×
29.05.2020
220.018.218c

Результат интеллектуальной деятельности: Радиофотонный оптоволоконный модуль

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиофотонике. Радиофотонный оптоволоконный модуль включает лазерный источник оптического сигнала СВЧ импульсов, две сборки последовательно соединенных СВЧ фотодетекторов и три оптических разветвителя, вторичные оптоволокна первого оптического разветвителя оптически стыкованы с последовательно соединенными фотодетекторами первой сборки фотодетекторов, вторичные оптоволокна второго оптического разветвителя оптически стыкованы с последовательно соединенными фотодетекторами второй сборки фотодетекторов, обе сборки фотодетекторов образуют параллельное встречное соединение, а места соединений сборок фотодетекторов подключены через СВЧ тракт к антенне, первичное волокно третьего разветвителя (1×2) оптически стыковано с лазерным источником оптического сигнала СВЧ импульсов, а вторичные два оптоволокна третьего разветвителя имеют разную длину и оптически стыкованы с первичными оптоволокнами первого и второго оптических разветвителей. Технический результат - увеличение коэффициента полезного действия антенны. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области радиотехники, а именно к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и активных фазированных антенных решеток (АФАР) для связи, радиолокации, радионавигации и радиоэлектронной борьбы.

Основной задачей при разработке передающих трактов радиосистем является максимально возможный КПД такой системы, минимальные потери мощности информационного сигнала, как при его формировании, так и при излучении. Существующие перспективные направления по применению радиофотонных устройств для различных радиосистем, используют преобразование электрического сигнала в оптический и из оптического в электрический.

Повышение эффективности радиофотонной системы может быть обеспечено путем возбуждения антенны (антенной системы) биполярным электрическим импульсом, который формируется из оптического импульса, путем его поэтапного деления по мощности, задержки одного оптического импульса относительно другого, преобразования его в электрический и инверсии одного электрического импульса относительно другого и их интерференции на выходе устройства.

Известно устройство (патент RU 2313870, автор Лазарев и др. патентообладатель ОАО «Муромский радиозавод» дата публикации 27.12.2007, http://www.freepatent.ru/patents/2313870), где описан способ формирования электромагнитных сигналов сверхкороткой длительности без несущей частоты, путем накопления потенциала электрического поля накопительным конденсатором одновременно с накоплением потенциала электрического поля на входе приемника от волн тока, соединенным с приемо-излучательным элементом, на котором формируется излучающий импульс за счет одновременного лавинного разряда накопительного конденсатора через лавинный диод и образования волн тока на том же приемо-излучательном элементе. Недостатками такого устройства являются: малая мощность излучения и обязательное наличие приемного канала для формирования импульса. При этом формирование импульса предполагает использование приемо-излучательного элемента только в виде двух близко расположенных проводников, представляющих собой антенну с бегущей волной магнитного тока. Параметры импульса ограничиваются параметрами лавинного диода, а излучаемый импульс униполярный.

Известно устройство (патент RU 2180152, автор Щербак В.И. и др., патентообладатель ЗАО «Софтмедиа» дата публикации 27.02.2007, http://www.freepatent.ru/patents/2180152), в котором для повышения коэффициента полезного действия широкополосной антенной решетки при импульсном возбуждении на каждом входе рупорного излучателя преобразуют постоянное напряжение в импульсное электромагнитное поле и модулируют его по амплитуде и фазе с учетом номера каждого элемента антенной решетки и его пространственного положения так, чтобы обеспечить заданное суммарное амплитудно-фазовое распределение и минимальное рассогласование по волновому сопротивлению. Недостатками такого устройства являются: излучение антенной (антенной решеткой) униполярного импульса, что ведет к потере мощности при излучении; сложность изготовления такого устройства; гальваническая связь между самим передатчиком и антенной.

