×
23.05.2020
220.018.200e

Результат интеллектуальной деятельности: Способ очистки отходящих газов от печей спекания глиноземного производства

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам очистки отходящих газов вращающихся печей глиноземного производства. Для очистки газов предложено применять многостадийную их очистку в пылевой камере, циклонах, электрофильтрах и последующую «мокрую» очистку от тонкодисперсной пыли в скруббер-электрофильтрах. Очищенные от пыли в скруббер-электрофильтрах отходящие газы с содержанием диоксида углерода не менее 18,5% затем направляют в карбонизаторы гидрохимического получения гидроксида алюминия. Изобретение обеспечивает очистку атмосферного воздуха от пыли и углекислого газа, находящихся в выбросах от вращающихся печей спекания, и последующее их использование для выделения гидроксида алюминия из алюминатных растворов глиноземного производства. 1 табл., 1 пр.

Изобретение относится к способам очистки отходящих газов вращающихся печей спекания на глиноземных и цементных заводах.

Известен способ очистки газов от сернистых газов и высокоомной пыли, для этого часть пылегазового потока, увлажненную до величины не менее 90%, содержащего сернистый ангидрид, пропускают через зону барьерного разряда [Патент РФ 2077391, опубл. 20.04.1997].

Недостаток известного способа - отсутствие эффективной очистки отходящих газов от пыли и диоксида углерода.

Известен способ очистки отходящих газов вращающихся печей с помощью электрофильтров, установленных за печами. Выходящие из печи газы с помощью запечных дымососов протягиваются через электрофильтры, очищаются в них от твердых пылевых включений. Затем газы подают в реактор с насадкой, где в присутствии водяного пара вредные газообразные оксиды нейтрализуются щелочными компонентами остаточной цементной пыли [Патент РФ 2013112, опубл. 30.05.1994].

Недостаток известного способа - отсутствие эффективной очистки компонентов отходящих газов от тонкодисперсной пыли и диоксида углерода.

Наиболее близким к изобретению по технической сущности является способ очистки отходящих газов от печей спекания глиноземного производства, включающий их последовательную многостадийную очистку в пылевой камере, циклонах, электрофильтрах и последующую «мокрую» очистку в скрубберах, в которых в качестве газоочистного раствора применяют подшламовую воду [Дружинин К.Е. Совершенствование основного и вспомогательного оборудования пирометаллургических процессов и его испытания в условиях действующего производства /К.Е. Дружинин, Н.В. Немчинова, Н.В. Васюнина // Вестник ИрГТУ, 2016, №5, с. 144-152].

Недостатком данного способа является недостаточная эффективность очистки отходящих газов вращающихся печей спекания от тонкодисперсной пыли и диоксида углерода.

Учитывая, недостаточную эффективность существующей системы очистки отходящих газов от вращающихся печей спекания для достижения требуемых санитарно-гигиенических нормативов предлагается применить дополнительную ступень очистки газов перед выбросом их в атмосферу.

Цель изобретения - получение высокой степени очистки газов от тонкодисперсной пыли и диоксида углерода.

Задачей, на решение которой направлено изобретение, является разработка эффективного способа очистки отходящих газов от печей спекания от тонкодисперсной пыли и сокращения выбросов «парниковых» газов (диоксида углерода) путем направления их в технологию выделения гидроксида алюминия из алюминатных растворов гидрохимического производства.

Поставленная задача достигается тем, что для очистки отходящих газов от тонкодисперсной пыли после очистки газов в пылевой камере, циклонах и электрофильтрах применяют дополнительную ступень «мокрой» очистки в скруббер-электрофильтрах и затем очищенные газы нагнетателями направляют в карбонизаторы для использования диоксида углерода, содержащихся в очищенном от пыли газе, в технологическом процессе осаждения гидроксида алюминия из алюминатных растворов глиноземного производства, при этом массовая доля диоксида углерода в направляемом на карбонизацию газе должна быть не менее 18,5%.

