×
20.04.2020
220.018.1626

Результат интеллектуальной деятельности: Устройство для определения скорости испарения капли

Вид РИД

Изобретение

Аннотация: Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения капель жидкости при нагреве внешним тепловым потоком. Устройство включает ультразвуковой левитатор, фиксирующий каплю в акустическом поле резонатора, систему нагрева капли внешним тепловым потоком и систему визуализации. Система нагрева капли включает ксеноновую лампу с регулируемой мощностью, размещенную в фокусе параболического рефлектора. Система визуализации включает две видеокамеры, расположенные с возможностью регистрации формы и размеров капли в перпендикулярных плоскостях, а в месте локализации капли установлен перемещаемый датчик лучистого теплового потока с возможностью его удаления перед проведением измерений. Скорость испарения капли определяется из алгебраического соотношения по измеренным размерам капли. Технический результат - повышение точности определения скорости испарения капли. 5 ил., 1 табл.

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения капель жидкости при нагреве внешним тепловым потоком.

Изучение процессов испарения жидких капель имеет большое практическое значение при проектировании различных энергетических устройств, оптимизации технологий тушения пожаров, а также в ряде других практических приложениях [1, 2].

Для оценки адекватности существующих теоретических моделей (диффузионная модель Сполдинга, модель фазового перехода и др.), а также разрабатываемых моделей испарения необходимо экспериментальное исследование скорости испарения капли.

Известен способ измерения скорости испарения капли с помощью видеосъемки при ее гравитационном осаждении в горячих продуктах сгорания жидкого топлива [3]. При реализации данного способа нагрев капли осуществляется за счет конвективно-радиационного теплообмена. Кроме того, в процессе осаждения наблюдаются деформация и колебания капли. В таких условиях выявить влияние различных эффектов на скорость испарения капли не представляется возможным.

Известны способы измерения скорости испарения неподвижной капли, помещенной на нагретую металлическую пластину [1], подвешенной на кольце из тонкой (диаметром 25 мкм) проволоки [4] или закрепленной на торце асбестовой нити [5]. Нагрев капли осуществлялся потоком горячего воздуха. Недостатком этих способов является необходимость учета кондуктивного теплообмена между каплей и фиксирующими каплю элементами.

Известен способ определения скорости испарения капель жидкости в потоке нагретого газа [6]. Определение скорости испарения проводят на каплях, свободно взвешенных в восходящем газовом потоке внутри конической трубки, в режиме опускания капли по мере ее испарения. Для этого периодически уменьшают расход газа, регистрируют размеры капель, проходное сечение канала по высоте расположения капли и расход газа.

Наиболее близким по технической сущности к заявленному изобретению является устройство для определения скорости испарения и горения группы мелких капель [7]. Левитирующие капли жидкости фиксируются по оси камеры сгорания при помощи акустического поля и нагреваются от горячих стержней, расположенных в нижней части камеры. Температура в камере измеряется датчиками температуры, а изменение размеров капель фиксируется высокоскоростной камерой через прозрачное окно в стенке камеры сгорания. Нагрев капель в данном устройстве реализуется за счет комбинированного теплообмена, включающего конвективный, кондуктивный и лучистый механизмы.

Техническим результатом настоящего изобретения является повышение точности определения скорости испарения капли.

Технический результат достигается тем, что разработано устройство для определения скорости испарения капли, включающее ультразвуковой левитатор, локализующий каплю в акустическом поле резонатора, систему нагрева капли внешним тепловым потоком и систему визуализации. Система нагрева капли включает ксеноновую лампу с регулируемой мощностью излучения, размещенную в фокусе параболического рефлектора. Система визуализации включает две видеокамеры, расположенные с возможностью регистрации формы и размеров капли в перпендикулярных плоскостях. В месте локализации капли установлен перемещаемый датчик лучистого теплового потока с возможностью его удаления перед проведением измерений. Скорость испарения капли определяется из соотношения

где W(ti) - скорость испарения капли в момент времени ti, кг/(м2⋅с);

ρ - плотность жидкости, кг/м;

Δt- промежуток времени между регистрируемыми видеокадрами, с;

n - количество регистрируемых видеокадров в процессе испарения капли;

- радиус эквивалентной сферической капли равного объема в момент времени ti, м;

a(ti) и b(ti), - значения размеров капли по горизонтальным осям в перпендикулярных плоскостях, a c(ti) значение размера капли по вертикальной оси в момент времени ti, м;

- среднее значение размера капли по вертикальной оси в момент времени ti, м;

с(1)(ti), с(2)(ti) - значения размеров капли по вертикальной оси в момент времени ti, измеренные 1-й и 2-й видеокамерами, м.

