×
30.05.2020
220.018.2273

Результат интеллектуальной деятельности: ГЕТЕРОГЕННЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ ПАРА-КСИЛОЛА ДО ТЕРЕФТАЛЕВОЙ КИСЛОТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к гетерогенному катализатору окисления пара-ксилола до терефталевой кислоты, состоящий из носителя, содержащего, % масс.: упорядоченный мезопористый оксид кремния типа МСМ-41 20,0-70,0; алюмосиликатные нанотрубки 30,0-80,0, и оксида металла, выбранного из ряда, включающего Mn, Со, Fe, Cu, Pd или их смесь, нанесенного на носитель в количестве 0,5-15,0% от массы катализатора, причем указанный носитель представляет собой единый структурированный композитный материал. Использование: нефтеперерабатывающая и нефтехимическая отрасли промышленности. Достигаемый технический результат заключается в повышении селективности по целевой терефталевой кислоте за счет сформированной системы пор и каналов наноструктурированного композитного носителя, обеспечивающего при окислении молекулярно-ситовой эффект благодаря бимодальному распределению пор по размерам. Высокая удельная площадь поверхности описываемого катализатора и, как следствие, увеличение площади контакта молекул сырья с каталитически-активными центрами, позволяет увеличить конверсию пара-ксилола и выход целевой терефталевой кислоты. 1 табл., 11 пр.

Данное изобретение относится к гетерогенным катализаторам окисления ксилолов и может быть использовано в таких отраслях промышленности, как нефтехимия и нефтепереработка.

Процесс окисления ароматических соединений С-8 традиционно используют в получении терефталевой кислоты, которая является мономером для производства полиэтилентерефталата и полиэфирных волокон.

В качестве катализаторов окисления ксилолов и ароматического сырья используют, в основном, гомогенные каталитические системы. Процесс проводят при повышенных температурах и давлении в среде уксусной кислоты в присутствии солей марганца или кобальта, активированных бромом или его солями. Окислителями являются такие соединения, как пероксид водорода, кислород, воздух. Впервые жидкофазное окисление алкилароматических углеводородов было описано в патенте US 2245528 (А). В патентах US 2833816 (A), RU 2128641 (CI), RU 2171798 (С2), US 656299 (А) описаны различные способы использования метода жидкофазного окисления алкилароматических углеводородов. Исследования в этой области продолжаются и в настоящее время (CN 106187750 (В), US 7348452 (В2), RU 2362762 (С2) RU 2524947 (С2)).

Перспективным способом получения ароматических кислот является процесс гетерогенного каталитического окисления, характеризующийся легкостью отделения катализатора от продуктов реакции и возможностью его повторного использования, что особенно важно в промышленности.

При этом в патентной литературе практически отсутствуют сведения об использовании гетерогенных катализаторов в окислении ароматических углеводородов С-8 до терефталевой кислоты.

В патенте CN 109096090 (А) окисление п-ксилола проводят на гетерогенных каталитических системах, представляющих собой неметаллический углеродный материал. Сырье, растворитель и катализатор равномерно смешивают и пропускают через окислитель, содержащий молекулярный кислород, массовое соотношение катализатора и п-ксилола составляет (0,001-0,12):1. В патенте SU 789505 (А1) каталитической системой является оксид ванадия в количестве 0,4-1,6%. Процесс проводят при атмосферном давлении в реакторе, в который загружается необходимое соотношение алкилароматического углеводорода, катализатора и воздуха. В данных работах окислению подвергается лишь одна из двух метальных групп в молекуле п-ксилола, а образование терефталевой кислоты является побочной реакцией.

В научной литературе есть сведения о возможности использования некоторых твердых носителей в процессе получения терефталевой кислоты окислением п-ксилола. Среди них Al2O3, бентонит, цеолиты различной серии, в том числе ZSM-5, и упорядоченный мезопористый оксид кремния типа МСМ-41.

Так, предложено иммобилизировать соли Mn и Со на бентоните, модифицированном полиамидоаминными дендримерами (Ghiaci М., Mostajeran М., Gil А. // Ind. Eng. Chem. Res. 2012, 51, 15821-15831). Синтезированный таким образом катализатор при соотношении Со:Mn~10:1 показывает хороший выход целевого продукта в присутствии ледяной уксусной кислоты и KBr (в качестве промотора).

Возможность селективного получения терефталевой кислоты с выходом 99% в присутствии гетерогенных каталитических систем была продемонстрирована на примере мостиковых μ3-оксосвязанных полиядерных комплексов Со и Mn, инкапсулированных в полости цеолита Y (Chavan S. А., Srinivas D., Ratnasamy P. // J. Catal. 2001, 204, 409-419). Однако для достижения высоких скоростей реакции и количественных выходов целевого продукта требуется давление воздуха более 6 МПа.