Техническим результатом заявляемого способа является очистка атмосферного воздуха от пыли и углекислого газа, находящихся в выбросах от вращающихся печей спекания, и последующее их использование для выделения гидроксида алюминия из алюминатных растворов глиноземного производства. Сущность способа заключается в том, что очистка газов вращающихся печей спекания от составляющих его ингредиентов производится многоступенчатым методом, что дает возможность сначала очистить газы от крупнодисперсной пыли в пылевой камере, циклонах и многопольных электрофильтрах, последующей очистке от тонкодисперсной пыли в скруббер-электрофильтрах, а затем направить очищенные от пыли газы в технологический процесс стадии карбонизации глиноземного производства с последующим взаимодействием алюминатного раствора с углекислым газом, при этом содержание каустической щелочи уменьшается, что ведет к снижению стойкости алюминатного раствора и выделению гидроксида алюминия в осадок. В направляемых на карбонизацию газах для полного выделения гидроксида алюминия из алюминатного раствора необходимо поддерживать массовую долю диоксида углерода не менее 18,5%. При этом в выбросах отходящих газов после использования их в технологическом процессе карбонизации алюминатных растворов обеспечивается более низкое содержание диоксида углерода.

Сопоставимый анализ способов очистки отходящих газов вращающихся печей спекания глиноземного производства с предлагаемым показывает принципиальное отличие последнего, как с точки зрения его новизны, так и с точки зрения использования составляющих отходящих газов. Ранее предлагаемое техническое решение очистки отходящих газов вращающихся печей спекания с применением дополнительной ступени очистки в скруббер-электрофильтрах и последующим направлением очищенных от тонкодисперсной пыли газов с массовой долей не менее 18,5% диоксида углерода на карбонизацию алюминатных растворов не заявлялось и поэтому заявляемый способ соответствует критерию "новизна". Сравнение заявляемого способа с другими техническими решениями позволяют сделать вывод, что признаки, отличающие его от существующих методов очистки газов вращающихся печей, выявлены при изучении данной области техники и, следовательно, обеспечивает заявляемому решению соответствие критерию "существенные отличия".

Заявляемый способ опробован на глиноземном производстве в АО «РУСАЛ Ачинск». Способ очистки отходящих газов от печей спекания глиноземного производства осуществляли следующим образом.

Образующийся в результате спекания сырьевой шихты во вращающихся печах спек поступает в колосниковые холодильники, а газы из печей спекания, содержащие в основном спековую пыль, направляются в систему очистки газов, включающую пылевую камеру, циклоны и электрофильтры и мокрую очистку в скрубберах, где очищаются от пыли и сбрасываются в атмосферу через трубу. В процессе промышленных испытаний газы от печей спекания после дополнительной очистки в скруббер-электрофильтрах направляли в глиноземный цех на карбонизацию алюминатных растворов. По технологическим требованиям для полного выделения гидроксида алюминия содержание СО2 в этих газах должно быть не менее 18,5% об. Но в связи с тем, что процесс спекания глиноземсодержащей шихты во вращающихся печах спекания сопровождается значительным пылевыделением, основная масса пыли выносится из печи вместе с отходящими газами. Для очистки газовых выбросов печей спекания от содержащейся в них пыли смонтированы пылеулавливающие устройства, обеспечивающие очистку газовых выбросов. Печные газы предварительно в пылевой камере очищаются от крупной фракции пыли (более 50 мкм). При этом газовый поток, проходя через пылевую камеру, теряет скорость и частицы пыли осаждаются в бункеры пылевой камеры. Отмечено, что в пылевых камерах на каждой печи спекания осаждается от 8 до 15% пыли. Последующая очистка газов печей спекания происходит в батареях циклонов, где осаждаются частицы размером более 20 мкм. Частицы пыли центробежной силой отбрасываются к стенке цилиндрической части циклона и по ней перемещаются к конической части, из которой пыль ссыпается в приемный бункер, а очищенный газ, меняя свое направление, движется вверх, поступая для дальнейшей очистки в электрофильтры. На каждую печь установлены две группы по 8 циклонов в каждой, в которых оседает 70-75% пыли фракции 20-25 мкм. В качестве следующей ступени очистки воздуха от пыли в АО «РУСАЛ Ачинск» применяются пятипольные электрофильтры СФ НИОГАЗ. Процесс обеспыливания газов в электрофильтрах происходит при напряжении 80 кВ, под действием сил электрического поля взвешенные частицы пыли заряжаются и движутся к осадительным электродам, на поверхности которых осаждаются и разряжаются. Удаление пыли с электродов предусмотрено путем встряхивания специальными механизмами. Степень очистки газов после электрофильтров достигает 96-97%.