Наиболее близким техническим решением является устройство (патент RU 2295180 автор Анцев Георгий Владимирович и др., патентообладатель ОАО «Научно-производственное предприятие «Радар ммс», дата публикации 10.03.2007, http://www.freepatent.ru/patents/2295180), в котором для обеспечения возможности возбуждения электромагнитного поля в виде биполярного сверхкороткого импульса из униполярного путем разделения электромагнитного поля по рупорным излучателям, одну часть электромагнитного поля униполярного импульса задерживают по времени на половину длительности информативного сигнала, преобразуя фазу на противоположную и суммируя ее с другой частью электромагнитного поля в общем раскрыве антенн. Недостатками такого устройства являются: необходимость в наличии двух излучателей (в рассматриваемом случае двух рупоров) для формирования одного биполярного импульса, что ведет к увеличению размеров общей антенной системы и определенной потере мощности при формировании биполярного импульса из двух униполярных в раскрыве антенны, а также гальваническая связь между передатчиком и антенной.

Задачей, на решение которой направлено заявляемое изобретение является увеличение энергетической эффективности выходного импульса радиофотонного оптоволоконного модуля, излучаемого антенной (антенной системой), что позволяет увеличить дальность действия передающей радиофотонной системы.

Данная задача решается за счет того, что радиофотонный оптоволоконный модуль включает источник СВЧ импульсов лазерного излучения, две сборки последовательно скоммутированных СВЧ фотодетекторов и три оптических разветвителя, вторичные оптоволокна первого разветвителя оптически стыкованы с последовательно скоммутированными фотодетекторами первой сборки фотодетекторов, вторичные оптоволокна второго разветвителя оптически стыкованы с последовательно скоммутированными фотодетекторами второй сборки фотодетекторов, обе сборки фотодетекторов образуют параллельное встречное соединение, а места соединений сборок фотодетекторов подключены через СВЧ тракт к антенне, первичное волокно третьего оптического разветвителя (1×2) (Выражение в скобках означает, что третий оптический разветвитель имеет на входе одно первичное оптоволокно и два вторичных оптоволокна) оптически стыковано с источником СВЧ импульсов лазерного излучения, а два вторичных оптоволокна оптически стыкованы с первичными оптоволокнами первого и второго разветвителей, причем разница произведений длин вторичных оптоволокон третьего разветвителя, выраженных в сантиметрах, умноженных на показатели преломления n1 и n2 материалов сердечников соответствующих оптоволокон, определяется уравнением а суммарное количество N фотодетекторов в сборках и соответствующее суммарное количество N вторичных оптоволокон в первом и втором оптических разветвителях равно причем количество F фотодетекторов в каждой сборке и соответствующее количество F вторичных оптоволокон в первом и втором оптических разветвителях равно F=N/2, где,

Т - заданный временной интервал между положительным и отрицательным максимумами биполярного импульса, выраженный в наносекундах, установленный в диапазоне t/2<Т<2t,

t - длительность лазерного импульса на уровне 1/20 высоты импульса,

R - волновое сопротивление (Ом) СВЧ тракта антенны,

Рл - пиковая мощность (Вт) импульсов лазерного излучения в первичном оптоволокне третьего разветвителя,

S - фоточувствительность (А/Вт) СВЧ фотодетекторов на длине волны лазерного излучения,

Up - пиковое рабочее напряжение (В) каждого фотодетектора.

Кроме того, в радиофотонном оптоволоконном модуле оптическая стыковка двух вторичных оптоволокон третьего разветвителя с первичными оптоволокнами первого и второго разветвителей может быть осуществлена через оптические разъемы.

Кроме того, в радиофотонном оптоволоконном модуле оптическая стыковка двух вторичных оптоволокон третьего разветвителя с первичными оптоволокнами первого и второго разветвителей может быть осуществлена путем монолитного соединения.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является увеличение выходной мощности радиофотонного оптоволоконного модуля, увеличение коэффициента полезного действия антенны, а при работе с антенной решеткой, увеличение коэффициента направленного действия антенной решетки.

Сущность изобретения поясняется чертежами, на которых изображено:

На фиг. 1 - схема радиофотонного оптоволоконного модуля (для примера на фиг. 1 изображена схема радиофотонного оптоволоконного модуля на основе фотодетекторных сборок, состоящих из двух СВЧ фотодетекторов каждая: F=2).

На фиг. 2 - схематическое изображение радиофотонного оптоволоконного модуля на основе фотодетекторных сборок, состоящих из двух СВЧ фотодетекторов каждая: F=2.