На данный момент перспективными считаются системы на основе цеолита ZSM-5 (Khan N.A., Kennedy Е.М., Dlugogorski В.Z., Adesina А.А., Stockenhuber М. // Catal. Commun. 2014, 53, 42-46) и упорядоченного мезопористого оксида кремния типа MCM-41 (Li Yi., Duan D., Wu M., Li J., Yan Zh., Wang W., Zi G., Wang J. // Chem. Eng. J. 2016, 306, 777-783). В сравнении с ZSM-5 упорядоченный мезопористый оксид кремния типа МСМ-41 обладает мезопористой структурой, облегчающей диффузию углеводородного сырья к активным центрам катализатора и приводящей к увеличению конверсии ксилолов.

Наиболее близким аналогом к настоящему изобретению является работа по окислению п-ксилола на катализаторах М-МСМ-41, где M=Fe (Li Yi., Duan D., Wu M., Li J., Yan Zh., Wang W., Zi G., Wang J. // Chem. Eng. J. 2016, 306, 777-783). Каталитическую систему получают пропиткой носителя раствором соли металла с последующей сушкой и прокалкой на воздухе при 550°C в течение 24 часов. В качестве предшественника каталитически активного металла используют нитрат железа (II). Готовый катализатор содержит от 1 до 2% масс. переходного металла в пересчете на общую массу каталитической системы. Окисление проводят в реакторе периодического действия, в который последовательно загружают п-ксилол, катализатор, смешанный растворитель, содержащий уксусную кислоту, ацетонитрил в соотношении 2:8 и воду, при температуре 80°C, атмосферном давлении, времени реакции 5 ч. В указанных условиях конверсия субстрата составляет 10,1%, а селективность по терефталевой кислоте достигает 3,1%. Известный катализатор обладает низкой эффективностью, связанной с морфологическими особенностями, в том числе с мономодальным распределением пор по размерам, а также недостаточно высокой площадью поверхности катализатора.

Проблема, на решение которой направлено настоящее изобретение, заключается в создании гетерогенного катализатора окисления пара-ксилола до терефталевой кислоты, обладающего повышенной эффективностью, в частности, более высокой активностью, приводящей к увеличению конверсии сырья и выхода целевой терефталевой кислоты.

Указанная проблема решается созданием гетерогенного катализатора окисления пара-ксилола до терефталевой кислоты, состоящего из носителя, содержащего, % масс.:

- упорядоченный мезопористый
оксид кремния типа МСМ-41 20,0-70,0
- алюмосиликатные нанотрубки 30,0-80,0

и оксида металла, выбранного из ряда, включающего Mn, Со, Fe, Cu, Pd или их смесь, нанесенного на носитель в количестве 0,5-15,0% от массы катализатора, причем указанный носитель представляет собой единый структурированный композитный материал.

Достигаемый технический результат заключается в повышении селективности по целевой терефталевой кислоте, минимизации выходов побочных продуктов (4-карбоксибензальдегид, терефталевый альдегид, пара-толуиловая кислота, пара-толуиловый альдегид) за счет сформированной системы пор и каналов структурированного композитного носителя, обеспечивающего при окислении молекулярно-ситовой эффект благодаря бимодальному распределению пор по размерам. Высокая удельная площадь поверхности описываемого катализатора и, как следствие, увеличение площади контакта молекул сырья с каталитически-активными центрами, позволяет увеличить конверсию пара-ксилола и выход целевой терефталевой кислоты.

Описываемый катализатор получают следующим образом.

К водной дисперсии природных или синтетических алюмосиликатных нанотрубок с общей формулой Al2Si2(OH)4*nH20, где n равно 0-2, добавляют галогенид цетилтриметиламмония и кремниевый прекурсор, в качестве которого используют, например, пирогенный оксид кремния, силикат натрия или тетраэтилортосиликат. Полученную смесь доводят до щелочной среды в присутствии неорганического основания, водного аммиака. Образовавшийся гель выдерживают при температуре 80-140°C в течение 12-72 часов в закрытой емкости, после чего осадок отфильтровывают, промывают до отсутствия галогенид-ионов в маточном растворе, сушат при 60-120°C в течение 6-48 часов и прокаливают на воздухе при температуре 450-650°C. В результате получают носитель представляющий собой единый структурированный композитный материал - композит, состоящий из упорядоченного мезопористого оксида кремния, армированного алюмосиликатными нанотрубками. На полученный носитель наносят оксиды металлов Mn, Со, Fe, Cu, Pd или их смесь в количестве 0,5-15,0% от массы катализатора, более предпочтительны оксиды Со и Mn.