Вместе с тем, существующая система очистки газов на печах спекания не обеспечивает достаточно полной их очистки от тонкодисперсной пыли (крупностью менее 3-5 мкм). Для очистки от тонкодисперсной пыли газы после многопольных электрофильтров направляли на дополнительную степень мокрой очистки газов в скруббер-электрофитрах КМ-21. Скруббер-электрофильтр КМ-21 предназначен для очистки газов от твердых загрязняющих веществ крупностью менее 5 мкм и предварительного охлаждения до 45-55°С газов, содержащих углекислый газ, идущих в нагнетатель Н-1200-26-1 для последующей передачи их на передел карбонизации гидрохимического производства гидроксида алюминия. Скруббер-электрофильтр представляет собой мокрый пылеулавливающий аппарат, состоящий из двух частей: скруббера и электрофильтра. Скруббер - это металлическая колонна, полая, с внутренним диаметром 5800 мм. Корпус сварной, состоящий из листов стали толщиной 8-12 мм. Внутри скруббера на отметке +7,2; +9,5 +16,8 м по диаметральному сечению устанавливаются стальные прутки, диаметром 22 мм, для укладки колец «Рашига» и сетки 20×20×5. Над решетками на высоте 1000 мм располагаются водоструйные форсунки из труб с диаметром выходного отверстия 100-110 мм для распыления жидкости в скруббере. На каждой отметке (ярусе) установлены 4 форсунки так, чтобы распыленная жидкость (вода) перекрывала все полое пространство скруббера. Жидкость подается по трубопроводам диаметром 325 мм на отметки +7,2; +9,5; +16,8 м, а непосредственно к форсункам по трубопроводу диаметром 159 мм. На трубопроводах для регулирования расхода воды на очистку газа установлена запорная арматура (задвижки). В нижней части скруббера располагается конусообразный бункер с гидрозатвором. Гидрозатвор служит для поддержания определенного уровня воды, а бункер-конус - для сброса уловленной пыли через сливной патрубок наружу в виде шлама. Скруббер-электрофильтр КМ-21 двухсекционный, в каждой секции предусмотрено два подвода тока высокого напряжения для питания коронирующих электродов. Скруббер-электрофильтр по ходу газа разделен на две зоны: на скрубберную, где происходит равномерное распределение газа по всему сечению аппарата и улавливание крупных частиц пыли, и на собственную часть скруббер-электрофильтра.

Принцип улавливания пыли в скруббере основывается на свойствах смачиваемости пыли, содержащейся в газе. Запыленный газ через входной патрубок поступает в скруббер снизу вверх, где и происходит контакт частиц пыли с водой. Для увеличения контакта вода поступает в скруббер через форсунки. Дробление воды на мелкие капли происходит на решетках с уложенными в один слой кольцами «Рашига». В скруббере улавливается крупнодисперсная пыль диаметром частиц более 5 мкм. Улавливание пыли диаметром менее 5 мкм происходит в электрофильтре.

