×
15.04.2020
220.018.147e

Результат интеллектуальной деятельности: Система дистанционного контроля и управления солнечным концентраторным модулем

Вид РИД

Изобретение

№ охранного документа
0002718687
Дата охранного документа
13.04.2020
Аннотация: Предлагаемая система относится к гелиотехнике, в частности к средствам управления солнечным концентраторным модулем для получения электрической и тепловой энергии. Техническим результатом изобретения является повышение помехоустойчивости и достоверности обмена дискретной информацией между пунктом контроля и управления и удаленными объектами, на которых установлены солнечные концентраторные модули, путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Система дистанционного контроля и управления солнечным концентраторным модулем содержит солнечный концентраторный модуль и два модема, первый из которых размещен на пункте контроля и управления, а второй вместе с солнечным концентраторным модулем размещены на удаленном объекте. Солнечный концентраторный модуль содержит приемник с двухсторонней рабочей поверхностью, цилиндрический концентратор с ветвями, верхнюю кромку приемника, центры окружностей, горизонтальную поверхность, полусферический колпак, герметичную коробку, внутри которой расположены буферная щелочная батарея и второй модем, штыревую приемопередающую антенну и удаленный объект. Каждый модем содержит задающий генератор, источник дискретных сообщений, фазовый манипулятор, первый гетеродин, первый смеситель, усилитель первой промежуточной частоты, первый усилитель мощности, дуплексер, приемопередающую антенну, второй усилитель мощности, второй гетеродин, второй смеситель, усилитель второй промежуточной частоты, перемножитель, полосовой фильтр, фазовый детектор, усилитель, амплитудный детектор и ключ. 5 ил.

Предлагаемая система относится к гелиотехнике, в частности к средствам управления солнечным концентраторным модулем для получения электрической и тепловой энергии.

Известны солнечные модули с концентраторами и системы контроля и управления ими (авт. свид. СССР №1.620.784; патенты РФ №№2.135.909, 2.158.045, 2.172.451, 2.172.903, 2.206.837, 2.353.865, 2.378.655, 2.474.827, 2.488.915, 2.593.598; патенты США №№5.344.497, 6.528.716; Стребков Д.С., Тверьянович Э.В. Концентраторы солнечного излучения. - М.: ГНУ ВИЭСХ, 2007, с. 180 и другие).

Из известных систем и устройств наиболее близкой к предлагаемой является «Система дистанционного контроля и управления солнечным концентраторным модулем» (патент РФ №2.593.598, H02S 10/40, 2015), который и выбран в качестве прототипа.

Указанный модуль обеспечивает эффективную работу в течение всего светового дня в стационарном режиме без слежения за солнцем, увеличение концентрации солнечного излучения, а также повышение эффективности использования солнечной энергии в солнечном концентраторном модуле за счет отвода тепла от фотоприемника и использование его в режиме когенерации для производства энергии и тепла.

Следует отметить, что возобновляемые источники энергии (солнечные батареи, ветрогенераторы, микроГЭС) являются основными источниками автономной системы электроснабжения контейнерно-базовых несущих конструкций (КБНК), устанавливаемых и используемых в удаленных районах, в том числе и в районах Крайнего Севера. Контролировать и управлять указанными возобновляемыми источниками энергии целесообразно дистанционно с использованием радиоканала.

Известная система обеспечивает повышение надежности централизованного контроля и управления солнечными концентраторными модулями с помощью дуплексной радиосвязи на двух частотах с использованием сложных сигналов с фазовой манипуляцией. Для этого система содержит солнечный концентраторный модуль и два модема. При этом первый модем установлен на пункте контроля и управления, а второй модем установлен на удаленном объекте вместе с солнечным концентраторным модулем.

Оба модема содержат приемники, построенные по супергетеродинной схеме. В них одно и то же значение второй промежуточной частоты ωnp2 может быть получено при приеме сигналов на следующих частотах: ω1, ω2, ωз1 и ωз2, то есть

ωnp21г1, ωnp21з1,

ωnp2г22, ωnp2з2г2.