Окисление пара-ксилола проводят в среде уксусной кислоты в реакторе периодического действия в диапазоне температур 150-250°C, диапазоне давлений окислителя (кислород или воздух) 0,5-10,0 МПа, массовом соотношении субстрат/катализатор, равном 1-10:1, мольном соотношении пара-ксилол/бромид калия, равном 50-150:1, объемном соотношении окислитель/пара-ксилол, равном 50-250:1 (н.у.), в течение 1-5 часов.

Ниже представлены примеры, иллюстрирующие изобретение, но не ограничивающие его.

Пример 1

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 70,0, алюмосиликатных нанотрубок - 30,0 и оксид кобальта, нанесенный на носитель в количестве 15,0% от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 200°C, давлении воздуха 1,0 МПа, массовом соотношении субстрат/катализатор 1:1, мольном соотношении пара-ксилол/бромид калия 50:1, объемном соотношении окислитель/пара-ксилол 250:1 (н.у.). Время реакции 3 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 78,5%, селективность по терефталевой кислоте - 5,6%. Результаты приведенного опыта и опытов, описанных в последующих примерах, приведены в таблице.

Пример 2

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксид марганца, нанесенный на носитель в количестве 0,5% от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 150°C, давлении воздуха 5,0 МПа, массовом соотношении субстрат/катализатор 6:1, мольном соотношении пара-ксилол/бромид калия 120:1, объемном соотношении окислитель/пара-ксилол 180:1 (н.у.). Время реакции 4 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 61,3%, селективность по терефталевой кислоте - 4,6%.

Пример 3

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 30,0, алюмосиликатных нанотрубок - 70,0 и оксиды железа и марганца, нанесенные на носитель в количестве 2,6 и 1,3%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 150°C, давлении кислорода 0,5 МПа, массовом соотношении субстрат/катализатор 10:1, мольном соотношении пара-ксилол/бромид калия 150:1, объемном соотношении окислитель/пара-ксилол 50:1 (н.у.). Время реакции 1 час. При этом получают следующие результаты: конверсия пара-ксилола составляет 81,4%, селективность по терефталевой кислоте - 15,8%.

Пример 4

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксиды меди и палладия, нанесенные на носитель в количестве 8,7 и 6,1%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 180°C, давлении кислорода 1,0 МПа, массовом соотношении субстрат/катализатор 2:1, мольном соотношении пара-ксилол/бромид калия 60:1, объемном соотношении окислитель/пара-ксилол 70:1 (н.у.). Время реакции 2 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 54,2%, селективность по терефталевой кислоте - 19,1%.

Пример 5

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 20,0, алюмосиликатных нанотрубок - 80,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 14,5 и 0,5%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 180°C, давлении кислорода 2,0 МПа, массовом соотношении субстрат/катализатор 4:1, мольном соотношении пара-ксилол/бромид калия 130:1, объемном соотношении окислитель/пара-ксилол 190:1 (н.у.). Время реакции 3 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 87,2%, селективность по терефталевой кислоте - 82,9%.

Пример 6

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 8,8 и 0,8%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 200°C, давлении кислорода 2,0 МПа, массовом соотношении субстрат/катализатор 3:1, мольном соотношении пара-ксилол/бромид калия 100:1, объемном соотношении окислитель/пара-ксилол 200:1 (н.у.). Время реакции 3 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 98,7%, селективность по терефталевой кислоте - 86,2%.

Пример 7

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 6,9 и 0,8%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 250°C, давлении воздуха 10,0 МПа, массовом соотношении субстрат/катализатор 3:1, мольном соотношении пара-ксилол/бромид калия 100:1, объемном соотношении окислитель/пара-ксилол 200:1 (н.у.). Время реакции 3 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 100%, селективность по терефталевой кислоте - 97,6%.

Пример 8

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 8,4 и 1,5%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 200°C, давлении кислорода 2,0 МПа, массовом соотношении субстрат/катализатор 3:1, мольном соотношении пара-ксилол/бромид калия 100:1, объемном соотношении окислитель/пара-ксилол 200:1 (н.у.). Время реакции 5 часов. При этом получают следующие результаты: конверсия пара-ксилола составляет 99,9%, селективность по терефталевой кислоте - 88,2%.

