×
31.05.2020
220.018.22f3

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерений крутящего момента на валу двигателя и может быть использовано для определения мощности и (или) коэффициента полезного действия. Задачей предлагаемого изобретения является упрощение технической реализации способа измерения крутящего момента. Техническим результатом является возможность экспресс-определения момента на валу двигателя, насоса и т.п. Способ измерения крутящего момента на валу двигателя характеризуется тем, что используют измерение угла наклона параллельных оси вала прямых, нанесенных на поверхность упругого элемента - торсиона, передающего крутящий момент от двигателя к исполнительному агрегату, фотографируют параллельные линии, используя стробоскопическое освещение с частотой, равной частоте вращения вала, и определяют угол α наклона линий при нагружении торсиона крутящим моментом М, величину которого определяют по формуле где К - коэффициент пропорциональности, определяемый при тарировке в стационарных условиях. 1 ил.

Изобретение относится к области измерений крутящего момента на валу двигателя и может быть использовано для определения мощности и (или) коэффициента полезного действия.

Момент на валу работающего двигателя определяют либо путем измерения равного ему момента реакции статора тормоза, либо путем измерения угла закручивания соединительного вала под действием передаваемого момента. В любом случае испытатели сталкиваются с определенными трудностями в получении достоверных результатов измерений в связи с тем, что динамометры тормозных установок действуют в условиях повышенной вибрации и резко изменяющихся нагрузок, граничащих иногда с ударными, особенно на неустановившихся режимах работы двигателя внутреннего сгорания.

Электрические динамометры в общем случае представляют собой приборы, в которых деформация упругого элемента вызывает изменение определенного электрического параметра, положенного в основу измерения, крутящего момента или окружного усилия.

Чаще других используют измерительные преобразователи, основанные на изменении омического сопротивления, емкости, индуктивности, индукционное и фотоэффекта под действием входной неэлектрической величины. Входной механической величиной служат при этом скручивание соединительного вала тормозной установки, угловое перемещение деталей измерительных муфт или же деформация упругого элемента, так называемого динамометрического звена, на которое действует рычаг тормоза. Чаще других используют способ, связанный с измерением угла закручивания соединительного вала. Динамометры этого типа называют также торсионными.

Известны различные способы измерения крутящих моментов, передаваемых от двигателя к нагрузке посредством вращающегося упругого вала. Среди них широкое распространение получили способы, основанные на преобразовании измеряемого момента в деформацию упругого элемента, выполняемого в виде валов (торсионов), спиральных пружин, растяжек и др. Преобразование деформации (механического напряжения) упругого элемента в электрический сигнал может осуществляться при помощи тензорезистивных, индуктивных, магнитоупругих и других измерительных преобразователей.

Способы измерения крутящего момента с использованием датчиков вне вращающегося вала, основанные на измерении угла закручивания упругого элемента под действием измеряемого момента, характеризуются более высокой точностью измерения и простотой реализации.

Известен способ измерения крутящего момента [Одинец С.С., Топилин Г.Е. Средства измерения крутящего момента. Библиотека приборостроителя. М.: "Машиностроение". - 1977. - 160 с.], реализованный при помощи торсиометра с магнитной записью, который состоит из упругого элемента, двух магнитных головок, платы с электронными схемами, активного фильтра и фазометра. Упругий элемент закреплен по торцам при помощи двух латунных фланцев, играющих роль магнитных барабанов. Внешние поверхности фланцев покрыты магнитной эмульсией окиси железа (Fe2O3). На ферромагнитную поверхность каждого фланца при отсутствии измеряемого момента периодически синхронно записываются импульсы. Под действием измеряемого момента упругий элемент скручивается. Фланцы поворачиваются, возникает фазовое смещение импульсов, считываемых магнитными головками, пропорциональное измеряемому моменту. Величина возникающего фазового смещения преобразуется в напряжение постоянного тока. Значение измеряемого момента считывается по шкале прибора постоянного тока.

Основным недостатком такого способа является сложность его реализации, связанная с необходимостью создания системы строго соосных магнитных барабанов с ферромагнитным покрытием и считывающими сигнал магнитными головками.

Наиболее близким к изобретению по технической сущности является способ определения механического момента, передаваемого вращающимся валом [Патент РФ №2183013, кл. G01L 3/04, 1999], в котором на вал устанавливают два идентичных диска с метками (зубчатые венцы), разнесенные на базовое расстояние и жестко связанные с валом, скорость вращения каждого диска (венца) преобразуется с помощью двух независимых магнитных датчиков в два синусоидальных сигнала, регистрируется разность фаз этих сигналов, по изменению которой судят о величине передаваемого валом механического момента, и предварительно устанавливают датчики, используемые в системе измерения момента у одного из дисков, приводят вал во вращение, регистрируют разность фаз синусоидальных сигналов датчиков в зависимости от скорости вращения вала при неизменной нагрузке на валу, полученную разность фаз учитывают при последующем определении разности фаз сигналов от двух датчиков, величина которой пропорциональна передаваемому валом механическому моменту. При этом в лабораторных условиях для конкретной пары датчиков определяется частотная составляющая Ud (n) в регрессионной модели, которая в дальнейшем используется для расчета и введения поправки в конечный результат для конкретного значения частоты вращения вала.