Следовательно, если частоты настройки ω1 и ω2 принять за основные каналы приема, то наряду с ними будут присутствовать и зеркальные каналы приема, частоты ωз1 и ωз2 которых разнесены на удвоенное значение второй промежуточной частоты 2ωnp2 и расположены симметрично (зеркально) относительно частот ωг1 и ωг2 гетеродинов (фиг. 5). Преобразование по зеркальным каналам приема происходит с тем же коэффициентом преобразования Кпр, что и по основным каналам приема. Поэтому они наиболее существенно влияют на избирательность и помехоустойчивость приемников модемов.

Кроме зеркальных существуют и другие дополнительные (комбинационные) каналы приема. Любой комбинационный канал приема имеет место при выполнении следующих соотношений:

ωnp2=|±mωкi±nωг1|,

ωnp2=|±mωкj±nωг2|,

где ωкi и ωкj - частоты i-гo и j-гo комбинационных каналов приема;

m, n, i, j - целые положительные числа.

Наиболее вредными комбинационными каналами приема являются каналы, образующие при взаимодействии частот сигналов со вторыми гармониками частот гетеродинов, так как чувствительность этих каналов близка к чувствительности основных каналов приема.

Так, четырем комбинационным каналам приема при m=1 и n=2 соответствуют частоты:

ωк1=2ωг1пр2, ωк2=2ωг1пр2,

ωк3=2ωг2пр2, ωк4=2ωг2пр2.

где 2ωг1, 2ωг2 - вторые гармоники частот гетеродинов.

Наличие ложных сигналов (помех), принимаемых по дополнительным каналам, приводит к снижению помехоустойчивости и достоверности обмена дискретной информации между пунктом контроля и управления и удаленными объектами (КБНК), на которых установлены солнечные концентраторные модули.

Технической задачей изобретения является повышение помехоустойчивости и достоверности обмена дискретной информации между пунктом контроля и управления и удаленными объектами (КБНК), на которых установлены солнечные концентраторные модули, путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам.

Поставленная задача решается тем, что система дистанционного контроля и управления солнечным концентраторным модулем, включающая солнечный концентраторный модуль, содержащий, в соответствии с ближайшим аналогом, приемник с двухсторонней рабочей поверхностью, установленный в плоскости симметрии между фокальной осью концентратора и поверхностью концентратора, выполненного в виде зеркальных отражателей, при этом приемник установлен в плоскости симметрии цилиндрического концентратора, ветви концентратора в поперечном сечении образованы окружностями радиуса R, равного высоте Н приемника с центрами в точках O1 и О2, расположенными по краям приемника в верхней его кромке, фокальные оси ветвей цилиндрического концентратора, проходящие через центры окружностей O1 и О2 параллельно верхней кромке приемника, ориентированы в направлении север-юг и наклонены в северном полушарии к плоскости горизонта в южном направлении под углом ϕ=90°-α, где α - широта местности, в южном полушарии фокальные оси наклонены к горизонтальной поверхности в северном направлении под углом ϕ=90°-α, а в экваториальной зоне с широтой от 30° южной широты до 30° северной широты фокальные оси цилиндрического концентратора параллельны горизонтальной поверхности, два модема, первый из которых размещен на пункте контроля и управления, а второй вместе с солнечным концентраторным модулем размещены на удаленном объекте, при этом солнечный концентраторный модуль размещается в герметичной прозрачной полусфере, на которой сверху установлена штыревая приемопередающая антенна, соединенная с коробкой, в которой размещены буферная щелочная батарея и второй модем, каждый модем состоит из последовательно включенных задающего генератора, фазового манипулятора, второй вход которого соединен с выходом источника дискретных сообщений, первого смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, первого усилителя мощности, дуплексера, вход-выход которого связан с приемопередающей антенной, второго усилителя мощности, второго смесителя, второй вход которого соединен с выходом второго гетеродина и усилителя второй промежуточной частоты, из последовательно включенных перемножителя, второй вход которого соединен с выходом первого гетеродина, полосового фильтра и фазового детектора, второй вход которого соединен с выходом второго гетеродина, а выход является выходом модема, причем первый модем излучает сложные сигналы с фазовой манипуляцией на частоте ω1г2пр1, а принимает на частоте ω2г1пр3, где ωг1 ωг2 - частоты первого и второго гетеродинов, ωпр1 - первая промежуточная частота, ωпр3 - третья промежуточная частота, частоты гетеродинов разнесены на значение второй промежуточной частоты ωг2г1пр2, а второй модем, наоборот, излучает сложные сигналы с фазовой манипуляцией на частоте ω2, а принимает на частоте ω1 отличается от ближайшего аналога тем, что каждый модем снабжен усилителем суммарной частоты, амплитудным детектором и ключом, причем к выходу второго смесителя последовательно подключены усилитель суммарной частоты, амплитудный детектор и ключ, второй вход которого соединен с выходом усилителя второй промежуточной частоты, а выход подключен к первому входу перемножителя, усилитель суммарной частоты первого модема настроен на вторую суммарную частоту ω∑2, равную сумме частот ω∑22г2, а усилитель суммарной частоты второго модема настроен на первую суммарную частоту ω∑1, равную сумме частот ω∑1г11