Сущность изобретения поясняется схемой, приведенной на Фиг. 1. Устройство включает ультразвуковой левитатор, содержащий пьезоэлектрический преобразователь 1 установленный на пластине 2 и соединенный с усилителем мощности 3, генератором колебаний 4 и источником питания 5. Акустическое поле формируется в резонаторе между пластиной 2 и отражателем 6, соединенным с микрометрическим винтом 7 для регулирования расстояния между пластиной 2 и отражателем 6 (высоты резонатора). Ксеноновая лампа 8 с регулируемой мощностью излучения, помещенная в фокусе параболического рефлектора 9 используется для нагрева и подсветки левитирующей капли 10. Видеокамеры 11, расположенные в перпендикулярных плоскостях, обеспечивают двухракурсную съемку испаряющейся капли 10. Параболический рефлектор 9 расположен таким образом, чтобы исключить попадание светового потока в объективы видеокамер 11. Перемещаемый датчик теплового потока (на Фиг. 1 не показан) установлен в месте расположения левитирующей капли.

Устройство работает следующим образом. Исследуемую каплю жидкости заданной массы с помощью капилляра помещают в резонатор и путем регулирования усилителя мощности 3 и перемещения микрометрического винта 7 добиваются ее устойчивой левитации в акустическом поле. Затем каплю удаляют, а на ее место устанавливают перемещаемый датчик теплового потока, ориентированный тепловоспринимающей поверхностью в сторону ксеноновой лампы 8. Включают ксеноновую лампу 8 при заданной мощности излучения и регистрируют величину теплового потока в этой точке резонатора. Затем датчик теплового потока удаляют, включают генератор 4, создающий акустическое поле между пластиной 2 и отражателем 6. В резонатор снова помещают каплю 10 исследуемой жидкости заданной массы. Поскольку масса капли одинакова, она будет устойчиво фиксироваться в точке резонатора, для которой проведена градуировка величины теплового потока. Видеосъемку процесса испарения капли проводят видеокамерами 11 при включенной ксеноновой лампе 8.

По результатам измерений размеров капли в трех плоскостях рассчитывают радиус эквивалентной сферической капли R(ti) в моменты времени ti и по соотношению (1) рассчитывают скорость испарения капли W(ti) в соответствующие моменты времени.

Достижение положительного эффекта изобретения обеспечивается следующими факторами.

1. Использование ксеноновой лампы с регулируемой мощностью излучения, помещенной в фокусе параболического рефлектора, обеспечивает подачу равномерного лучистого теплового потока задаваемой интенсивности на исследуемую каплю.

2. Использование двух видеокамер, расположенных с возможностью регистрации формы и размеров капли a(ti), b(ti), c(ti) в перпендикулярных плоскостях, позволяет повысить точность определения радиуса эквивалентной сферической капли с учетом ее деформации в процессе испарения (Фиг. 2):

3. Установка перемещаемого датчика лучистого теплового потока в месте локализации левитирующей капли позволяет строго контролировать уровень теплового потока, действующего на каплю. Удаление датчика перед проведением измерений исключает возмущение акустического поля в резонаторе в процессе испарения капли.

4. При локализации капли в резонаторе ультразвукового левитатора под воздействием акустического поля происходит ее деформация в виде сплющенного сфероида (Фиг. 3). По мере испарения капли и уменьшения ее массы степень деформации уменьшается и форма капли приближается к сферической. Для уменьшения погрешности определения скорости испарения сфероидальной капли расчет скорости испарения проводится для эквивалентной сферической капли радиусом R, объем которой равен объему сфероида.