Основным недостатком способа является большая трудоемкость настройки, связанная с необходимостью построения регрессионной модели, а необходимость введения поправок в конечный результат для конкретного значения частоты вращения вала может значительно усложнить электрическую часть устройства, реализующего данный способ. Существенным является также то, что при формировании синусоидального сигнала за счет зубчатых колес невозможно получить одну и ту же форму сигнала при изменении частоты вращения. Гармонический спектр значительно изменяется, особенно в области малых частот вращения. В связи с этим будут появляться дополнительные погрешности при измерении фазы основной гармоники.

Задачей предлагаемого изобретения является упрощение технической реализации способа измерения крутящего момента. Техническим результатом является возможность экспресс-определения момента на валу двигателя, насоса и т.п.

Поставленная задача достигается тем, что в способе измерения крутящего момента на валу двигателя используют измерение угла наклона параллельных оси вала прямых, нанесенных на поверхность упругого элемента - торсиона, передающего крутящий момент от двигателя к исполнительному агрегату, фотографируют параллельные линии, используя стробоскопическое освещение с частотой равной частоте вращения вала, и определяют угол α наклона линий при нагружении торсиона крутящим моментом М, величину которого определяют по формуле закона Гука

где К - коэффициент пропорциональности, определяемый при тарировке в стационарных условиях, рад/(Н*м); М - момент, Н*м.

На фигуре представлена схема определения угла скручивания торсиона.

На фигуре обозначено: упругий элемент - торсион 1, параллельные линии - 2, фотоаппарат - 3, стробоскоп - 4, датчик оборотов - 5, синхронизирующий сигнал - 6, насос - 7, вал насоса - 8, вал двигателя - 9, двигатель - 10, ось вала - 11.

Для реализации способа два соосных вала соединяют через цилиндрический упругий элемент (торсион) с известной зависимостью угла скручивания от передаваемого момента, на который наносится хорошо видимые параллельные оси вала линии по всей поверхности цилиндра.

В зависимости от величины передаваемого момента эти линии получают параллельный изгиб к оси торсиона, угол которого α определяется из ф. (1)

Таким образом, задача определения момента сводится к определению угла скручивания торсиона.

Предлагаемый способ осуществляется следующим образом. Два соосных вала соединяют через цилиндрический упругий элемент (торсион) 1 с известной зависимостью угла скручивания от передаваемого момента, на который наносится хорошо видимые параллельные оси вала линии 2 по всей поверхности торсиона.

Если крутящий момент не равен нулю, упругий элемент 1 деформируется (скручивается), а параллельные линии 2 получают наклон с углом α (см. фигуру) относительно оси цилиндрического упругого элемента 1.

Для измерения угла α параллельные линии фотографируют при помощи фотоаппарата 3, используя стробоскопическое освещение (импульсное освещение с частотой равной частоте вращения вала) при помощи стробоскопа 4, который синхронизируется при помощи датчика 5 оборотов (фото или магнитный датчик).

Затем определяют угол α наклона линий при нагружении торсиона крутящим моментом М, величину которого определяют по формуле закона Гука

где К - коэффициент пропорциональности, определяемый при тарировке в стационарных условиях, рад/(Н*м); М - момент, Н*м.

Пример.

Два соосных вала соединили через цилиндрический упругий элемент (торсион) 1 с известной зависимостью угла скручивания от передаваемого момента, на который нанесены хорошо видимые параллельные оси вала линии 2 по всей поверхности торсиона.

Для измерения угла скручивания α параллельные линии сфотографировали при помощи фотоаппарата 3, используя стробоскопическое освещение (импульсное освещение с частотой равной частоте вращения вала 49.2 Гц, что соответствует частоте оборотов вала 2950 об\мин).

Затем определили угол α наклона линий при нагружении торсиона, который равен 0,0071 рад = 0,41 градуса.

Крутящий момент М, определяли по формуле закона Гука

где К=0,0013 град/Н*м - коэффициент пропорциональности, определяемый при тарировке в стационарных условиях, рад/(Н*м).


СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ
СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ
СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ
СПОСОБ ИЗМЕРЕНИЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 167.
29.12.2017
№217.015.f213

Способ получения эфиров сорбитана и жирных кислот

Изобретение относится к способу получения сложных эфиров сорбитана, являющихся поверхностно-активными веществами, который может быть использован в химической промышленности. В предложенном способе получения сложных эфиров жирных кислот и сорбитана растительные масла взаимодействуют...
Тип: Изобретение
Номер охранного документа: 0002636743
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f24d

Способ производства сжиженного природного газа

Изобретение относится к газовой промышленности и криогенной технике, конкретно к технологиям сжижения природного газа на газораспределительных станциях. Способ производства сжиженного природного газа включает подачу потока сжатого природного газа из магистрального трубопровода высокого давления...
Тип: Изобретение
Номер охранного документа: 0002636966
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f353