На фиг. 3 - фотография фотоприемной части радиофотонного оптоволоконного модуля, состоящего из двух фотодетекторных сборок по 16 СВЧ фотодетекторов, напаянных на основание.

На фиг. 4 - формы входного лазерного импульса (а) длительностью t(1/20)=1,1 нс и биполярного выходного импульса (б), получаемого в радиофотонном оптоволоконном модуле, состоящем из двух шестнадцати элементных сборок фотодетекторов: кривая, обозначенная на фиг. 4 позицией 1, построена для разницы длин вторичных волокон третьего разветвителя и T=0,9 нс; кривая, обозначенная позицией 2, построена для разницы длин вторичных волокон третьего разветвителя и Т=1,3 нс.

Радиофотонный оптоволоконный модуль (фиг. 1 и фиг. 2) включает в себя:

1 - первая сборка фотодетекторов,

2 - вторая сборка фотодетекторов,

3 - первый оптический разветвитель,

4 - второй оптический разветвитель,

5 - третий оптический разветвитель (1×2),

6, 7 - вторичные оптоволокна первого разветвителя,

10, 11 - вторичные оптоволокна второго разветвителя

20, 21 - вторичные оптоволокна третьего разветвителя,

8, 9, 12, 13 - СВЧ фотодетекторы,

18 - первичное оптоволокно третьего разветвителя,

24 - первичное оптоволокно первого разветвителя,

25 - первичное оптоволокно второго разветвителя,

19 - лазерный источник оптического сигнала СВЧ импульсов,

22, 23 - оптические разъемы,

14, 15 - точки соединения с СВЧ линией передачи,

16 - линия передачи (СВЧ тракт),

17 - антенна,

26 - теплоотводящее основание для монтажа СВЧ фотодетекторов модуля в целом.

Настоящее техническое решение поясняется чертежами, где на фиг. 1 и фиг. 2 приведены схематические изображения радиофотонного оптоволоконного модуля, включающего две сборки фотодетекторов 1 и 2 последовательно скоммутированных СВЧ фотодетекторов и три оптических разветвителя 3, 4 и 5, вторичные оптоволокна 6 и 7 первого оптического разветвителя 3 оптически стыкованы с последовательно скоммутированными СВЧ фотодетекторами 8 и 9 первой сборки фотодетекторов 1, вторичные оптоволокна 10 и 11 второго оптического разветвителя 4 оптически стыкованы с последовательно скоммутированными СВЧ фотодетекторами 12 и 13 сборки фотодетекторов 2, обе сборки фотодетекторов образуют параллельное встречное соединение, а точки соединения 14 и 15 сборок 1 и 2 фотодетекторов подключены через СВЧ тракт 16 к антенне 17, первичное оптоволокно 18 третьего оптического разветвителя (1×2) 5 оптически стыковано с лазерным источником оптического сигнала СВЧ импульсов 19, а два вторичных оптоволокна 20 и 21 третьего оптического разветвителя 5 оптически стыкованы с первичными оптоволокнами 24 и 25 первого 3 и второго 4 оптических разветвителей, причем разница произведений длин вторичных оптоволокон 20, 21 третьего разветвителя 5, выраженных в сантиметрах, умноженных на показатели преломления n1 и n2 материалов сердечников соответствующих оптоволокон, определяется уравнением а суммарное количество N фотодетекторов в сборках фотодетекторов 1 и 2 и соответствующее суммарное количество вторичных оптоволокон в первом и втором оптических разветвителях равно причем количество фотодетекторов в каждой сборке и соответствующее количество F вторичных оптоволокон в первом и втором оптических разветвителях равно F=N/2.

Оптическая стыковка двух вторичных оптоволокон 20 и 21 третьего разветвителя 5 с первичными оптоволокнами 24 и 25 первого 3 и второго 4 разветвителей может быть осуществлена через оптические разъемы 22 и 23.

Оптическая стыковка двух вторичных оптоволокон 20 и 21 третьего разветвителя 5 с первичными оптоволокнами 24 и 25 первого 3 и второго 4 разветвителей может быть осуществлена путем монолитного соединения.