Объем эквивалентной сферической капли равен:

Объем сфероидальной капли (Фиг. 3) равен [8]:

Приравнивая (3) и (4), получим радиус эквивалентной сферической капли:

Изменение массы эквивалентной сферической капли в процессе испарения определяется соотношением [2]

где масса капли, кг;

R - радиус эквивалентной сферической капли, м;

S=4πR2 - площадь поверхности эквивалентной сферической капли, м;

W - скорость испарения, кг/(м2⋅с).

Дифференцируя (6), получим

или

Заменяя в (7) производную dR/dt конечными разностями

i=1,2,…,n,

получим формулу (1) для определения скорости испарения капли:

i=1,2,…,n.

Пример реализации

В качестве примера реализации заявляемого изобретения была разработана и изготовлена лабораторная установка (Фиг. 4), на которой проведены эксперименты по определению скорости испарения капель дистиллированной воды. Постоянное напряжение от источника 5 преобразуется генератором колебаний 4 в переменное напряжение частотой 24 кГц и подается на пьезоэлектричесий элемент 1. Отражатель 6 закреплен на микрометрическом винте 7 для регулирования высоты резонатора. Капля воды диаметром (2÷3) мм формировалась с помощью капилляра и фиксировалась в резонаторе между пластиной 2 и отражателем 6.

Лучистый тепловой поток создавался ксеноновой лампой ДКсР-3000 М, помещенной в фокусе параболического рефлектора. Величина теплового потока в месте локализации капли, определенная при помощи измерителя тепловых потоков Ophir Optronics FL500A, составляла q=(0.5÷1.5) Вт/см2 в зависимости от величины напряжения на ксеноновой лампе и расстояния до левитатора. Визуализация процесса испарения капли проводилась двумя цифровыми видеокамерами "Panasonic HDC-SD60». Размеры капли в трех плоскостях a(ti), b(ti), c(ti) определялись обработкой видеокадров процесса испарения в программном комплексе Corel DRAW.

На Фиг. 5 приведены графики изменения эквивалентного радиуса капли дистиллированной воды для двух значений теплового потока. Скорость испарения капли рассчитывалась по формуле (1). Результаты измерений приведены в таблице 1.

Приведенный пример показывает, что при реализации заявляемого изобретения достигается положительный эффект, заключающийся в повышении точности определения скорости испарения капли.

ЛИТЕРАТУРА

1. Высокомерная О.В., Кузнецов Г.В., Стрижак П.А. Испарение и трансформация капель и больших массивов жидкости при движении через высокотемпературные газы. - Новосибирск: Изд-во СО РАН, 2016. - 302 с.

2. Терехов В.И., Пахомов М.А. Тепломассоперенос и гидродинамика в газокапельных потоках. - Новосибирск: Изд-во НГТУ, 2008. - 284 с.

3. Волков Р.С., Высокоморная О.В., Кузнецов Г.В., Стрижак П.А. Экспериментальное исследование изменения массы капель воды при их движении через высокотемпературные продукты сгорания // Инж.-физ. журн. 2013. Т. 86, №6. - С. 1327-1332.

4. Терехов В.И., Шишкин Н.Е. Экспериментальное исследование испарения капель наножидкости в потоке сухого воздуха// Современная наука. 2011, №2 (7). - С. 197-200.

5. Терехов В.И., Шишкин Н.Е., Ли Х.-К. Влияние поверхностно-активного вещества на испарение водяных капель // Современная наука. 2011, №2 (7). - С. 215-219.

6. А.С. СССР №1318880, МПК G01N 25/02, Способ определения скорости испарения капель жидкости в потоке газа / Гольдин Г.С., Железное СВ. - заявл. 03.07.1985; опубл. 23.06.1987 Бюл. №23.

7. Patent China CN 107202812 А, МПК G01N 25/02, Acoustic levitation multi-droplet evaporation and combustion experiment device and method / Wang Wei, Wang Jigang, Wang Xun, Ren Guilong, Kim Zhungliang, He Qiang, Tang Literature. - заявл. 08.09.2016; опубл. 26.09.2017/

8. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся вузов. М: Наука, 1981. - 720 с.