После очистки газов в скруббер-электрофильтре они нагнетателями направлялись на карбонизацию алюминатных растворов. Нагнетатель выполнен в виде одноцилиндровой двухступенчатой машины одностороннего всасывания. Всасывающий патрубок - прямоугольного сечения, нагнетательный патрубок - круглый. Оба патрубка расположены в нижней половине корпуса и направлены в низ. Воздух, поступающий в нагнетатель, должен быть очищен от твердых минеральных частиц и примесей, которые могут вызвать механический износ или разбаланс ротора. Количество твердых частиц пыли в поступающем в нагнетатели воздухе не должно быть более 0,02 г /м3.

Согласно предлагаемого технического решения очищенные печные газы печей спекания после дополнительной очистки в скруббер - электрофильтрах КМ-21 нагнетателями направляли на передел карбонизации глиноземного цеха АО «РУСАЛ Ачинск». При направлении очищенных газов печи спекания на передел карбонизации глиноземного цеха происходит химическое взаимодействие углекислого газа, содержащегося в отходящих технологических газах печей спекания, с алюминатным раствором в карбонизаторах. Карбонизатор представляет собой цилиндрический сосуд с коническим днищем. Алюминатный раствор после процесса его обескремнивания подается в карбонизатор по трубопроводу, при этом перемешивание производится центральным секционным аэролифтом, путем подачи в него сжатого воздуха. Подвод топочных газов осуществляется через барботеры, опущенные вертикально вниз в раствор. Для очистки и ремонта карбонизатор имеет боковой и нижний люки на конусе и два люка на крышке карбонизатора.

Учитывая, что печные газы содержат в значительном количестве углекислый газ, одним из вариантов снижения величины их выбросов от печей спекания является направление отходящих газов для использования их в технологическом процессе получения гидроксида алюминия. Для реализации такого технического мероприятия было предложено направить отходящие газы печи спекания №1 на предварительную дополнительную очистку в мокрые скруббер - электрофильтры КМ-21 и затем через нагнетательную станцию очищенные от пыли газы перевести на карбонизацию алюминатных растворов.

Карбонизация алюминатных растворов осуществляется барботированием через раствор смеси газов, содержащих СО2. Сущность процесса состоит в нейтрализации едкой щелочи с образованием соды:

При взаимодействии алюминатного раствора с углекислым газом, содержание каустической щелочи уменьшается, что ведет к снижению стойкости алюминатного раствора и выделению гидроксида алюминия в осадок:

При глубокой карбонизации, проводимой на второй стадии (в присутствии карбонатной и бикарбонатной щелочей), происходит разложение оставшегося алюмината натрия с образованием гидроалюмокарбоната натрия :

Образование бикарбоната происходит по реакции:

Выделение гидроксида алюминия происходит по реакции:

Алюминатный раствор после второй стадии обескремнивания из приемного бака насосами откачивался в головной карбонизатор многокорпусной батареи карбонизаторов первой стадии. В головной карбонизатор подавался также «затравочный» гидроксид алюминия, полученный после первой стадии карбонизации и алюмокарбонат натрия, полученный на второй стадии карбонизации. Перемещение пульпы от первого до последнего карбонизатора осуществлялось самотеком по перетокам и транспортными аэролифтами.

В процессе промышленных испытаний дымовые газы, содержащие диоксид углерода, подавали в опущенные, через крышку карбонизатора, барботеры на глубину 5 м от уровня раствора в каждом аппарате. Перемешивание пульпы в карбонизаторах происходило в основном за счет газа, подаваемого на нейтрализацию каустической щелочи в растворе и воздушных перемешивающих аэролифтов. В последний карбонизатор или емкость газ не подавали. Он служил в качестве затвора-выгружателя для стабилизации уровня в газируемых карбонизаторах. Из последнего карбонизатора пульпа поступала в сборные мешалки, а затем на сгущение в одноярусные сгустители.