Для работы устройства необходимо выполнение условия, определяемого уравнением Пусть время Т1 прохождения импульса света по волокнам длиной с показателем преломления n1 равно где с - скорость света (3⋅1010 см/с). Временная задержка импульсов в более длинной (длина ) оптоволоконной линии с показателем преломления (n1) сердечника волокна равна Если временную задержку ΔT прихода импульсов выразить в наносекундах и сделать временную задержку равной заданной временной разнице Т максимумов положительной и отрицательной частей биполярного импульса, то данное выражение преобразуется в выражение

Суммарное количество N СВЧ фотодетекторов 8, 9 и 12, 13 в сборках фотодетекторов 1 и 2 и соответствующее суммарное количество вторичных оптоволокон 6, 7 и 10, 11 в первом и втором оптических разветвителях должно быть равно При увеличении количества N фотодетекторов пропорционально увеличивается суммарное рабочее напряжение U=N⋅Up, генерируемое сборками фотодетекторов. При этом рабочий ток равен пиковой мощности (Рл) лазерных импульсов, разделенной на количество фотодетекторов и умноженной на спектральную чувствительность фотодетекторов, выраженную в А/Вт. Для согласования выходное сопротивление модуля должно быть равно волновому сопротивлению СВЧ тракта антенны и равно где Ip - пиковый рабочий ток каждого фотодетектора. Из этого уравнения следует, что суммарное количество фотодетекторов должно быть равно

Для работы устройства необходимо, чтобы количество F фото детекторов в каждой сборке и соответствующее количество F вторичных оптоволокон в первом и втором оптических разветвителях было равно F=N/2. Это условие обеспечивает равенство амплитуд положительного и отрицательного импульсов биполярного импульса, что, в свою очередь, обеспечивает достижение максимального КПД устройства.

Для работы устройства необходимо выполнение условия t/2<Т<2t. Экспериментально было установлено, что при Т<t/2 снижается амплитуда биполярного импульса, а при Т>2t увеличивается длительность биполярного импульса без увеличения амплитуды импульса, что приводит к уменьшению КПД устройства.

Оптическая стыковка двух вторичных оптоволокон 20 и 21 третьего разветвителя 5 с первичными оптоволокнами 24 и 25 первого 3 и второго 4 разветвителей может быть осуществлена либо через оптические разъемы 22 и 23, либо путем монолитного соединения. Оптическая стыковка через оптические разъемы обеспечивает упрощение сборки устройства, но приводит к дополнительным оптическим потерям в оптических разъемах. Оптическая стыковка через монолитное соединение усложняет сборку, однако не приводит к оптическим потерям и, следовательно, увеличивает мощность модуля без увеличения мощности лазерных импульсов.

Работает устройство следующим образом. На вход оптического разветвителя 5 радиофотонного оптоволоконного модуля подается через оптоволоконную линию 18 оптический импульс. В качестве источника СВЧ импульсов лазерного излучения могут быть использованы полупроводниковые или твердотельные лазеры, состыкованные с оптическим волокном. Третий оптический разветвитель (1×2) 5 делит этот импульс на два равных по мощности импульса. Разветвитель имеет два выхода, на каждом из которых одновременно появляются оптические импульсы. С одного выхода оптического разветвителя (1×2) 5 через оптоволоконную линию 21, 25 оптический импульс поступает на вход оптического разветвителя 4, где приходящий импульс разделяется на импульсы равной мощности и длительности, которые поступают на вторичные оптоволокна 10, 11 разветвителя 4, стыкованные с фотодетекторами 12, 13 (количество вторичных оптоволокон второго разветвителя равно количеству фотодетекторов), соединенными в сборку фотодетекторов 2. Фотодетекторы 12, 13 преобразуют оптический импульс в электрический импульс положительной полярности формируемый на нагрузке 16. С другого вторичного оптоволокна 20 третьего разветвителя 5 второй оптический импульс, проходя через удлиненную оптоволоконную линию 20 поступает на первичное оптоволокно 24 первого оптического разветвителя 3 с заданной задержкой T относительно импульса на входе второго разветвителя 4. В первом разветвителе 3 входящий импульс разделяется на импульсы равной мощности и длительности, которые поступают на вторичные оптоволокна разветвителя 3, стыкованные с СВЧ фотодетекторами 8, 9 (количество вторичных волокон разветвителя равно количеству стыкуемых фотодетекторов), соединенными в сборку фотодекторов 1. СВЧ фотодетекторы 8, 9 преобразуют оптический импульс в электрический импульс отрицательной полярности, так как сборка фотодетекторов 1 включена встречно относительно сборки фотодетектов 2. Поскольку СВЧ тракт 16 является общей нагрузкой для сборки фотодетеков 1 и сборки фотодетекторов 2, то при сложении двух разнополярных импульсов с заданной временной задержкой Т между ними на нагрузке 16 формируется биполярный импульс с амплитудой пропорциональной количеству фотодетекторов в каждой сборке и размахом пропорциональным суммарному количеству фотодетекторов в двух сборках.

