×
19.01.2019
219.016.b1e9

Результат интеллектуальной деятельности: Снаряд для стрельбы в водной среде

Вид РИД

Изобретение

Аннотация: Изобретение относится к снарядам, движущимся в водной среде. Снаряд содержит корпус, в котором размещен реактивный двигатель с центральным соплом, баллистический наконечник, выполненный в виде усеченного конуса, и кольцевое сопло для вдува газа в водную среду. В качестве реактивного двигателя используется ракетный двигатель твердого топлива, заряд твердого топлива имеет сквозной осевой канал звездообразного сечения. В дозвуковой части центрального сопла расположен воспламенитель, выполненный с возможностью задержки зажигания твердого топлива. В головной части корпуса выполнено цилиндрическое углубление, в котором с зазором, сопряженным с внутренней образующей цилиндрического углубления, установлен баллистический наконечник. По оси баллистического наконечника выполнен сквозной канал, сообщающийся с каналом заряда твердого топлива и имеющий сужение в головной части баллистического наконечника. Кольцевой зазор между баллистическим наконечником и цилиндрическим углублением соединен не менее, чем тремя симметрично расположенными радиальными каналами со сквозным каналом баллистического наконечника и образует кольцевое сопло, выполненное с возможностью вдува в водную среду продуктов сгорания заряда твердого топлива под углом к продольной оси снаряда в направлении его кормовой части. В сужении сквозного канала баллистического наконечника плотно установлена цилиндрическая пробка с возможностью ее вылета под действием давления продуктов сгорания заряда твердого топлива. Давление продуктов сгорания в осевом канале твердого топлива, площадь критического сечения центрального реактивного сопла, площади поперечного сечения сужения сквозного канала баллистического наконечника и кольцевого зазора, суммарная площадь поперечного сечения радиальных каналов, время задержки зажигания заряда твердого топлива и угол вдува продуктов сгорания через кольцевое сопло определяются по заданным алгебраическим формулам. Технический результат заключается в увеличении дальности стрельбы снаряда в водной среде. 2 з.п. ф-лы, 3 табл., 5 ил.

При движении снаряда в водной среде сила сопротивления определяется соотношением [1]

где Сх - коэффициент сопротивления;

Sм - площадь миделева сечения тела;

ρ - плотность воды;

V - скорость движения снаряда. В водной среде сопротивление движению снаряда, в соответствие с (1), резко возрастает, поскольку плотность воды на три порядка выше плотности воздуха. Для повышения дальности стрельбы и обеспечения достаточной скорости снаряда в конечной точке траектории необходимо увеличение начальной (дульной) скорости V0 снаряда, уменьшение площади миделева сечения Sм (калибра снаряда) и уменьшение коэффициента сопротивления Сх. Повышение дульной скорости V0 неэффективно, поскольку при этом возрастает сила сопротивления (F~V02). При уменьшении калибра снаряда снижается его масса и, следовательно, начальная кинетическая энергия, что приводит к уменьшению дальности стрельбы.

Известен патрон стрелкового оружия для подводной среды [2], в котором пуля состоит из головной части с плоским кавитатором, цилиндрической ведущей части и конической кормовой части. При этом пуля движется в водной среде в режиме суперкавитации. Сопротивление движению суперкавити-рующего снаряда, полностью охватываемого газовой каверной, равно сопротивлению кавитатора и рассчитывается по формуле [2]

где Сх=0.82 - коэффициент сопротивления;

Sк - площадь поперечного сечения кавитатора.

Поскольку Sк<<Sм, сопротивление движению снаряда резко снижается.

Недостатком данного технического решения является возможность замыкания газовой каверны на корпус достаточно удлиненного снаряда, что приводит к резкому увеличению сопротивления в соответствие с соотношением (1). Кроме того, формирование каверны плоским кавитатором реализуется при скоростях движения снаряда, превышающих некоторое критическое значение V≥ V*. Величина V* зависит от глубины, на которой движется снаряд, и варьируется в пределах V*=(10÷200) м/с [4, 5].

Известна торпеда с устройством для создания вокруг ее корпуса регулируемой газовой оболочки [6]. За наклонным плоским кавитатором с помощью поддува газа формируется искусственная (вентилируемая) каверна. Использование вдува газа позволяет исключить замыкание каверны на корпус торпеды.