Пример 9

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 60,0, алюмосиликатных нанотрубок - 40,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 8,0 и 1,8%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 200°C, давлении воздуха 8,0 МПа, массовом соотношении субстрат/катализатор 3:1, мольном соотношении пара-ксилол/бромид калия 100:1, объемном соотношении окислитель/пара-ксилол 200:1 (н.у.). Время реакции 1 час. При этом получают следующие результаты: конверсия пара-ксилола составляет 99,0%, селективность по терефталевой кислоте - 94,7%.

Пример 10

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 50,0, алюмосиликатных нанотрубок - 50,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 10,3 и 0,6%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 230°C, давлении воздух 9,0 МПа, массовом соотношении субстрат/катализатор 4:1, мольном соотношении пара-ксилол/бромид калия 110:1, объемном соотношении окислитель/пара-ксилол 210:1 (н.у.). Время реакции 5 часов. При этом получают следующие результаты: конверсия пара-ксилола составляет 98,6%, селективность по терефталевой кислоте - 82,3%.

Пример 11

Используют катализатор, содержащий, % масс.: носитель, состоящий из упорядоченного мезопористого оксида кремния типа МСМ-41 - 30,0, алюмосиликатных нанотрубок - 70,0 и оксиды кобальта и марганца, нанесенные на носитель в количестве 11,4 и 0,5%, соответственно, от массы катализатора. При этом указанный носитель представляет собой единый структурированный композитный материал.

Окисление проводят при температуре 250°C, давлении кислорода 3,0 МПа, массовом соотношении субстрат/катализатор 3:1, мольном соотношении пара-ксилол/бромид калия 90:1, объемном соотношении окислитель/пара-ксилол 220:1 (н.у.). Время реакции 3 часа. При этом получают следующие результаты: конверсия пара-ксилола составляет 99,8%, селективность по терефталевой кислоте - 87,4%.

Из представленных данных следует, что используемый в приведенных примерах катализатор проявляет высокую активность в реакции окисления пара-ксилола до терефталевой кислоты.

Так, конверсия пара-ксилола составляет 54,2-100%, что примерно на 44-90% выше, чем при использовании известного катализатора; содержание в продукте окисления терефталевой кислоты - 4,6-97,6%, что на 1,5-94,5% выше, чем при использовании известного катализатора.

Использование описываемого катализатора, содержащего компоненты в иных концентрациях, входящих в заявленный интервал, приводит к аналогичным результатам. Использование компонентов в количествах, выходящих за данный интервал, не приводит к желаемым результатам.

Источник поступления информации: Роспатент

Показаны записи 41-44 из 44.
20.04.2023
№223.018.4d20

Состав для изоляции негерметичностей в добывающих скважинах

Изобретение относится к области нефтяной промышленности, а именно к составам для изоляции негерметичностей в скважинах нефтяных и газовых месторождений, в частности изоляции небольших по размерам негерметичностей в колонне скважины и негерметичности в резьбовых соединениях труб, и может быть...
Тип: Изобретение
Номер охранного документа: 0002756193
Дата охранного документа: 28.09.2021
21.05.2023
№223.018.6993

Устройство для стабилизации мерзлых грунтов

Изобретение относится к области строительства, а именно к устройствам для охлаждения и замораживания грунта, используемым при строительстве инженерных сооружений, возводимых в районах вечной мерзлоты для аккумуляции холода в основании сооружений. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002794616
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6994

Устройство для стабилизации мерзлых грунтов

Изобретение относится к области строительства, а именно к устройствам для охлаждения и замораживания грунта, используемым при строительстве инженерных сооружений, возводимых в районах вечной мерзлоты для аккумуляции холода в основании сооружений. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002794616
Дата охранного документа: 24.04.2023
01.06.2023
№223.018.74b4

Способ транспортирования метано-водородной смеси

Изобретение относится к газовой промышленности и может быть использовано при транспортировке газообразных энергоносителей на дальние расстояния. Метано-водородную смесь с содержанием водорода не менее 70% транспортируют по трубопроводу. На каждой газоперекачивающей станции отбирают посредством...
Тип: Изобретение
Номер охранного документа: 0002766951
Дата охранного документа: 16.03.2022
Показаны записи 131-140 из 147.
21.06.2020
№220.018.2903

Способ переработки биомассы

Изобретение относится к области переработки биомассы с получением синтез-газа и золы - биочара. Способ осуществляют путем измельчения исходной биомассы до размера частиц 100-200 мкм, смешивания с водной эмульсией тяжелого углеводородного сырья с содержанием воды 18,0-25,0 мас.%, имеющей размер...
Тип: Изобретение
Номер охранного документа: 0002723864
Дата охранного документа: 17.06.2020
21.06.2020
№220.018.2979