Пример 1. Радиофотонный оптоволоконный модуль (фиг. 2), в состав которого входит лазерный источник оптического сигнала СВЧ импульсов, оптический разветвитель 5, два оптических разветвителя 3 и 4, две сборки фотодетекторов 1 и 2, состоящие из 2-х СВЧ фотодетекторов каждая 8, 9 и 12, 13 соответственно. На вход оптического разветвителя (1×2) 5 подается импульс длительностью 1 нс. С выходов 20 и 21 оптического разветвителя (1×2) 5 снимается два оптических импульса одинаковых по мощности и длительности, каждому из которых соответствует своя вторичная оптоволоконная линия, причем длина одной линии 20, 22, 24 больше другой линии 21, 23, 25 на величину, пропорциональную заданному времени задержки.

Для обеспечения задержки оптического импульса в оптоволокне 20 на 1 нс при показателе преломления сердечников оптических волокон n=n1=n2=1,45, разница в длине между вторичными оптоволоконными линиями 20 и 21 составляет 20,7 см. Вторичные оптоволокна оптически состыкованы с двумя первичными оптоволокнами оптических разветвителей 3 и 4, вторичные волокна которых состыкованы с фотоактивными областями СВЧ фотодетекторов 8, 9, 12, 13, изготовленных на основе гетероструктуры AlGaAs/GaAs, генерирующих напряжение Up=1 В каждый. СВЧ фотодетекторы зафиксированы на общей подложке 26, которая также является теплоотводом для фотоприемного модуля. Соединяются линейки СВЧ фотодетекторов 8, 9 и 12, 13 встречно-параллельно, т.е. сборки из 2-х последовательно соединенных СВЧ фотодетекторов соединены друг с другом с противоположной полярностью относительно точек соединения 14 и 15. Каждой сборке фотодетекторов 1 и 2, включенной в одной из полярностей, соответствуют свои вторичные оптоволокна 6, 7 и 10, 11 одинаковой длины. Нагрузкой фотодетекторного модуля является линия передачи (СВЧ тракт) 16 с волновым сопротивлением 50 Ом, которая соединена с антенной 17. В результате реализации такой схемы на выходе получается электрический биполярный импульс с размахом U=4B при пиковом рабочем токе Ip=80 мА, получаемом при мощности лазерного излучения Рл=640 мВт и фоточувствительности фотодетекторов S=0,5 А/Вт.