Наиболее близким по технической сущности к заявляемому изобретению является высокоскоростной снаряд [7], содержащий удлиненный конический корпус с кавитатором на острие, маршевый жидкостной реактивный двигатель с центральным соплом и дополнительный газогенератор, установленный в головной части снаряда. Газогенератор через кольцевое сопло осуществляет вдув газа в каверну, окружающую снаряд, препятствуя ее замыканию на корпус. Ракетный двигатель с центральным соплом создает дополнительную тягу для увеличения дальности движения снаряда.

Техническим результатом настоящего изобретения является увеличения дальности стрельбы снаряда в водной среде за счет обеспечения режима суперкавитации на всей траектории его движения.

Технический результат изобретения достигается тем, что разработан снаряд для стрельбы в водной среде, содержащий корпус, в котором размещен реактивный двигатель с центральным соплом, баллистический наконечник, выполненный в виде усеченного конуса, и кольцевое сопло для вдува газа в водную среду. В качестве реактивного двигателя используется ракетный двигатель твердого топлива, заряд твердого топлива имеет сквозной осевой канал звездообразного сечения. В дозвуковой части центрального сопла расположен воспламенитель, выполненный с возможностью задержки зажигания твердого топлива. В головной части корпуса выполнено цилиндрическое углубление, в котором с зазором, сопряженным с внутренней образующей цилиндрического углубления, установлен баллистический наконечник. По оси баллистического наконечника выполнен сквозной канал, сообщающийся с каналом заряда твердого топлива и имеющий сужение в головной части баллистического наконечника. Кольцевой зазор между баллистическим наконечником и цилиндрическим углублением соединен не менее, чем тремя симметрично расположенными радиальными каналами со сквозным каналом баллистического наконечника и образует кольцевое сопло, выполненное с возможностью вдува в водную среду продуктов сгорания заряда твердого топлива под углом к продольной оси снаряда в направлении его кормовой части. В сужении сквозного канала баллистического наконечника плотно установлена цилиндрическая пробка с возможностью ее вылета под действием давления продуктов сгорания заряда твердого топлива. Давление продуктов сгорания в осевом канале твердого топлива, площадь критического сечения центрального реактивного сопла, площади поперечного сечения сужения сквозного канала баллистического наконечника и кольцевого зазора, суммарная площадь поперечного сечения радиальных каналов, время задержки зажигания заряда твердого топлива и угол вдува продуктов сгорания через кольцевое сопло определяются соотношениями

,

,

,

где рк - давление продуктов сгорания в осевом канале твердого топлива;

V*=100 м/с - скорость снаряда в момент зажигания заряда твердого топлива;

k - показатель адиабаты продуктов сгорания твердого топлива;

Sкр - площадь критического сечения центрального реактивного сопла;

ρm - плотность твердого топлива;

Sm - площадь поверхности горения заряда твердого топлива;

р1 - атмосферное давление;

u1 - скорость горения твердого топлива при атмосферном давлении р1;

ν - показатель в степенном законе скорости горения твердого топлива;

R - газовая постоянная продуктов сгорания твердого топлива;

Тр - температура горения твердого топлива;

ϕ - коэффициент расхода сопла;

- функция показателя адиабаты;

Sрк - суммарная площадь поперечного сечения радиальных каналов;

Sн - площадь поперечного сечения сужения сквозного канала баллистического наконечника;

Sкс - площадь поперечного сечения кольцевого зазора;

tign - время задержки зажигания заряда твердого топлив;

m0 - начальная масса снаряда;

V0 - начальная (дульная) скорость снаряда;

β - угол вдува продуктов сгорания через кольцевое сопло.

Баллистический наконечник выполнен из металла с высокой плотностью. Торцевые поверхности заряда твердого топлива покрыты бронирующим составом, предотвращающим их горение.