Газы, прошедшие карбонизацию, выбрасывались в атмосферу, в них контролировалось содержание загрязняющих веществ. Предельно-допустимая концентрация в воздухе - аэрозоли щелочи (в пересчете на NaOH) не превышала установленного предприятию нормативу - 0,5 мг/м3.

Примеры выполнения способ очистки отходящих газов от печей спекания глиноземного производства в АО «РУСАЛ Ачинск» приведены в табл. 1. Пример 1-прототип, примеры 2-4 заявляемый способ.

Анализ табл. 1 показал, что выполнение способа по прототипу (дополнительная очистка в скруббере) обеспечивает достаточно высокую эффективность очистки от пыли неорганической (98,5%), но не приводит к необходимой степени очистки отходящих газов от печей спекания от диоксида углерода, при этом содержание диоксида углерода в выбросах в атмосферу составляет 12,8%. Проведение очистки газов печей спекания согласно предлагаемого способа при направлении их в технологический процесс карбонизации алюминатного раствора приводит к высокой степени очистки от диоксида, при этом остаточное содержание 1,0%. Применение согласно предлагаемого способа дополнительной очистки в скррубер-электрофильтрах обеспечивает высокую степень очистки от пыли (99,9%), необходимую для направления этих газов на карбонизаторы. Использование в карбонизаторах газов с содержанием пыли неприемлемо, так как приводит к загрязнению нежелательными примесями товарный продукт гидроксид алюминия и глинозем. Направление на карбонизацию газов с содержанием диоксида углерода менее 18,5% снижает производительность технологического процесса выделения гидроксида алюминия и требует большее количества пропускания газов после «мокрой очистки» в карбонизаторы. При этом выбросы диоксида углерода в атмосферу увеличиваются до 1,5%. Использование отходящих газов от печей спекания с содержанием диоксида углерода более 18,5% не приводит к увеличению их степени очистки при направлении их на карбонизацию. Регулирование содержанием диоксида углерода в отходящих газах печей спекания можно осуществлять, применяя их смешение в газоходах при направлении их на дополнительную очистку в скруббер-электрофильтры. При этом содержание диоксида углерода в отходящих газах для 12 печей спекания различное и составляет от 15 до 23%.

Предлагаемый способ очистки отходящих газов от печей спекания обеспечивает эффективную очистку от пыли и диоксида углерода путем дополнительной предварительной очистки их от пыли в скруббер-электрофильтрах и последующим направлением их для использования в технологическом процессе получения гидроксида алюминия. В направляемых на карбонизацию газах для полного выделения гидроксида алюминия из алюминатного раствора необходимо поддерживать массовую долю диоксида углерода не менее 18,5%. При этом в выбросах отходящих газов после использования их в технологическом процессе карбонизации алюминатных растворов обеспечивается более низкое содержание диоксида углерода.

Способ очистки отходящих газов от печей спекания глиноземного производства, включающий их многостадийную очистку в пылевой камере, циклонах, электрофильтрах и последующую «мокрую» очистку, отличающийся тем, что «мокрую» очистку газов осуществляют в скруббер-электрофильтрах и затем направляют их в карбонизаторы гидрохимического получения гидроксида алюминия, при этом поддерживают массовую долю диоксида углерода в очищенных газах при направлении их на карбонизацию не менее 18,5%.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 71.
25.08.2017
№217.015.c89e

Водка "аромат сибири"

Водка особая получена из сахарного сиропа концентрацией 65,80%, спирта ректификованного «Люкс», воды питьевой исправленной и ароматного спирта из соцветий черемухи обыкновенной и лабазника вязолистного при следующем использовании исходных ингредиентов на 1000 дал водки крепостью 42 об.%:...
Тип: Изобретение
Номер охранного документа: 0002619164
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.d319

Безалкогольный газированный напиток "сибирское солнце"