Пример 2. Радиофотонный оптоволоконный модуль (фиг. 1), в состав которого входит лазерный источник оптического сигнала СВЧ импульсов, оптический разветвитель (1×2) 5, два оптических разветвителя 3 и 4 с F=8, каждый из которых выполнен с одним первичным оптоволокном и с восемью вторичными оптоволокнами оптических разветвителей 3 и 4, две фотодетекторные сборки 1 и 2, состоящие из востми фотодетекторов каждая, на вход оптического разветвителя (1×2) 5 подается импульс длительностью 0,75 нс. С выходов разветвителя снимается два оптических импульса одинаковых по мощности и длительности, каждому из которых соответствует своя вторичная оптоволоконная линия 20 и 21, причем длина оптоволоконной линии 20 больше длины оптоволоконной линии 21 на величину, пропорциональную требуемому времени задержки Т=1,5 нс. Для задержки оптического импульса в линии на 1,5 нс при показателе преломления сердечников оптических волокон n=1,45, разница в длине между вторичными оптоволоконными линиями 20 и 21 составляет 31 см. Оба вторичных оптоволокна монолитно состыкованы с двумя оптическими разветвителями 3 и 4, оптические выходы которых через оптоволокно состыкованы с фотоактивной областью AlGaAs/GaAs фото детекторов с выходным напряжением Up=1 В каждый. Фотодетекторы смонтированы на общей подложке 26, которая также является теплоотводом модуля. Соединяются фотодетекторы последовательно в каждой сборке. Сборки фотодетекторов соединяются встречно-параллельно относительно точек соединения 14 и 15. Каждой сборке фотодетекторов 1 и 2 соответствуют свои оптоволокна от соответствующего разветвителя. При этом длины всех подводящих от разветвителей к фотодетекторам оптоволокон одинаковы. Нагрузкой фотодетекторного модуля является коаксиальная линия с волновым сопротивлением 50 Ом, которая соединена с антенной. В результате реализации такой схемы на выходе получается электрический биполярный импульс с размахом U=16 В, рабочим током 0,32 А при пиковой мощности импульса лазерного излучения Рл=10 Вт и S=0,5 А/Вт.

Пример 3. Радиофотонный модуль, в состав которого входит лазерный источник оптического сигнала СВЧ импульсов, оптический разветвитель (1×2) 5, на вход которого подается импульс длительностью 0,75 нс, с выходов разветвителя снимается два импульса, каждому из которых соответствует своя вторичная оптоволоконная линия 20 и 21, причем длина одной оптоволоконной линии 20 больше длины другой оптоволоконной линии 21 на величину, пропорциональную заданному времени задержки Т. Каждая вторичная оптоволоконная линия 20 и 21 состыкована с первичными оптоволокнами оптических разветвителей 3 и 4, каждый из которых выполнен с одним первичным оптоволокном и с шестнадцатью вторичными оптоволокнами. При времени задержки 1,3 нс и показателе преломления оптоволокна n=1,45 разница в длине между вторичными оптоволоконными линиями составляет 27 см. Вторичные оптоволокна 6, 7 и 10, 11 оптических разветвителей 3 и 4 состыкованы с последовательно соединенными СВЧ фото детекторами (в количестве 16 штук в каждой сборке фото детекторов), каждый из которых генерирует напряжение Up=1 В. Рабочее напряжение каждой сборки составляет 16 В. Сборки фотодетекторов включены между собой встречно-параллельно. Сопротивление нагрузки фотодетекторного модуля составляет 100 Ом. На выходе модуля формируется биполярный электрический импульс с рабочим током 0,32 А и с размахом U=32 В при мощности лазерного излучения Рл=20,5 Вт и S=0,5 А/Вт.


Радиофотонный оптоволоконный модуль
Радиофотонный оптоволоконный модуль
Радиофотонный оптоволоконный модуль
Радиофотонный оптоволоконный модуль
Радиофотонный оптоволоконный модуль
Радиофотонный оптоволоконный модуль
Радиофотонный оптоволоконный модуль
Радиофотонный оптоволоконный модуль
Источник поступления информации: Роспатент

Показаны записи 61-70 из 174.
14.03.2019
№219.016.df4d

Арифметико-логическое устройство и способ преобразования данных с использованием такого устройства

Изобретение относится к области вычислительной техники. Технический результат заключается в увеличении производительности устройства при решении задач дискретной математики. Устройство включает в себя три входа данных, вход кода операций, выход данных, блок циклического сдвига на 8, 16, 24...
Тип: Изобретение
Номер охранного документа: 0002681702
Дата охранного документа: 12.03.2019
16.03.2019
№219.016.e1ea

Устройство активной защиты акватории ударно-волновым воздействием на подводный объект

Изобретение относится к области защиты акваторий и инфраструктуры промышленных и иных охраняемых объектов, расположенных во внутренних водоемах и на континентальном шельфе, от подводных диверсантов и других подводных объектов. Предложено устройство активной защиты акватории ударно-волновым...
Тип: Изобретение
Номер охранного документа: 0002681967
Дата охранного документа: 14.03.2019
10.04.2019
№219.016.fef2