Сущность изобретения поясняется схемой снаряда для стрельбы в водной среде, реализующего заявляемый способ (Фиг. 1). Снаряд для стрельбы в водной среде содержит цилиндрический корпус 1 с зарядом твердого топлива 2, баллистический наконечник 3 и центральное сопло 5. В предсопловом объеме размещен замедлитель 16 с закрепленным на нем воспламенителем 6. Заряд твердого топлива 2, покрытый бронирующим составом 15 по торцевым поверхностям, имеет сквозной осевой канал звездообразной формы 7 (Фиг. 2). Баллистический наконечник 3 установлен в цилиндрическом углублении 8 корпуса 1 с кольцевым зазором 9. Передний торец баллистического наконечника 3 является плоским кавитатором 4. Кольцевой зазор 9 сопряжен с внутренней образующей цилиндрического углубления 8 корпуса 1 и закреплен на нем с помощью резьбового соединения 17. Сквозной канал 10, выполненный по оси баллистического наконечника 3, сообщается со сквозным осевым каналом 7 заряда твердого топлива 2. Сквозной канал 10 имеет сужение 11 в головной части баллистического наконечника 3, в котором плотно установлена цилиндрическая пробка 14. Кольцевой зазор 9 соединен симметрично расположенными радиальными каналами 12 со сквозным каналом 10 баллистического наконечника 3, образуя кольцевое сопло 13.

При движении снаряда в стволе орудия происходит воспламенение торцевой поверхности замедлителя 16. Замедлитель 16, плотно установленный в дозвуковой части центрального сопла 5, препятствует зажиганию заряда твердого топлива 2 продуктами сгорания метательного заряда. После вылета снаряда из ствола орудия со скоростью V0 происходит его движение в водной среде в режиме суперкавитации. Через некоторый промежуток времени и, скорость снаряда снижается до критического значения V*, при котором режим суперкавитации не реализуется [4, 5]. В момент времени tign=t* полностью сгорает замедлитель 16, а продукты сгорания замедлителя инициируют закрепленный на нем пиротехнический воспламенитель 6. Продукты сгорания воспламенителя 6 поступают в сквозной осевой канал 7 заряда твердого топлива 2 и поджигают его. Продукты сгорания заряда твердого топлива 2 поступают через сквозной осевой канал 7 в сообщающийся с ним сквозной канал 10 баллистического наконечника 3 и выталкивают цилиндрическую пробку 14 из сужения 11 сквозного канала 10. При этом происходит истечение продуктов сгорания заряда твердого топлива 2 в водную среду через центральное сопло 5 и через сужение 14 сквозного канала 10. Часть продуктов сгорания через радиальные каналы 15 поступают в кольцевой зазор 9 и истекают в водную среду через кольцевое сопло 13 под углом β к продольной оси снаряда в направлении его кормовой части.

Достижение положительного эффекта изобретения обеспечивается следующими факторами.

1. Использование ракетного двигателя твердого топлива с зарядом 2, имеющим сквозной осевой канал звездообразного сечения 7, и забронированными торцевыми поверхностями 15, обеспечивает постоянную поверхность горения [8], надежное воспламенение и устойчивое горение при постоянном внутрикамерном давлении.

2. Использование воспламенителя 6, расположенного в дозвуковой части центрального сопла 5 и выполненного с возможностью задержки зажигания твердого топлива позволяет осуществить надежный запуск ракетного двигателя на траектории движения снаряда с заданным временем задержки зажигания tign.

3. Использование сквозного канала 10 в баллистическом наконечнике 3, имеющего сужение 11 в головной части наконечника 3, плотно закрытое цилиндрической пробкой 4, обеспечивает истечение продуктов сгорания заряда твердого топлива в водную среду через сужение 11 после вылета цилиндрической пробки 4. Вдув продуктов сгорания через сужение 11 сквозного канала 10 обеспечивает разрушение пограничного слоя за счет образования кавитационных пузырьков. При перемещении с потоком жидкости кавитационные пузырьки схлопываются, образуя газовую каверну вокруг головной части снаряда.

4. Использование кольцевого зазора 9, соединенного не менее, чем тремя симметрично расположенными радиальными каналами 12 со сквозным каналом 10 баллистического наконечника 3, обеспечивает равномерное истечение продуктов сгорания твердого топлива в водную среду через кольцевое сопло 13. Вдув продуктов сгорания через кольцевое сопло 13 обеспечивает режим «продуваемой» каверны [4, 5], препятствуя ее замыканию на корпус снаряда.

