых винтов вертолета на режиме неуправляемого вращения.

В настоящее время существует большое количество установок для исследования винтов вертолета и в частности рулевых винтов: Антропов B.Ф. Экспериментальные исследования по аэродинамике вертолета / В.Ф. Антропов, Г.Б. Бураков, А.С. Дьяченко; ред. А.К. Мартынов - 2-е изд. перераб. и доп. - М.: Машиностроение, 1980. - 240 с; patent US №5251847 «tail rotor anti-torque system for a helicopter», МПК B64C 27/82, 1993; Acree, C.W., Sheikman, A., "Development and Initial Testing of the Tiltrotor Test Rig," Presented at the AHS International 74th Annual Forum & Technology Display, Phoenix, Arizona, May 14-17, 2018.

Такие установки предназначены для исследования изолированного рулевого винта; комбинации рулевого винта и несущего; комбинации рулевого винта и фюзеляжа, оперения. Исследования на таких установках проводятся в аэродинамических трубах, при различных числах Маха и Рейнольдса. Установки имеют различные масштабы к натурным рулевым винтам и соответственно различные числа подобия. Установки позволяют проводить исследования на различных режимах: горизонтальный полет, набор и снижение, осевые режимы полета, включая режим «вихревого кольца».

Наиболее близким прототипом является установка ВП-5 (Антропов В.Ф. Экспериментальные исследования по аэродинамике вертолета, с. 68, 1980 г.), содержащая силовую раму с расположенными на ней моделью вертолета с двигателем несущего и рулевого винтов. Установка имеет возможность проводить в аэродинамических трубах экспериментальные исследования рулевого винта совместно с несущим и планером вертолета. Недостаток установки заключается в отсутствии возможности вращать саму модель вертолета вокруг вертикальной оси при номинальных оборотах несущего и рулевого винта.

Задачей и техническим результатом изобретения является разработка эффективной установки для исследования рулевых винтов вертолета, позволяющей моделировать режим неуправляемого вращения вертолета.

Решение задачи и технический результат достигаются тем, что в установке для исследования рулевых винтов вертолета на режиме неуправляемого вращения, содержащей силовую раму с расположенными на ней моделью вертолета с двигателем несущего и рулевого винтов, на силовой раме установлен с возможностью вращения вертикальный вал, на торце которого закреплена платформа для установки на ней модели вертолета, при этом вертикальная ось модели вертолета и ось вертикального вала совпадают и проходят через центр втулки несущего винта модели вертолета. Для вращения платформы, несущего и рулевого винтов использованы автономные двигатели.

Технический результат достигается также тем, что вращение платформы вокруг вертикальной оси осуществлено с помощью электродвигателя, горизонтального вала, цилиндрического редуктора, вертикального вала и углового редуктора.

Технический результат достигается также тем, что управление оборотами электродвигателя осуществлено с помощью частотного преобразователя.

Технический результат достигается также тем, что для вращения несущего и рулевого винтов использованы вентильные электродвигатели, питание которых осуществлено от аккумуляторных батарей.

Технический результат достигается также тем, что управление электродвигателями несущего и рулевого винтов осуществлено с помощью транзисторных коммутаторов.

Технический результат достигается также тем, что для измерения тяги и крутящего момента рулевого винта на статоре электродвигателя рулевого винта закреплены тензометрические весы.

Технический результат достигается также тем, что передача управляющих сигналов на установку и сбор информации с нее осуществлены по беспроводному каналу связи.

На фиг. 1-6 представлены:

На фиг. 1 - общий вид установки; на фиг. 2 - силовая рама с вращающейся платформой и вертикальным валом; на фиг. 3 - привод несущего винта вертолета; на фиг. 4 - общий вид рулевого винта; на фиг. 5 - тензометрические весы; на фиг. 6 - система управления и сбора информации.

Установка состоит (фиг. 1) из следующих основных элементов: силовой рамы 1 с вращающейся платформой, модели вертолета 4, несущего 2 и рулевого 3 винтов, системы управления и сбора информации.

Силовая рама 1 с вращающейся платформой состоит (фиг. 2) из вертикального вала 9, электродвигателя 5, цилиндрического 6 и углового 7 редукторов.

Цилиндрический редуктор 6 двухступенчатый с передаточным отношением 1:12,5 служит для понижения оборотов электродвигателя 5. Угловой редуктор 7 служит для передачи вращения с горизонтального вала на вертикальный 9 с передаточным отношением 1:1. К торцу вертикального вала крепится вращающаяся платформа 8 с корпусом вертолета. Вращающаяся платформа приводится во вращение с помощью электродвигателя 5. Угловая скорость вращения этой части платформы может регулироваться в пределах от 0,5 до 6 рад/с. Управление двигателем вращающейся платформы осуществляется с помощью частотного преобразователя.