Способ предупреждения гидратообразования в промысловых системах сбора газа

Изобретение относится к области добычи природного газа, в частности к области предупреждения гидратообразования в системах промыслового сбора газа преимущественно в условиях Крайнего Севера. Технический результат - оптимизация расхода ингибитора гидратообразования и повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002637541
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f4ec

Система автоматической подачи ингибитора гидратообразования в шлейфы газового промысла

Изобретение относится к области внутрипромыслового сбора газа, а именно к системам ввода ингибитора образования гидратов в газовые шлейфы. Система содержит емкость с ингибитором, трубопроводы подачи ингибитора к защищаемым точкам, исполнительный механизм, обеспечивающий прямую управляемую...
Тип: Изобретение
Номер охранного документа: 0002637245
Дата охранного документа: 01.12.2017
19.01.2018
№218.015.ffc6

Дорожно-строительный композиционный материал на основе бурового шлама

Изобретение относится к строительным материалам, используемым для укладки в качестве дорожного покрытия дороги IV категории, а также для сооружения насыпей земляного полотна и укрепления грунтовых оснований строительных и других площадок. Технический результат - увеличение прочности покрытий и...
Тип: Изобретение
Номер охранного документа: 0002629634
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00b4

Способ получения этил(2е, 4е)-5-хлорпента-2,4-диеноата

Изобретение относится к области органической химии, в частности к способу получения этил(2E,4E)-5-хлорпента-2,4-диеноата. Этил(2E,4E)-5-хлорпента-2,4-диеноат является перспективным исходным соединением в синтезе (2E,4E)-диеновых кислот и их производных. Результаты изобретения могут быть...
Тип: Изобретение
Номер охранного документа: 0002629665
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0142

Установка для раздельного измерения дебита нефтяных скважин по нефти, газу и воде

Изобретение относится к измерительной технике и предназначено для измерения продукции нефтяных и газоконденсатных скважин раздельно по компонентам - нефти, газу и воде, в том числе и как эталонное средство для уточнения среднесуточных дебитов скважины по компонентам. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002629787
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.015d

Способ очистки непроточных водоёмов в условиях непрерывного поступления нефтепродуктов

Изобретение относится к способу очистки непроточных водоемов от нефтепродуктов и тяжелых металлов, загрязненных техногенными потоками водонефтяных эмульсий, поступающих от действующих многие годы предприятий нефтехимии и нефтепереработки. Способ осуществляется путем использования сорбента,...
Тип: Изобретение
Номер охранного документа: 0002629786
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.03fd

Способ очистки непроточных водоёмов от тяжелых металлов и нефтепродуктов

Изобретение относится к очистке воды в непроточных водоемах от нефтепродуктов и тяжелых металлов. Способ очистки непроточных водоемов от тяжелых металлов и нефтепродуктов включает использование сорбента, коагулянта и грубодисперсного минерального вещества. Извлекают донный осадок и воду....
Тип: Изобретение
Номер охранного документа: 0002630552
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.040d

Устройство для измерения толщины граничных слоев смазочных материалов

Изобретение относится к устройствам для измерения толщины граничных слоев смазочных материалов и может найти применение в нефтегазовой отрасли. Сущность: устройство включает стол-основание (1), закрепленную на нем вертикально цилиндрическую трубку (3), крышку (4) и микрометр (8). Поверх крышки...
Тип: Изобретение
Номер охранного документа: 0002630545
Дата охранного документа: 11.09.2017
Показаны записи 11-13 из 13.
19.03.2020
№220.018.0d10

Способ и устройство раннего определения разрушения кривошипно-шатунной группы привода сшну

Группа изобретений относится к области ранней диагностики отказа элементов кривошипно-шатунной группы (КШГ) станка-качалки. Техническим результатом является предупреждение разрушений привода СШНУ. Способ включает возбуждение электрического стабилизированного тока в узлах КШГ при помощи...
Тип: Изобретение
Номер охранного документа: 0002717016
Дата охранного документа: 17.03.2020
09.04.2020
№220.018.138f

Способ периодической эксплуатации нефтяных скважин штанговой насосной установкой в самонастраиваемом режиме

Изобретение относится к области добычи нефти из малодебитных скважин штанговыми насосными установками и, в частности, к способу периодической эксплуатации скважин. Технический результат – обеспечение максимально возможного дебита скважины при одновременном исключении выделения газа и...
Тип: Изобретение
Номер охранного документа: 0002718444
Дата охранного документа: 06.04.2020
25.04.2020
№220.018.1929

Способ повышения эффективности работы системы "насос-трубопровод-скважина"

Предложенное изобретение относится к области перекачки (добычи) высоковязких жидкостей, обладающих свойством зависимости эффективной вязкости от скорости перекачки. Техническим результатом является повышение эффективности (коэффициента полезного действия) работы насосного агрегата в системе...
Тип: Изобретение
Номер охранного документа: 0002719796
Дата охранного документа: 23.04.2020
+ добавить свой РИД