Таким образом, дополнительный вдув продуктов сгорания заряда твердого топлива 2 через сужение 11 и кольцевое сопло 13 обеспечивает сохранение режима суперкавитации при скоростях движения снаряда V<V*. При этом истечение продуктов сгорания через центральное сопло 5 и кольцевое сопло 13 создает дополнительную реактивную силу, способствующую повышению скорости и дальности движения снаряда.

5. Давление продуктов сгорания рк в осевом канале заряда твердого топлива (в камере сгорания РДТТ) опрелеляется соотношением

где р(Н)=105(1+0,1Н) Па - гидростатическое давление, на глубине погружения Н, где [Н]=м;

ρ=103 кг/м3 - плотность воды.

Проведем обоснование соотношения (3). При движении снаряда в водной среде на его переднем торце (кавитаторе 4) возникает давление [9]

Для того, чтобы расход продуктов сгорания через сужение 11 не зависел от величины противодавления, истечение должно осуществляться в критическом режиме [9], при котором

Из (4) и (5) следует соотношение (3).

Выбор критического значения скорости снаряда V*, при котором происходит зажигании заряда твердого топлива, определяется следующими факторами. Основным критерием суперкавитационного движения снаряда в водной среде является число кавитации [10]

где р0=2336.8 Па - давление насыщенных паров воды при пузырьковой кавитации [12].

Режим суперкавитации реализуется при значениях σ<σ*=0.06 [13].

Из формулы (6) следует соотношение для скорости движения снаряда, обеспечивающей его движение в режиме суперкавитации:

Таким образом, величина V* зависит от глубины погружения H, на которой происходит движение снаряда. Карта режимов движения снаряда в координатах (Н, V) приведена на Фиг. 3. Линия, определяющая границу области суперкавитации, соответствует значению σ=σ*=0.06.

6. Площадь критического сечения центрального сопла определяется соотношением

где SΣ=Sкp+S+Sн.

Соотношение (8) следует из формулы Бори [9], выражающей равенство газоприхода при горении заряда твердого топлива и расхода продуктов сгорания через центральное сопло 5, сужение 11 и кольцевое сопло 13. Таким образом, для заданных характеристик заряда твердого топлива (ρт, Sт, k, R, Tp, u1) и определенному по соотношению (3) значению давления рк рассчитывается величина SΣ.

7. Соотношения между Sкp, S, Sн определяются формулой

которая определяет соотношение расхода продуктов сгорания заряда твердого топлива через центральное сопло 5, кольцевое сопло 13 и сужение 11, поскольку расход через сопло при рк=const пропорционален площадям их критического сечения Sкp, S, Sн.

Расход газа из полости метаемого элемента осуществляется через центральное реактивное сопло 5, сужение 11 сквозного канала 10 баллистического наконечника 3 и радиальные каналы 12. Истечение газа из сужения 11 направлено навстречу движения метаемого элемента используется для вспенивания и газификации жидкости по направлению движения метаемого элемента и служит для снижения сопротивления движению. Истечение газа из радиальных каналов 12 в кольцевой зазор 9 и кольцевое сопло 13 направляет газовый поток вдоль поверхности метаемого элемента к его задней части и служит для снижения трения. При этом создается реактивная сила, толкающая метательный элемент вперед. Истечение газа через центральное реактивное сопло 5 создает реактивную силу, также толкающую метаемый элемент. Для компенсации реактивной силы от истечения газа из сужения 11 сквозного канала 10 баллистического наконечника 3, суммарный расход газа через центральное реактивное сопло 5 и кольцевое сопло 13 должны быть равны расходу газа через сужение 11 сквозного канала 10 баллистического наконечника 3. Отсюда следует соотношение (9), определяющее отношение площадей поперечного сечения сужения 11 сквозного канала 10 баллистического наконечника 3, критического сечения соплового блока, и суммарной площади каналов.

Путем профилирования центрального реактивного сопла 5 можно улучшить его тяговые характеристики (повысить скорость истечения продуктов горения) и обеспечить дополнительное ускорение метаемого элемента.