Устройство для определения скорости испарения капли
Устройство для определения скорости испарения капли
Устройство для определения скорости испарения капли
Устройство для определения скорости испарения капли
Устройство для определения скорости испарения капли
Устройство для определения скорости испарения капли
Устройство для определения скорости испарения капли
Устройство для определения скорости испарения капли
Источник поступления информации: Роспатент

Показаны записи 11-20 из 29.
29.05.2018
№218.016.5710

Способ самоорганизации оптически активного ансамбля диамагнитных наночастиц электрон-ион

Изобретение относится к квантовой технике. Способ самоорганизации оптически активного ансамбля диамагнитных наночастиц электрон-ион заключается в создании объема когерентности, где на каждую молекулу резонансно по энергии воздействуют векторной суммой коллектива полей, состоящего из...
Тип: Изобретение
Номер охранного документа: 0002655052
Дата охранного документа: 23.05.2018
21.10.2018
№218.016.94ab

Устройство для создания компактного кластера монодисперсных пузырьков

Изобретение относится к аэрационным устройствам, предназначенным для введения газа в жидкую среду, в частности к устройствам для получения компактного кластера пузырьков одинакового размера. Устройство включает размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической...
Тип: Изобретение
Номер охранного документа: 0002670228
Дата охранного документа: 19.10.2018
19.01.2019
№219.016.b1e9

Снаряд для стрельбы в водной среде

Изобретение относится к снарядам, движущимся в водной среде. Снаряд содержит корпус, в котором размещен реактивный двигатель с центральным соплом, баллистический наконечник, выполненный в виде усеченного конуса, и кольцевое сопло для вдува газа в водную среду. В качестве реактивного двигателя...
Тип: Изобретение
Номер охранного документа: 0002677506
Дата охранного документа: 17.01.2019
29.03.2019
№219.016.eddd

Установка для исследования динамики всплытия пузырькового кластера в жидкости

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей всплытия компактного пузырькового кластера в жидкости. Установка включает прозрачную призматическую кювету с жидкостью, устройство для...
Тип: Изобретение
Номер охранного документа: 0002683147
Дата охранного документа: 26.03.2019
11.04.2019
№219.017.0b63

Линейный реверсивный вибродвигатель

Изобретение относится к электротехнике и может быть использовано как исполнительный элемент для прецизионных перемещений в оптико-механических приборах, в технологическом оборудовании для микроэлектроники, в системах автоматического наведения, в механических сканирующих устройствах и...
Тип: Изобретение
Номер охранного документа: 0002684395
Дата охранного документа: 09.04.2019
24.05.2019
№219.017.5ddb

Способ измерения интегрального коэффициента излучения поверхности твердого материала

Изобретение относится к области измерений в теплофизике, в частности к способам определения интегрального коэффициента излучения поверхности твердых материалов, и может быть использовано при измерении интегрального коэффициента излучения теплозащитных материалов. Способ включает измерение...
Тип: Изобретение
Номер охранного документа: 0002688911
Дата охранного документа: 22.05.2019
07.06.2019
№219.017.756c

Способ получения потока капель с регулируемым дисперсным составом

Изобретение относится к средствам распыливания жидкостей и растворов и может быть использовано в двигателестроении, химической и лакокрасочной промышленности. Способ получения потока капель с регулируемым дисперсным составом включает распыливание жидкости в газообразной среде центробежной...
Тип: Изобретение
Номер охранного документа: 0002690802
Дата охранного документа: 05.06.2019
13.06.2019
№219.017.818e

Способ оценки взрыво- и пожароопасности химических источников тока

Изобретение относится к области производства и испытаний химических элементов питания и может быть использовано для оценки их взрыво- и пожароопасности при эксплуатации. Пробивание корпуса цилиндрической батареи осуществляют по ее диаметру заостренным металлическим стержнем диаметром (4÷5) мм в...
Тип: Изобретение
Номер охранного документа: 0002691196
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8ccc

Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния

Изобретение относится к области металлургии легких сплавов, в частности к способам получения литьем сплавов на основе алюминия и магния. Способ получения отливок из дисперсно-упрочненных сплавов на основе алюминия или магния включает предварительный нагрев герметичной цилиндрической камеры, на...
Тип: Изобретение
Номер охранного документа: 0002691826
Дата охранного документа: 18.06.2019
19.07.2019
№219.017.b678

Способ определения коэффициента сопротивления твердых сферических частиц в неизотермических условиях