Изобретение относится к пищевой промышленности, в частности к напиткам безалкогольным газированным. Для получения 1000 литров напитка безалкогольного газированного «Сибирское солнце» используют воду питьевую, 95 л сока из ягод морошки, 19,2-75,16 кг сахара, 1,408-2,46 кг кислоты лимонной, 0,35...
Тип: Изобретение
Номер охранного документа: 0002621910
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.d3dd

Способ получения пюре из плодов крыжовника

Изобретение относится к пищевой промышленности. Способ получения пюре из плодов ягод крыжовника включает сортировку, калибровку, мойку, обработку СВЧ-энергией. Плоды ягод крыжовника подвергают воздействию СВЧ-энергии с частотой 2450 МГц при мощности 800 ватт в одну стадию, на которой плоды...
Тип: Изобретение
Номер охранного документа: 0002622261
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d68f

Способ кормления цыплят-бройлеров

Изобретение относится к кормопроизводству, в частности к минеральным кормовым добавкам для цыплят-бройлеров. Способ кормления цыплят-бройлеров предусматривает введение в рацион минерального премикса, в качестве которого используют отход глиноземного производства - белитовый шлам в сочетании с...
Тип: Изобретение
Номер охранного документа: 0002622917
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d6a4

Безалкогольный газированный напиток "рубин"

Изобретение относится к пищевой промышленности, в частности к безалкогольным напиткам. Безалкогольный газированный напиток содержит следующие ингредиенты, на 1000 л напитка: по 42-45 кг сока голубики и морошки, 1,5–2,0 кг кислоты лимонной, 22-25 кг сахара, 3,5–4,0 кг двуокиси углерода и воду....
Тип: Изобретение
Номер охранного документа: 0002622922
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.dec6

Установка для отгонки эфирного масла

Изобретение относится к оборудованию эфиромасличной промышленности. Установка для отгонки эфирного масла, содержащая герметичный паровой котел и варочный котел, сообщенный паропроводом с охладителем и флорентиной, причем варочный котел снабжен набором решетчатых кассет в виде замкнутого кольца,...
Тип: Изобретение
Номер охранного документа: 0002624957
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.deed

Устройство для автоматического полива растений

Изобретение относится к оросительным устройствам и может использоваться для автоматического полива растений. Устройство для автоматического полива растений содержит герметичный резервуар с питающей жидкостью. Снизу резервуара установлена выходная трубка с гидрозатвором. Сверху резервуара...
Тип: Изобретение
Номер охранного документа: 0002624951
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.deef

Безалкогольный газированный напиток "рубиновое солнце"

Изобретение относится к пищевой промышленности, в частности к безалкогольным газированным напиткам. Напиток получен из соков брусники и малины, взятых в соотношении 1:1, хвойного кедрового экстракта, сахарина натрия, двуокиси углерода и воды. Изобретение позволяет получить напиток со...
Тип: Изобретение
Номер охранного документа: 0002624965
Дата охранного документа: 11.07.2017
19.01.2018
№218.016.0270

Устройство для шелушения зерна плёнчатых культур

Изобретение относится к пищевой и зерноперерабатывающей промышленности и может быть использовано при шелушении зерна. Устройство для шелушения зерна содержит питающий бункер с загрузочным патрубком, вентилятор с лопастями, шелушильную камеру, имеющую сменные винтообразные вертикальные рабочие...
Тип: Изобретение
Номер охранного документа: 0002630245
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.0281

Устройство для обработки сока и жмыха ягод энергосберегающими методами

Изобретение относится к сельскому хозяйству, именно к средствам для обработки сока и жмыха ягод. В устройстве сок после пресса под воздействием СВЧ-модуля обеззараживается и без контакта с окружающей средой упаковывается. В тоже время жмых после пресса по транспортерной ленте в рабочей камере...
Тип: Изобретение
Номер охранного документа: 0002630248
Дата охранного документа: 06.09.2017
Показаны записи 11-18 из 18.
21.03.2019
№219.016.eb0b

Способ кристаллизации сульфата натрия из растворов газоочистки производства алюминия