8. Угол вдува продуктов сгорания через кольцевое сопло 13 определяется соотношением

которое обеспечивает образование устойчивой «продуваемой» каверны вокруг снаряда и позволяет получить дополнительную реактивную силу, направленную по направлению движения снаряда.

9. Время задержки зажигания заряда твердого топлива определяется соотношением

Проведем обоснование соотношение (11).

При вылете из ствола орудия снаряд движется как инертное тело. Из решения уравнения движения снаряда следует формула для его скорости [4, 5]

где ;

t - время.

Время задержки зажигания tign выбирается равным времени t*, за которое скорость снаряда снизится до значения V*

Из (13) следует:

10. Изготовление насадка из тяжелого металла смещает центр тяжести метаемого элемента к передней части и, тем самым, повышает устойчивость метаемого элемента при движении в воде и эффективность при соударении с преградой.

Пример реализации

Рассмотрим движение снаряда калибром 0.03 м в водной среде на глубине Н=20 м с начальной (дульной) скоростью V0=300 м/с. Гидростатическое давление на этой глубине равно

p(H)=105(1+0.1H)=3⋅105Па.

В соответствие с формулой (7) критическое значение скорости снаряда на глубине Н=20 м равно

Давление на торцевой поверхности снаряда, в соответствии с формулой (4), равно

В соответствие с (5), для обеспечения критического режима истечения продуктов сгорания через сужение 11 необходимо обеспечить давление в камере сгорания (для k=1.26) равное

Выберем значение рк=10⋅106 Па, а в качестве твердого топлива - смесевое топливо TP-Q-3011А, характеристики которого приведены в таблице 1.

Характеристики смесевого топлива TP-Q-3011А [9]

Выберем заряд твердого топлива диаметром D=0.026 м и длиной . Зададим канал заряда в форме звезды (Фиг. 2), тогда площадь горения будет соответствовать площади цилиндрического канала с диаметром d=0.013 м:

Определим по формуле Бори [7] суммарную площадь критического сечения сопла, обеспечивающую заданное давление в камере сгорания рк=10⋅106Па:

где ϕ=0.91 - коэффициент расхода сопла; .

Из условия (9) следует соотношение площадей критических сечений:

Sкр=Sкс=1,16⋅10-6 м2; dn=1.72⋅10-3 м,

а также их диаметры:

dкp=dкс=1.21⋅10-3 м; dн=1.72⋅10-3 м.

Расход продуктов сгорания через сопло определяется соотношением [9]:

В соответствие с (14) расход через центральное сопло, кольцевое сопло и сужение наконечника составляет:

Gкp=Gкс=0.01 кг/с; Gн=0.02 кг/с.

Скорость истечения газа из сужения насадка равна скорости звука (M=uн/a=l) [10]

при давлении газа в струе на выходе

Величина тяги, развиваемая реактивной струей газа, истекающей через сужение отверстия насадка, равна [9]

PH=GH⋅uH=0.02⋅870=17.4Н.

Эта величина тяги полностью компенсируется истечением газа через сопловой узел путем его профилирования. Для отношения диаметров выходного сечения сопла da к критическому сечению dкp равном ζ=da/ dкp =2, скорость газа на выходе сопла составляет uс=2.1а [10]. И хотя расход газа через сопловой узел вдвое меньше расхода через сужение насадка (площадь критического сечения соплового блока вдвое меньше площади сужения отверстия насадка), величина тяги будет больше

Pc=Gc⋅uc=0.01⋅2349=23.5Н,

что полностью компенсирует тормозящее действие тяги Рн.

При толщине горящего свода заряда твердого топлива равной 0.5(D-d)=6.5⋅10-3 м время горения равно:

Рассмотрим характеристики движения моделей в водной среде с начальной скоростью u0=300 м/с, u*=100 м/с. Расчеты проведены инертного снаряда (M1) и снаряда с РДТТ (М2).

Уравнение движения тела постоянной массы т в сплошной имеет вид

Основным критерием подобия суперкавитационного движения является число кавитации (6).

Проведенные оценки [11, 12] показывают, что при значениях числа кавитации σ<σкр=0.06 суперкавитирующая модель испытывает меньшее сопротивление, чем та же модель при сплошном обтекании.

При больших скоростях движения и малых глубинах погружения σ << 1, поэтому Сх=0.82 и уравнение движения (15) имеет вид:

где .