Поперечное сечение солнечного концентраторного модуля с двухсторонним приемником и линейным цилиндрическим концентратором с апертурой 120° представлено на фиг. 1. Общий вид герметичной прозрачной полусферы и коробки изображен на фиг. 2. Структурная схема первого модема 16.1 представлена на фиг. 3. Структурная схема второго модема 16.2 представлена на фиг. 4. Частотная диаграмма, иллюстрирующая процесс преобразования сигналов, показана на фиг. 5.

Приемник 1 с двухсторонней рабочей поверхностью 2 и 3 установлен в плоскости симметрии цилиндрического концентратора 5, ветви 6 и 7 которого в поперечном сечении образованы окружностями радиуса R, равного высоте Н приемника 1 с центрами 9 и 10, расположенными по краям приемника в верхней его кромке, при этом фокальные оси ветвей цилиндрического концентратора, проходящие через центры окружностей O1 и О2 параллельно верхней кромке 8 приемника, ориентированы в направлении север-юг и наклонены в северном полушарии к плоскости горизонта в южном направлении под углом ϕ=90°-α, где α - широта местности, причем в южном полушарии фокальные оси наклонены к горизонтальной поверхности в северном направлении под углом ϕ=90°-α, а в экваториальной зоне с широтой от 30° южной широты до 30° северной широты фокальные оси цилиндрического концентратора параллельны горизонтальной поверхности 11.

Солнечный концентраторный модуль установлен в герметичном прозрачном полусферическом колпаке 12 на герметичной коробке 13, внутри которой расположены буферная щелочная батарея и второй модем 16.2. Штыревая приемопередающая антенна 25.2 установлена в верхней части полусферы, и вся система закреплена на удаленном объекте 14 (КБНК).

Каждый модем 16.1 (16.2) содержит последовательно включенные задающий генератор 17.1 (17.2), фазовый манипулятор 19.1 (19.2), второй вход которого соединен с выходом источника 18.1 (18.2) дискретных сообщений, первый смеситель 21.1 (21.2), второй вход которого соединен с выходом первого гетеродина 20.1 (20.2), усилитель 22.1 (22.2) первой промежуточной частоты, первый усилитель 23.1 (23.2) мощности, дуплексер 24.1 (24.2), вход-выход которого связан с приемопередающей антенной 25.1 (25.2), второй усилитель 26.1 (26.2) мощности, второй смеситель 28.1 (28.2), второй вход которого соединен с выходом второго гетеродина 27.1 (27.2), усилитель 29.1 (29.2) второй промежуточной частоты, ключ 35.1 (35.2), второй вход которого через последовательно включенные усилитель 33.1 (33.2) суммарной частоты и амплитудный детектор 34.1 (34.2) соединен с выходом второго смесителя 28.1 (28.2), и перемножитель 30.1 (30.2), второй вход которого соединен с выходом первого гетеродина 20.1 (20.2), полосовой фильтр 31.1 (31.2) и фазовый детектор 32.1 (32.2), второй вход которого соединен с выходом второго гетеродина 27.1 (27.2), а выход является выходом модема 16.1 (16.2).

Система работает следующим образом.