Вертикальная ось вертолета и ось вертикального вала совпадают и проходят через центр втулки 10 несущего винта (фиг. 3), обеспечивая моделирование вращения вертолета вокруг вертикальной оси OYg с угловой скоростью вращения ωy. (фиг. 2).

Главным отличием режима неуправляемого вращения является вращение вертолета вокруг вертикальной оси. На этом режиме тяги рулевого винта не хватает для уменьшения вращения вертолета. Поэтому вертолет, вошедший по каким-либо причинам во вращение вокруг вертикальной оси, не способен остановить это вращение.

Несущий винт (фиг. 3) приводится во вращение с помощью вентильного электродвигателя 13 через муфту 12 и редуктор 11. Электродвигатель питается от аккумуляторных батарей 15 и приводится во вращение с помощью транзисторного коммутатора 14. Частота вращения несущего винта может регулироваться в пределах от 200 до 600 об/мин.

Вращение рулевого винта (фиг. 4) осуществляется с помощью отдельного вентильного электродвигателя 20, который питается от аккумуляторных батарей 16 и приводится во вращение с помощью транзисторного коммутатора 17. Частота вращения рулевого винта может регулироваться в пределах от 1000 до 3000 об/мин.

Вращение с ротора электродвигателя передается напрямую без редуктора на вал и втулку 21 рулевого винта. Статор электродвигателя крепится к тензометрическим весам 19, установленным на кронштейне 18.

Тензометрические весы (фиг. 5) служат для измерения во время эксперимента тяги Т и крутящего момента рулевого винта Мк. Ось OY тензовесов проходит через ось вала рулевого винта (РВ). Диапазон допустимых значений тяги Т рулевого винта для весов: от минус 5 до плюс 5 кгс, диапазон допустимых значений крутящего момента Мк: от минус 0,33 до плюс 0,33 кгс⋅м.

Для управления двигателями несущего и рулевого винтов применяется система беспроводного управления и сбора информации (фиг. 6). Данная система состоит из программы Srv_XADI_ADIS_15, установленной на персональный компьютер (ПК) оператора, бортового вычислителя, установленного внутри корпуса модели вертолета и аккумуляторных батарей. Оператор со своего рабочего места, расположенного на расстоянии в безопасном боксе, вводит необходимые обороты двигателей несущего и рулевого винтов. Далее сигнал с ПК через беспроводную сеть передается на многофункциональный блок, который преобразует его в управляющий сигнал для транзисторных коммутаторов.

В процессе эксперимента, значения угловой скорости вращения вертолета ωу и показания тензометрических весов поступают в многофункциональный блок. Далее эти величины оцифровываются и передаются по беспроводной сети на ПК оператора и записываются в файл программой Srv_XADI_ADIS_15.

Таким образом, технический результат, заключающийся в обеспечении возможности моделировать на установке режим неуправляемого вращения вертолета, достигается тем, что модель вертолета с вращающимися несущим и рулевым винтами приводится во вращение вокруг вертикальной оси, проходящей через центр втулки несущего винта.


Установка для исследования рулевых винтов вертолета на режиме неуправляемого вращения
Установка для исследования рулевых винтов вертолета на режиме неуправляемого вращения
Установка для исследования рулевых винтов вертолета на режиме неуправляемого вращения
Установка для исследования рулевых винтов вертолета на режиме неуправляемого вращения
Источник поступления информации: Роспатент

Показаны записи 101-110 из 251.
10.04.2015
№216.013.3e10

Лигатура для титановых сплавов

Изобретение относится к области цветной металлургии и может быть использовано при производстве сплавов титана. Лигатура содержит, мас.%: ванадий 40-50, титан 5-20, углерод 3-5, алюминий - остальное. Изобретение позволяет улучшить свариваемость и механические характеристики в зоне термического...
Тип: Изобретение
Номер охранного документа: 0002547376
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4c43

Способ получения износо-коррозионностойкого градиентного покрытия

Изобретение относится к области получения покрытий со специальными свойствами, в частности к покрытиям с высокой стойкостью к коррозионным повреждениям и износу. Способ холодного газодинамического напыления износо-коррозионностойкого градиентного покрытия включает подачу металлического порошка...
Тип: Изобретение
Номер охранного документа: 0002551037
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d69

Способ получения многослойного градиентного покрытия методом магнетронного напыления