Для сравнения приведем расчеты снаряда M1, где параметр k0 определяется формулой

Интегрируя уравнение (16) (при u=u0 для t=0), получим формулу для зависимости скорости модели от времени:

С учетом (17) расстояние пройденное моделью за время определяется интегралом

Параметры моделей приведены в таблице 2.

Результаты параметрических расчетов движения моделей в водной среде приведены в таблице 3.

Расчетные зависимости скорости движения моделей от времени проведены на Фиг. 4, а расстояния, пройденные моделями, приведены на Фиг. 5, где инертный снаряд (M1), снаряд с РДТТ (М2).

Результаты расчетов показывают, что при движении модели в водной среде в режиме суперкавитации скорость модели и пройденное расстояние намного превышают соответствующие значения при движении модели без кавитатора.

Таким образом, из приведенного примера следует, что заявляемый снаряд для стрельбы в водной среде обеспечивает достижение технического результата изобретения - увеличивает дальность движения метаемого элемента в водной среде и повышает устойчивость его движения.

ЛИТЕРАТУРА

1. Дейч М.Е. Техническая газодинамика. - М. - Л.: Госэнергоиздат, 1961. - 671 с.

2. Патент РФ №2318175, МПК F42B 5/02, F41C 9/06. Патрон стрелкового оружия для подводной стрельбы / Ю.П. Платонов, В.К. Зеленко, В.Л. Трухачев, В.М. Королев, В.М. Кнебельман - Опубл. 27.02.2008.

3. Путилин С.И. Некоторые особенности динамики суперкавитирующих моделей // Прикладная гидромеханика. 2000, Т. 2 (74), №3. - С. 65-74.

4. Власенко Ю.Д. Экспериментальные исследования суперкавитационных режимов обтекания самоходных моделей // Прикладная гидромеханика. 2000, Т. 2 (74), №3. - С.26-39.

5. Patent US №3205846, МПК F42B 19/12. Torpedo body form and gas layer control / Thomas G. Lang. - Опубл. 14.09.1965.

6. Patent US №3008413, МПК F42B 19/26, F42B 19/00. High speed missile / G.E. Knausenberger. - Опубл. 14.11.1961.

7. Логвинович Г.В. Гидродинамика течений со свободными границами. - Киев: Наукова думка, 1969. - 215 с.

8. Фахрутдинов И.Х., Котельников А.В. Конструкция и проектирование ракетных двигателей твердого топлива - М.: Машиностроение, 1987. - 328 с.

9. Шишков А.А., Панин С.Д., Румянцев Б.В. Рабочие процессы в ракетных двигателях твердого топлива: Справочник. - М.: Машиностроение, 1988. - 240 с.

10. Савченко Ю.Н., Зверховский А.Н. Методика проведения экспериментов по высокоскоростному движению инерционных моделей в воде в режиме суперкавитации // Прикладная гидромеханика. 2009, Т. 11, №4. - С. 69-75.

11. Бабичев А.П., Бабушкина Н.А., Братковский A.M. Физические величины: Справочник [и др.]; под ред. И.С. Мейхилова. - М.: Энергоатомиздат, 1991.- 1232 с.

12. Справочник машиностроителя в 6-ти томах. Под ред. С.В. Серенсена. - М.: ГНТИ Машиностроительной литературы, Т. 3, 1955. - 563 с.


Снаряд для стрельбы в водной среде
Снаряд для стрельбы в водной среде
Снаряд для стрельбы в водной среде
Снаряд для стрельбы в водной среде
Снаряд для стрельбы в водной среде
Снаряд для стрельбы в водной среде
Снаряд для стрельбы в водной среде
Снаряд для стрельбы в водной среде
Снаряд для стрельбы в водной среде
Снаряд для стрельбы в водной среде
Источник поступления информации: Роспатент

Показаны записи 1-10 из 29.
10.12.2015
№216.013.95c4

Гибридный ракетный двигатель

Изобретение относится к области ракетной техники, в частности к конструкциям гибридных ракетных двигателей космического назначения. Гибридный ракетный двигатель содержит камеру сгорания с размещенным в ней зарядом твердого топлива с внутренним сквозным каналом и сопловой блок. Во входном...
Тип: Изобретение
Номер охранного документа: 0002569960
Дата охранного документа: 10.12.2015
25.08.2017
№217.015.d02c