При опросе определенного удаленного объекта (КБНК) и передаче на него команд и сообщений на пункте контроля и управления включается задающий генератор 17.1, который формирует высокочастотное колебание

uс1(t)=Uс1⋅cos(ωct+ϕc1), 0≤t≤Tc1,

где Uc1, ωс, ϕc1, Tc1 - амплитуда, несущая частота, начальная фаза и длительность высокочастотного колебания, которое поступает на первый вход фазового манипулятора 19.1. На второй вход фазового манипулятора 19.1 с выхода источника 18.1 дискретных сообщений подается модулирующий код M1(t), который содержит идентификационный номер опрашиваемого удаленного объекта, а также различные команды управлений. На выходе фазового манипулятора 19.1 формируется сложный сигнал с фазовой манипуляцией (ФМн)

u1(t)=U1⋅cos(ωct+ϕк1(t)+ϕc1), 0≤t≤Tc1,

где ϕк1(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии модулирующим кодом M1(t), причем ϕк1(t)=const при кτэ<t<(к+1)τэ и может изменяться скачком при t=кτэ, т.е. на границах между элементарными посылками (к=1, 2, …, N-1); τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Tc1 (Tc1=N⋅τэ), который поступает на первый вход первого смесителя 21.1, на второй вход которого подается напряжение первого гетеродина

uг1(t)=Uг1⋅cos(ωг1t+ϕг1).

На выходе смесителя 21.1 образуются напряжения комбинационных частот. Усилителем 22.1 выделяется напряжение первой промежуточной (суммарной) частоты

uпр1(t)=Uпр1⋅cos[ωпр1t+ϕк1(t)+ϕпр1], 0≤t≤Tc1,

где

ωпр1cг1 - первая промежуточная (суммарная) частота;

ϕпр1c1г1.

Это напряжение после усиления в усилителе 23.1 мощности через дуплексер 24.1 поступает в приемопередающую антенну 25.1, излучается ею в эфир на частоте ω1г2пр1, улавливается приемопередающей антенной 25.2 удаленного опрашиваемого объекта и через дуплексер 24.2 и усилитель 26.2 мощности поступает на первый вход смесителя 28.2.

На второй вход смесителя 28.2 подается напряжение гетеродина 27.2

uг1(t)=Uг1⋅cos(ωг1t+ϕг1).

На выходе смесителя 28.2 образуются напряжения комбинационных частот.

Усилителем 29.2 второй промежуточной частоты и усилителем 33.2 суммарной частоты выделяются следующие напряжения:

uпр2(t)=Uпр2⋅cos[ωпр2t+ϕк1(t)+ϕпр2],

u∑1(t)=Uпр2⋅cos[ω∑1t+ϕк1(t)+ϕ∑1], 0≤t≤Tc1,

где

ωпр2пр1г1 - вторая промежуточная (разностная) частота;

ω∑1г1t+ωпр1 - первая суммарная частота;

ϕпр2пр1г1; ϕ∑1г1пр1.

Напряжение uпр2(t) выделяется усилителем 29.2 второй промежуточной частоты. Напряжение u∑1(t) выделяется усилителем 33.2 первой суммарной частоты, детектируется амплитудным детектором 34.2 и подается на управляющий вход ключа 35.2, открывая его. В исходном состоянии ключи 35.1 и 35.2 всегда закрыты.

При этом напряжение uпр2(t) с выхода усилителя 29.2 второй промежуточной частоты через открытый ключ 35.2 поступает на первый вход перемножителя 30.2, на второй вход последнего подается напряжение гетеродина 20.2

uг2(t)=Uг2⋅cos(ωг2t+ϕг2).

На выходе перемножителя 30.2 образуется напряжение

u3(t)=U3⋅cos[ωг1t+ϕк1(t)+ϕг1], 0≤t≤Tc1,где

ωг1г2пр2;

ϕг1г2пр2,

которое выделяется полосовым фильтром 31.2 и поступает на первый (информационный) вход фазового детектора 32.2. На второй (опорный) вход которого подается напряжение Uг1(t) с выхода гетеродина 27.2 в качестве опорного напряжения. В результате синхронного детектирования на выходе детектора 32.2 образуется низкочастотное напряжение

uн1(t)=Uн1⋅cosϕк1(t), 0≤t≤Тс,

где

пропорциональное модулирующему коду M1(t). Это напряжение поступает на выход модема 16.2 на соответствующие исполнительные блоки и устройства и включает второй модем 16.2.

При этом солнечный концентраторный модуль, установленный на удаленном объекте (КБНК), работает следующий образом.