Способ получения синтез-газа из биомассы растительного происхождения

Изобретение относится к области получения синтез-газа путем переработки биомассы растительного происхождения и может быть использовано в нефтепереработке, нефтехимии, энергетике. Способ осуществляют путем измельчения исходной биомассы, смешивания ее с мелкодисперсным горючим сланцем с...
Тип: Изобретение
Номер охранного документа: 0002723865
Дата охранного документа: 17.06.2020
06.07.2020
№220.018.2fd0

Способ получения покровной композиции для мелованной бумаги

Изобретение относится к способу получения покровной композиции для мелованной бумаги. Способ заключается в смешивании модифицированного продукта и модифицированного связующего. Модифицированный продукт получен смешиванием водной дисперсии нанофибриллярной целлюлозы с пигментом, представляющим...
Тип: Изобретение
Номер охранного документа: 0002725587
Дата охранного документа: 02.07.2020
29.07.2020
№220.018.38c0

Способ оценки активности цеолитного катализатора алкилирования изобутана бутиленами

Изобретение относится к области физико-химического анализа и может применяться для выбора катализатора алкилирования изобутана бутиленами. Предложен cпособ оценки активности цеолитного катализатора алкилирования изобутана бутиленами, включающий определение его текстурных характеристик методом...
Тип: Изобретение
Номер охранного документа: 0002727937
Дата охранного документа: 27.07.2020
02.08.2020
№220.018.3ba0

Устройство для обработки цеолита путем ионного обмена и способ получения катализатора с применением этого устройства

Изобретение относится к области получения цеолитных катализаторов и может быть использовано в катализе, в частности катализе процессов алкилирования изобутана бутиленами. Предложено устройство для обработки цеолита путем ионного обмена, включающее автоклав, выполненный в виде цилиндрического...
Тип: Изобретение
Номер охранного документа: 0002728554
Дата охранного документа: 30.07.2020
02.08.2020
№220.018.3c4d

Способ разработки нефтяной оторочки нефтегазового месторождения подошвенного типа

Изобретение относится к нефтедобывающей промышленности и, в частности, к разработке запасов трудноизвлекаемой нефти нефтегазовых месторождений подошвенного типа с большой площадью газонефтяного контакта. Технический результат - повышение степени вытеснения нефти за счет повышения приемистости...
Тип: Изобретение
Номер охранного документа: 0002728753
Дата охранного документа: 30.07.2020
12.04.2023
№223.018.442a

Способ получения алюмосиликатного цеолита со структурой mtw (типа zsm-12)

Изобретение относится к способу получения алюмосиликатного цеолита со структурой MTW типа ZSM-12. Способ включает смешивание растворов, содержащих соединение алюминия, соединение кремния, темплат, выбранный из солей N1,N4-бис(2-гидроксиэтил)-N1,N1,N4,N4-тетраметилбутан-1,4-диаммония,...
Тип: Изобретение
Номер охранного документа: 0002735849
Дата охранного документа: 09.11.2020
12.04.2023
№223.018.45dd

Способ получения титано-алюмо-силикатного цеолита типа zsm-12

Изобретение относится к способу получения титано-алюмо-силикатного цеолита типа (Ti/Al)-ZSM-12, который характеризуется тем, что смешивают водный раствор с рН = 8,5-9,5, содержащий соединение алюминия, соединение титана и темплат, который доводят сухой щелочью или водным раствором щелочи до рН...
Тип: Изобретение
Номер охранного документа: 0002740476
Дата охранного документа: 14.01.2021
12.04.2023
№223.018.45e1

Микроволновой способ получения цеолита типа zsm-12 со структурой mtw

Изобретение раскрывает микроволноврй способ получения цеолита типа ZSM-12 со структурой MTW с кислотностью от 650 до 1000 мкмоль/г, выходом по массе продукта от 12 до 20 г и общим размером пор от 0.15 до 0.25 см/г итогового продукта, в отличие от цеолита, синтезированного традиционным...
Тип: Изобретение
Номер охранного документа: 0002740452
Дата охранного документа: 14.01.2021
12.04.2023
№223.018.464c

Способ получения компонента высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2-винилнорборнана (варианты)

Изобретение относится к новому двухстадийному способу синтеза компонентов высокоплотного и высокоэнергоемкого ракетного и авиационного топлива на основе 2,2`-бис(норборнанила), который может быть использован в качестве высокоэнергоемого топлива, в частности ракетного и для дальней авиации....
Тип: Изобретение
Номер охранного документа: 0002739190
Дата охранного документа: 21.12.2020
+ добавить свой РИД