Способ получения упрочненного нанокомпозиционного материала на основе магния

Изобретение относится к получению упрочненного нанокомпозиционного материала, который может быть использован в авиастроении и в автомобильной промышленности. Готовят лигатуру в виде компактированных стержней из равномерно перемешанной смеси порошка магния и нанопорошка нитрида алюминия с...
Тип: Изобретение
Номер охранного документа: 0002621198
Дата охранного документа: 01.06.2017
29.12.2017
№217.015.f017

Средство, обладающее гастропротекторной активностью

Изобретение относится к фармацевтической промышленности, а именно к средству, обладающему гастропротекторным действием. Гастропротекторное средство, содержащее комплекс 4-х флавоноидов, выделенный из надземной части растения Lychnis chalcedonica L. Комплекс флавоноидов получен 5-кратной...
Тип: Изобретение
Номер охранного документа: 0002629090
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.fd04

Стенд для исследования деформации капель аэродинамическими силами

Изобретение относится к исследованию деформации капель аэродинамическими силами и может быть использовано в лабораторных установках для исследования физических и химических процессов. Стенд для исследования деформации капель аэродинамическими силами включает вертикально расположенную капельницу...
Тип: Изобретение
Номер охранного документа: 0002638376
Дата охранного документа: 13.12.2017
19.01.2018
№218.015.ffc3

Средство, обладающее противовоспалительным и анальгетическим действием

Изобретение относится к средству, обладающему противовоспалительным и анальгезирующим действием. Средство представляет собой комплекс флавоноидов, выделенный из надземной части растения Lychnis chalcedonica L. 5-кратной экстракцией 70% этанолом в соотношении сырье:экстрагент 1:22,5, с...
Тип: Изобретение
Номер охранного документа: 0002629607
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.099d

Способ получения дисперсно-упрочненного нанокомпозитного материала на основе алюминия

Изобретение относится к получению дисперсно-упрочненного нанокомпозитного материала на основе алюминия. Способ включает введение лигатуры в расплав матрицы на основе алюминия при одновременном воздействии на расплав ультразвукового поля. Лигатуру готовят в виде компактированных стержней из...
Тип: Изобретение
Номер охранного документа: 0002631996
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.09ae

Способ получения упрочненных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к получению легких сплавов на основе алюминия с повышенной прочностью. Способ заключается во введении в расплав алюминия лигатуры, содержащей модифицирующую добавку, при одновременном воздействии на расплав ультразвукового поля, причем...
Тип: Изобретение
Номер охранного документа: 0002631995
Дата охранного документа: 29.09.2017
10.05.2018
№218.016.3b60

Способ повышения дальности полета активно-реактивного снаряда

Изобретение относится к области ракетной техники, в частности к ракетным двигателям активно-реактивных снарядов, запускаемых из ствола артиллерийского орудия, и заключается в способе повышения дальности полета активно-реактивного снаряда. На траектории полета снаряда зажигают заряд твердого...
Тип: Изобретение
Номер охранного документа: 0002647256
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.49d4

Устройство для распыления порошков

Изобретение относится к технике распыления порошков в воздушной и газовой. Устройство для распыления порошков включает цилиндрический корпус, содержащий порошок, газогенератор с зарядом твердого топлива, систему аэрации порошка и сопло для истечения газопорошковой смеси. Газогенератор,...
Тип: Изобретение
Номер охранного документа: 0002651433
Дата охранного документа: 19.04.2018
29.05.2018
№218.016.54ee

Способ взрывного компактирования порошковых материалов

Изобретение относится к порошковой металлургии, в частности к способам взрывного прессования осесимметричных изделий из порошков. Порошковый материал помещают в осесимметричный контейнер с заглушками на его концах, на боковую поверхность контейнера наматывают детонирующий шнур. Контейнер...
Тип: Изобретение
Номер охранного документа: 0002654225
Дата охранного документа: 17.05.2018
Показаны записи 1-10 из 71.
10.02.2013
№216.012.2369