Фотоприемник 1 размером 1,2 м × 2,5 м содержит 8 параллельных секций, в каждой из которых последовательно соединены 36 двусторонних солнечных элементов размером 125×61,25 мм, каждая секция имеет развязывающие диоды (не показаны). Концентратор 5 выполнен из двух ветвей, поперечное сечение представляет собой окружности, равные высоте приемника в верхних его точках. Угловая апертура солнечного концентраторного модуля составляет 120°, геометрический коэффициент концентрации в полдень равен к=1,75. Площадь фотоприемника 3 м3, пиковая электрическая мощность фотоприемника при стандартной освещенности 1 кВт/м2 составляет 450 Вт, КПД 15%, пиковая электрическая мощность солнечного концентраторного модуля при оптическом КПД концентратора 0,88 и геометрическом коэффициенте концентрации 1,75 составляет 693 Вт. Солнечный концентраторный модуль с угловой апертурой 120° работает 8 часов в сутки. При этом он подзаряжает буферную щелочную батарею для работы в ночное время. Солнечное излучение попадает на концентратор, отраженное концентрированное излучение приходит на приемник 1 с двухсторонней рабочей поверхностью 2 и 3. Если концентратор 5 установлен стационарно, в первой половине дня работает одна ветвь концентратора, со стороны приемника, во второй половине дня - другая ветвь концентратора и другая сторона приемника. В полуденные часы концентратор обеспечивает освещение двух рабочих поверхностей приемника.

При включении второго модема 16.2 генератором 17.2 формируется высокочастотное колебание

uc2(t)=Uc2⋅cos((ωct+ϕс2), 0≤t≤Тс2,

которое поступает на первый вход фазового манипулятора 19.2, на второй вход которого подается модулирующий код M2(t) с выхода источника 18.2 дискретных сообщений, который содержит информацию о параметрах и состоянии солнечного концентраторного модуля. На выходе фазового манипулятора 19.2 формируется сложный ФМн сигнал

u4(t)=U4⋅cos[ωсt+ϕк2(t)+ϕс2], 0≤t≤Tc2,

где ϕк2(t)={0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии модулирующим кодом M2(t), который поступает на первый вход смесителя 21.2, на второй вход которого подается напряжение первого гетеродина 20.2

uг2(t)=Uг2⋅cos(ωг2t+ϕг2).

На выходе смесителя 21.2 образуется напряжение комбинационных частот. Усилителем 22.2 выделяется напряжение третьей промежуточной частоты

uпр3(t)=Uпр3⋅cos[ωпр3t+ϕк2(t)+ϕпр3], 0≤t≤Tc2,

где

ωпр3г2с - третья промежуточная (разностная) частота;

ϕпр3г2с2.

Это напряжение после усиления в усилителе 23.2 мощности через дуплексер 24.2 поступает в приемопередающую антенну 25.2, излучается ею в эфир на частотеω2г1пр3, улавливается приемопередающей антенной 25.1 пункта контроля и управления и через дуплексер 24.1 и усилитель 26.1 мощности поступает на первый вход смесителя 28.1, на второй вход которого подается напряжение гетеродина 27.1

uг2(t)=Uг2⋅cos(ωг2t+ϕг2).

На выходе смесителя 28.1 образуются напряжения комбинационных частот. Усилителем 29.1 выделяется напряжение второй промежуточной (разностной) частоты

uпр4(t)=Uпр4⋅cos[ωпр2t+ϕк2(t)+ϕпр4], 0≤t≤Tc2,

где

ωпр2г2пр3 - вторая промежуточная (разностная) частота;

ϕпр4пр3г2.,

которое поступает на первый вход перемножителя 30.1, на второй вход которого подается напряжение гетеродина 20.1

uг1(t)=Uг1⋅cos(ωг1t+ϕг1).

На выходе перемножителя 30.1 образуется напряжение

u5(t)=U5⋅cos[ωг2t+ϕк2(t)+ϕг2], 0≤t≤Tc2,

где

ωг2пр2г1

которое выделяется полосовым фильтром 31.1 и поступает на первый (информационный) вход фазового детектора 32.1. На второй вход (опорный) фазового детектора 32.1 подается напряжение uг2(t) гетеродина 27.1, в результате синхронного детектирования на выходе фазового детектора 32.1 образуется низкочастотное напряжение

uн2(t)=Uн2⋅cosϕк2(t), 0≤t≤Тс2,

где

пропорциональное модулирующему коду M2(t).