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения твердых частиц в жидкости. Способ включает введение частиц в кювету с вязкой жидкостью, выполненную в виде правильной призмы...
Тип: Изобретение
Номер охранного документа: 0002694793
Дата охранного документа: 16.07.2019
Показаны записи 11-20 из 71.
10.08.2015
№216.013.6b82

Способ получения металлических порошков распылением расплавов

Изобретение относится к области порошковой металлургии. Струю металлического расплава диспергируют окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний. Звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин,...
Тип: Изобретение
Номер охранного документа: 0002559080
Дата охранного документа: 10.08.2015
10.11.2015
№216.013.8d4c

Способ получения модифицированных алюминиевых сплавов

Изобретение относится к получению упрочненных легких сплавов на основе алюминия. В расплав алюминиевого сплава при температуре 750÷800ºС вводят 6 мас.% порошка криолита NaAlF, через промежуток времени не менее 10 мин в расплав вводят 5÷6 мас.% модификатора при одновременной активации расплава...
Тип: Изобретение
Номер охранного документа: 0002567779
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.9420

Твердотопливный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к конструкциям зарядов твердотопливных ракетных двигателей. Ракетный двигатель включает камеру сгорания, пластинчатый заряд твердого топлива из сплошных и перфорированных дисков, боковая поверхность которого покрыта бронирующим...
Тип: Изобретение
Номер охранного документа: 0002569539
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9486

Способ определения характеристик зажигания образцов высокоэнергетических материалов лучистым тепловым потоком

Изобретение относится к области исследования характеристик высокоэнергетических материалов (ВЭМ) и может быть использовано для определения времени задержки зажигания ВЭМ лучистым тепловым потоком. Способ заключается в непосредственном измерении времени задержки зажигания ВЭМ, на поверхность...
Тип: Изобретение
Номер охранного документа: 0002569641
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95c4

Гибридный ракетный двигатель

Изобретение относится к области ракетной техники, в частности к конструкциям гибридных ракетных двигателей космического назначения. Гибридный ракетный двигатель содержит камеру сгорания с размещенным в ней зарядом твердого топлива с внутренним сквозным каналом и сопловой блок. Во входном...
Тип: Изобретение
Номер охранного документа: 0002569960
Дата охранного документа: 10.12.2015
13.01.2017
№217.015.6881

Вихревой ракетный двигатель малой тяги на газообразном топливе

Изобретение относится к области ракетной техники и может быть использовано при разработке ракетных двигателей, работающих на газообразных компонентах топливной смеси. Вихревой ракетный двигатель малой тяги на газообразном топливе содержит камеру сгорания с соплом и тангенциальные завихрители...
Тип: Изобретение
Номер охранного документа: 0002591391
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.68f0

Автомат аварийного закрытия крана магистрального газопровода

Изобретение относится к области арматуростроения и предназначено для использования при транспортировке газов по магистральным газопроводам. Автомат аварийного закрытия крана магистрального газопровода содержит две соединенные с газопроводом управляющие камеры, сообщающиеся между собой через...
Тип: Изобретение
Номер охранного документа: 0002591979
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7c78

Способ получения трехмерных керамических изделий

Изобретение относится к области порошковой металлургии, в частности к способу получения трехмерных керамических изделий. Техническим результатом является повышение технологичности процесса изготовления и расширение номенклатуры изделий. Технический результат достигается способом получения...
Тип: Изобретение
Номер охранного документа: 0002600647
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.9ddb

Способ исследования процесса гравитационного осаждения совокупности твердых частиц в жидкости

Изобретение относится к области разработки способов и установок для лабораторных исследований физических процессов, в частности для исследования закономерностей движения совокупности твердых частиц в жидкой среде при их гравитационном осаждении. Частицы предварительно смачивают водным раствором...
Тип: Изобретение
Номер охранного документа: 0002610607
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a0a0

Эжекционная форсунка для распыления расплавов

Изобретение относится к области порошковой металлургии и может быть использовано для получения металлических порошков. Эжекционная форсунка для распыления расплавов содержит корпус с кольцевой щелью для подачи горячего сжатого газа, ниппель с защитным чехлом и центральным каналом для подачи...
Тип: Изобретение
Номер охранного документа: 0002606674
Дата охранного документа: 10.01.2017
+ добавить свой РИД