Способ получения смесевого твердого топлива с металлическим горючим

Изобретение относится к области разработки смесевых металлизированных твердых топлив. Изобретение заключается в добавлении к смеси окислителя, органического горючего-связующего и технологических добавок в качестве металлического горючего бидисперсной смеси порошка алюминия микронных размеров и...
Тип: Изобретение
Номер охранного документа: 0002474567
Дата охранного документа: 10.02.2013
27.07.2013
№216.012.5a33

Способ организации рабочего процесса в космической двигательной установке на газообразном топливе

Изобретение относится к области ракетной техники, а именно к организации процесса подготовки и сжигания газообразного топлива в камере сгорания. Предварительно газифицированные компоненты топлива, газообразный гелий из системы вытеснения и порошок алюминия подаются в форкамеру для смешения....
Тип: Изобретение
Номер охранного документа: 0002488712
Дата охранного документа: 27.07.2013
27.09.2013
№216.012.7047

Способ определения единичного импульса твердого топлива

Изобретение относится к измерению характеристик твердых топлив для ракетных двигателей. Способ включает измерение реактивной силы продуктов газификации при сжигании образца твердого топлива, бронированного по боковой поверхности, причем измеряют реактивную силу и время полного сгорания образца...
Тип: Изобретение
Номер охранного документа: 0002494394
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.7432

Способ определения дисперсного состава капель в факеле распыла форсунки

Изобретение относится к методам исследования жидкокапельных аэрозолей и предназначено для определения дисперсных характеристик распыла форсунок в широком диапазоне размеров частиц, в том числе нанометровом. Способ основан на распылении раствора неиспаряемой примеси в исследуемой жидкости с...
Тип: Изобретение
Номер охранного документа: 0002495403
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7a96

Источник направленного инфракрасного излучения

Изобретение относится к области теплоэнергетики и может быть использовано при разработке инфракрасных нагревателей направленного действия с высокими технико-экономическими свойствами для промышленных и бытовых нужд. Источник направленного инфракрасного излучения включает излучатель,...
Тип: Изобретение
Номер охранного документа: 0002497044
Дата охранного документа: 27.10.2013
27.06.2014
№216.012.d826

Способ определения максимального размера и концентрации субмикронных аэрозольных частиц

Изобретение относится к области измерения характеристик аэрозольных частиц оптическими методами. Способ заключается в измерении ослабления оптического излучения в видимой и ближней инфракрасной областях спектра. Максимальный размер и концентрацию аэрозольных частиц определяют по формулам
Тип: Изобретение
Номер охранного документа: 0002521112
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.debb

Способ определения смачиваемости мелкодисперсных порошков

Изобретение относится к области исследования характеристик порошковых материалов, в частности их смачиваемости. Целью изобретения является разработка более точного способа определения смачиваемости порошков. Сущность изобретения заключается в том, что в кювете с прозрачными плоско-параллельными...
Тип: Изобретение
Номер охранного документа: 0002522805
Дата охранного документа: 20.07.2014
20.01.2015
№216.013.1f87

Устройство для распыления расплавленных металлов

Изобретение относится к области порошковой металлургии. Устройство для распыления расплавленных металлов содержит корпус с крышкой и кольцевой полостью, соединенной с газопроводом для подачи нагретого сжатого газа, ниппель с центральным каналом для подачи расплава металла и дополнительный...
Тип: Изобретение
Номер охранного документа: 0002539512
Дата охранного документа: 20.01.2015
20.02.2015
№216.013.295b

Способ получения упрочненных сплавов на основе алюминия

Изобретение относится к области металлургии, в частности к получению легких сплавов с повышенной прочностью на основе алюминия, и может быть использовано в ракетно-космической, авиационной, автомобильной промышленностях. Способ включает получение лигатуры из смеси порошков алюминия и диборида...
Тип: Изобретение
Номер охранного документа: 0002542044
Дата охранного документа: 20.02.2015
27.06.2015
№216.013.58bc

Форсунка для распыления расплавленных металлов

Изобретение относится к порошковой металлургии, а именно к получению порошка распылением расплава металла. Форсунка содержит корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, ниппель изготовлен из пьезоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002554257
Дата охранного документа: 27.06.2015
+ добавить свой РИД