Изобретение может быть использовано в металлургии. Способ кристаллизации сульфата натрия из растворов газоочистки электролитического производства алюминия включает насыщение растворов газоочистки сульфатом натрия до процесса кристаллизации, отделение и обезвоживание образовавшегося осадка....
Тип: Изобретение
Номер охранного документа: 0002682555
Дата охранного документа: 19.03.2019
08.04.2019
№219.016.fea7

Способ рекультивации породных отвалов

Способ рекультивации породных отвалов включает укладку отходов в отвал, покрытие их слоем почвенного грунта и посев трав. Почвенный слой формируют путем внесения в голый грунт субстрата, приготовленного из смеси ила с городских очистных сооружений, ила со дна пруда-охладителя вод...
Тип: Изобретение
Номер охранного документа: 0002684236
Дата охранного документа: 04.04.2019
12.04.2019
№219.017.0b7b

Известковое удобрение для кислых почв

Изобретение относится к получению мелиорантов и может быть использовано в сельском хозяйстве для снижения кислотности почв. В качестве известкового удобрения для кислых почв используют пыль 1-3 полей электрофильтра печей спекания глиноземного производства в виде тонкодисперсного порошка с...
Тип: Изобретение
Номер охранного документа: 0002684598
Дата охранного документа: 09.04.2019
04.10.2019
№219.017.d1e8

Способ получения удобрения-мелиоранта силикатно-известнякового типа

Изобретение относится к сельскому хозяйству. Способ получения удобрениямелиоранта силикатноизвестнякового типа путем смешения известкового материала с силикатным, при этом с целью повышения раскисляющей способности, эффективности мелиоранта и снижения затрат на его приготовление в качестве...
Тип: Изобретение
Номер охранного документа: 0002701956
Дата охранного документа: 02.10.2019
12.10.2019
№219.017.d4ae

Способ переработки нефелиновых руд и концентратов

Изобретение может быть использовано в химической промышленности для получения глинозема и содопродуктов. Переработка нефелиновых руд и концентратов включает подготовку нефелиново-известняково-содовой шихты с введением в нее глиноземсодержащей добавки, спекание и выщелачивание подготовленной...
Тип: Изобретение
Номер охранного документа: 0002702590
Дата охранного документа: 08.10.2019
22.12.2019
№219.017.f0ad

Способ формирования корнеобитаемого слоя поверхности отвалов, образованных отрытой разработкой полезных ископаемых

Изобретение относится к восстановлению нарушенных земель при открытой разработке месторождений полезных ископаемых. Для формирования корнеобитаемого слоя поверхности отвалов применяют субстрат толщиной слоя 50 см, состоящий из вскрышной породы карьера добычи песка из поймы реки и ила с...
Тип: Изобретение
Номер охранного документа: 0002709713
Дата охранного документа: 19.12.2019
03.07.2020
№220.018.2e0d

Способ управления приготовлением шихты при переработке нефелинового сырья с получением глинозема и содопродуктов

Изобретение относится к процессам цветной металлургии и может быть использовано при переработке щелочного алюмосиликатного сырья, в частности нефелиновых руд. Способ управления приготовлением шихты при переработке нефелинового сырья с получением глинозема и содопродуктов включает изменение...
Тип: Изобретение
Номер охранного документа: 0002725228
Дата охранного документа: 30.06.2020
31.07.2020
№220.018.39ad

Способ восстановления нарушенных земель при открытой разработке месторождений полезных ископаемых

Изобретение относится к области рекультивация отработанных карьеров. Способ включает перемещение и укладку почвенных групп. Перед укладкой субстрата почву предварительно подвергают обработке сульфатом аммония в количестве не менее 200 г на 1 м поверхности нарушенных земель. Применяют укладку...
Тип: Изобретение
Номер охранного документа: 0002728223
Дата охранного документа: 28.07.2020
+ добавить свой РИД