Одностадийный способ получения ароматического полиэфира

Настоящее изобретение относится к одностадийному способу получения ароматических полиэфиров реакцией нуклеофильного замещения, включающему взаимодействие 0,056-0,063 моль 4,4'-дихлордифенилсульфона, 90 мл диметилсульфоксида, 0,0024 моль катализатора оксида алюминия, 0,087 моль щелочного агента...
Тип: Изобретение
Номер охранного документа: 0002684328
Дата охранного документа: 08.04.2019
10.04.2019
№219.016.ff03

Способ получения ароматических полиэфиров

Изобретение относится к области получения ароматических полиэфиров. Описан способ получения ароматических полиэфиров реакцией нуклеофильного замещения, включающий взаимодействие 0,0404 моль 4,4'-дихлордифенилсульфона и 0,0404 моль ароматических диоксисоединений в присутствии 0,044 моль...
Тип: Изобретение
Номер охранного документа: 0002684327
Дата охранного документа: 08.04.2019
10.04.2019
№219.016.ff0f

Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования

Настоящее изобретение относится к способу получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов. Описан способ капсулирования ароматических полиэфирэфиркетонов и сополиэфирэфиркетонов, полученных в результате синтеза смеси компонентов в соотношении: 0,021-0,035 моль...
Тип: Изобретение
Номер охранного документа: 0002684329
Дата охранного документа: 08.04.2019
20.04.2019
№219.017.351d

Способ послойного изготовления изделий из нескольких порошков и устройство для его осуществления

Изобретение относится к послойному изготовлению изделий из нескольких порошков. Способ включает изготовление в камере построения каждого слоя фазами, каждая из которых включает послойную подачу порошка из бункера с дозирующим устройством на технологически заданные участки рабочей поверхности...
Тип: Изобретение
Номер охранного документа: 0002685326
Дата охранного документа: 17.04.2019
20.04.2019
№219.017.3548

Инжекционный лазер

Использование: для создания инжекционного лазера. Сущность изобретения заключается в том, что инжекционный лазер включает выращенную на подложке лазерную гетероструктуру, содержащую активную область, заключенную между первым и вторым волноводными слоями, к которым с внешней стороны примыкают...
Тип: Изобретение
Номер охранного документа: 0002685434
Дата охранного документа: 18.04.2019
20.04.2019
№219.017.35ac

Устройство для послойного изготовления объемных изделий из двух и более порошковых компонентов

Изобретение относится к устройству для послойного изготовления объемных изделий и может быть использовано при изготовлении объемных изделий из двух или более разнородных порошковых компонентов. Устройство содержит камеру построения, платформу построения, порошковые питатели, лазерное устройство...
Тип: Изобретение
Номер охранного документа: 0002685328
Дата охранного документа: 17.04.2019
27.04.2019
№219.017.3c9f

Реконфигурируемый вычислительный модуль

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении удельных производительностей на единицу мощности потребления и на единицу площади. Реконфигурируемый вычислительный модуль, подключаемый к внутрикристальной кольцевой сети, содержит макроблок...
Тип: Изобретение
Номер охранного документа: 0002686017
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3cec

Композиционный материал на основе полифениленсульфона

Изобретение относится к применению композиционного материала в качестве суперконструкционного полимерного материала для аддитивных 3D-технологий методом послойного наплавления (FDM). Композиционный материал содержит следующие компоненты, мас.%: 85-95 полифениленсульфона (ПФС) и 5-15 талька....
Тип: Изобретение
Номер охранного документа: 0002686329
Дата охранного документа: 25.04.2019
Показаны записи 61-70 из 77.
09.06.2019
№219.017.7d72

Способ формирования контакта для наногетероструктуры фотоэлектрического преобразователя на основе арсенида галлия

Изобретение относится к области создания полупроводниковых приборов, чувствительных к излучению, и может использоваться в технологиях по изготовлению омических контактных систем к фотоэлектрическим преобразователям (ФЭП) с высокими эксплуатационными характеристиками, и, в частности, изобретение...
Тип: Изобретение
Номер охранного документа: 0002428766
Дата охранного документа: 10.09.2011
13.06.2019
№219.017.8186