Изобретение относится к способу нанесения градиентных покрытий магнетронным напылением, в частности к нанесению покрытий на основе тугоплавких металлов, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками, а также с оптимальным сочетанием...
Тип: Изобретение
Номер охранного документа: 0002551331
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4da5

Устройство для измерения подводного шума плавсредства и система для проверки его рабочего состояния

Изобретения относятся к области гидроакустики и могут быть использованы для контроля уровня шумоизлучения подводного объекта в натурном водоеме. Техническим результатом, получаемым от внедрения изобретений, является получение возможности измерений уровня шума подводного плавсредства...
Тип: Изобретение
Номер охранного документа: 0002551391
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4daa

Способ бесконтактных измерений геометрических параметров объекта в пространстве и устройство для его осуществления

Изобретение относится к способу бесконтактных измерений геометрических параметров объекта в пространстве. При реализации способа на поверхности объекта выделяют одну и/или более обособленную зону, для которой можно заранее составить несколько разных упрощенных математических параметрических...
Тип: Изобретение
Номер охранного документа: 0002551396
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5189

Способ изготовления конусных изделий из стеклообразного материала

Изобретение относится к технологии получения изделий из кварцсодержащих материалов и может быть использовано в стекольной промышленности, кварцевом производстве. Способ получения изделий конусной формы наплавом из кристаллического исходного сырья осуществляют путем подачи сырья во вращаемую...
Тип: Изобретение
Номер охранного документа: 0002552394
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.51cf

Способ получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали

Изобретение относится к металлургической промышленности и касается способа получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали. Способ включает: зачистку контактных поверхностей заготовок из стали и алюминия механическим способом,...
Тип: Изобретение
Номер охранного документа: 0002552464
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5265

Способ получения сталеалюминиевого соединения сваркой плавлением

Изобретение относится к области сварочного производства, в частности к способу получения сварного сталеалюминиевого соединения, и может быть использовано в судостроении, при строительстве железнодорожного транспорта и автомобилестроении. Сталеалюминиевое соединение получают сваркой плавлением...
Тип: Изобретение
Номер охранного документа: 0002552614
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55e2

Способ разрушения ледяного покрова

Изобретение относится к технологиям разрушения ледяного покрова для вскрытия прохода через ледовое поле. Способ разрушения ледяного покрова основан на использовании двух видов воздействия на ледяное поле: облучение мощным лазерным излучением и нагружение льда корпусом ледокола. На ледоколе...
Тип: Изобретение
Номер охранного документа: 0002553516
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56d9

Композиционный наноструктурированный порошок для нанесения покрытий

Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН). Композиционный наноструктурированный порошок для...
Тип: Изобретение
Номер охранного документа: 0002553763
Дата охранного документа: 20.06.2015
Показаны записи 11-14 из 14.
10.08.2015
№216.013.696a

Аэродинамический профиль поперечного сечения несущей поверхности

Изобретение относится к области авиации. Аэродинамический профиль несущей поверхности имеет хорду длиной В. Передняя кромка профиля скруглена, задняя кромка заострена или затуплена. Кромки расположены на концах хорды профиля и соединены между собой гладкими линиями верхней и нижней частей...
Тип: Изобретение
Номер охранного документа: 0002558539
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6be7

Аэродинамический профиль поперечного сечения несущей поверхности

Изобретение относится к области винтов винтокрылых летательных аппаратов. Аэродинамический профиль поперечного сечения несущей поверхности имеет хорду длиной В. Передняя кромка профиля скруглена, задняя кромка заострена или затуплена. Кромки расположены на концах хорды профиля и соединены между...
Тип: Изобретение
Номер охранного документа: 0002559181
Дата охранного документа: 10.08.2015
13.01.2017
№217.015.864d

Лопасть винта винтокрылого летательного аппарата

Изобретение относится к области авиации, в частности к конструкциям лопастей несущего и рулевого винтов винтокрылых летательных аппаратов. Лопасть винта состоит из комлевой части с узлом крепления, средней части и концевой части, состоящей из первого участка, имеющего переднюю кромку обратной...
Тип: Изобретение
Номер охранного документа: 0002603710
Дата охранного документа: 27.11.2016
10.04.2019
№219.016.ff4f

Вакуумная охлаждаемая ловушка

Предлагаемое изобретение относится к вакуумной технике, преимущественно к заливным ловушкам, охлаждаемым жидким криогенным продуктом. Вакуумная охлаждаемая ловушка содержит вертикальный корпус, снабженный входным и выходным патрубками, размещенный в корпусе сосуд с криогенной жидкостью и...
Тип: Изобретение
Номер охранного документа: 0002278716
Дата охранного документа: 27.06.2006
+ добавить свой РИД