Импульсный инжекционный лазер

Импульсный инжекционный лазер содержит гетероструктуру раздельного ограничения, включающую асимметричный многомодовый волновод, ограничительные слои (3), (8) которого одновременно являются эмиттерами n- и р-типа проводимости с одинаковыми показателями преломления, активную область (6),...
Тип: Изобретение
Номер охранного документа: 0002691164
Дата охранного документа: 11.06.2019
06.07.2019
№219.017.a896

Импульсный инжекционный лазер

Изобретение относится к квантовой электронной технике, а именно к полупроводниковым лазерам. Лазер содержит гетероструктуру раздельного ограничения, включающую многомодовый волновод, ограничительные слои которого одновременно являются эмиттерами p- и n-типа проводимости с одинаковыми...
Тип: Изобретение
Номер охранного документа: 0002361343
Дата охранного документа: 10.07.2009
03.08.2019
№219.017.bbdf

Оптоволоконный фотоэлектрический преобразователь лазерного излучения

Изобретение относится к оптоэлектронике и фотоэнергетике и может быть использовано для создания оптоволоконных систем передачи энергии по лазерному лучу. Заявленный оптоволоконный фотоэлектрический преобразователь лазерного излучения включает оптически последовательно соединенные лазер,...
Тип: Изобретение
Номер охранного документа: 0002696355
Дата охранного документа: 01.08.2019
04.10.2019
№219.017.d20f

Полупроводниковая структура многопереходного фотопреобразователя

Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным фотоэлектрическим преобразователям мощного оптического излучения с соединительными туннельными диодами. Полупроводниковая структура многопереходного фотопреобразователя содержит верхнюю субструктуру (1),...
Тип: Изобретение
Номер охранного документа: 0002701873
Дата охранного документа: 02.10.2019
31.12.2020
№219.017.f458

Способ изготовления фотоэлектрического преобразователя на основе gasb

Изобретение относится к способам изготовления фотоэлектрических преобразователей на основе GaSb, применяемых в солнечных элементах, термофотоэлектрических генераторах, в системах с расщеплением спектра солнечного излучения, в преобразователях лазерного излучения. Во всех перечисленных случаях...
Тип: Изобретение
Номер охранного документа: 0002710605
Дата охранного документа: 30.12.2019
06.03.2020
№220.018.098f

Установка слежения за солнцем и способ ее ориентации

Установка слежения за Солнцем включает промежуточную раму в виде круглой цилиндрической балки (1), установленную с возможностью вращения посредством первых цилиндрических шарниров (2), (5) на двух стойках (3), (6), прикрепленных к основанию (4), раму (13) солнечных панелей, прикрепленную с...
Тип: Изобретение
Номер охранного документа: 0002715901
Дата охранного документа: 04.03.2020
20.05.2020
№220.018.1df3

Устройство мониторинга солнечной электростанции

Изобретение относится к солнечной фотоэнергетике, к мониторингу солнечных электростанций. Устройство мониторинга солнечной электростанции включает блок измерения параметров и отбора максимальной мощности солнечной батареи, блок коммутации, блок электронной нагрузки, блок управления, блок...
Тип: Изобретение
Номер охранного документа: 0002721164
Дата охранного документа: 18.05.2020
24.06.2020
№220.018.2a58

Лазер-тиристор

Настоящее изобретение относится к лазерной полупроводниковой технике. Лазер-тиристор на основе гетероструктуры содержит катодную область (1), включающую подложку n-типа (2), широкозонный слой n-типа (3), анодную область (4), включающую контактный слой р-типа (5), широкозонный слой р-типа (6),...
Тип: Изобретение
Номер охранного документа: 0002724244
Дата охранного документа: 22.06.2020
15.07.2020
№220.018.3274

Лазер-тиристор

Настоящее изобретение относится к квантовой электронной технике, а точнее к импульсным инжекционным источникам лазерного излучения. Лазер-тиристор, включающий подложку n-типа проводимости и имеющуюся на ней гетероструктуру, содержит катодную область (1), включающую подложку n-типа проводимости...
Тип: Изобретение
Номер охранного документа: 0002726382
Дата охранного документа: 13.07.2020
+ добавить свой РИД