Это напряжение поступает на выход модема 16.1, например, на вход блока регистрации и анализа.

Описанная выше работа модемов 16.1 и 16.2 соответствует случаю приема полезных ФМн сигналов по основным каналам на частотах ω1 и ω2.

Если ложный сигнал (помеха) принимается по первому зеркальному каналу на частоте ωз1

uз1(t)=Uз1⋅cos(ωз1t+ϕз1), 0≤t≤Tз1

то на выходе смесителя 28.2 образуются следующие напряжения:

uпр5(t)=Uпр5⋅cos(ωпр2t+ϕпр5),

u∑3(t)=Uпр5⋅cos(ω∑3t+ϕ∑3), 0≤t≤Tз1

где

ωпр2г1з1 - вторая промежуточная (разностная) частота;

ω∑1з1t+ωг1 - третья суммарная частота;

ϕпр5г1з1; ϕ∑3з1г1.

Напряжение uпр5(t) выделяется усилителем 29.2 второй промежуточной частоты. Так как частота настройки ωн2 усилителя 33.2 суммарной частоты выбирается равной ωн2∑2г2пр3, то напряжение u∑3(t) не попадает в полосу пропускания усилителя 33.2 суммарной частоты, ключ 35.2 не открывается и ложный сигнал (помеха) uз1(t), принимаемый по первому зеркальному каналу на частоте ωз1, подавляется.

Если ложный сигнал (помеха) принимается по второму зеркальному каналу на частоте ωз2

uз2(t)=Uз2⋅cos(ωз2t+ϕз2), 0≤t≤Tз2,

то на выходе смесителя 28.1 образуются следующие напряжения:

uпр6(t)=Uпр6⋅cos(ωпр2t+ϕпр6),

u∑4(t)=Uпр6⋅cos(ω∑4t+ϕ∑4), 0≤t≤Tз2,

где

ωпр2з2г2 - вторая промежуточная (разностная) частота;

ω∑4г2t+ωз2 - четвертая суммарная частота;

ϕпр6з2г2; ϕ∑4г2з2.

Напряжение uпр6(t) выделяется усилителем 29.1 второй промежуточной частоты. Так как частота настройки ωн1 усилителя 33.1 суммарной частоты выбирается равной ωн1г1пр1, то напряжение u∑4(t) не попадает в полосу пропускания усилителя 33.1 суммарной частоты, ключ 35.1 не открывается и ложный сигнал (помеха), принимаемый по второму зеркальному каналу на частоте ωз2, подавляется.

По аналогичной причине подавляются и ложные сигналы (помехи), принимаемые по комбинационным каналам на частотах ωк1, ωк2, ωк3 и ωк4.

Подавление ложных сигналов (помех), принимаемых по дополнительным каналам, основано на использовании метода суммарной частоты.

Следует отметить, что смесители, входящие в состав приемников модемов 16.1 и 16.2, представляют собой перемножители и при работе на линейном участке вольт-амперной характеристике реализуют следующую тригонометрическую формулу:

Следовательно, на выходе смесителей образуются напряжения разностной (промежуточной) частоты и суммарной частоты. Как правило, используется только напряжение разностной (промежуточной) частоты.

В предлагаемом техническом решении используется и напряжение суммарной частоты для подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Метод суммарной частоты обеспечивает уверенный обмен дискретной информацией между пунктом контроля и управления и удаленными объектами (КБНК) путем установления дуплексной радиосвязи только на двух частотах ω1 и ω2 с использованием сложных сигналов с фазовой манипуляцией.

Указанные сигналы обладают высокой энергетической и структурной скрытностью.

Энергетическая скрытность сложных ФМн сигналов обусловлена их высокой сжимаемостью во времени и по спектру при оптимальной обработке, что позволяет снизить мгновенную излучаемую мощность. Вследствие этого сложный ФМн сигнал в точке приема может оказаться замаскированным шумами и помехами. Причем энергия сложного ФМн сигнала отнюдь не мала, она просто распределена по частотно-временной области так, что в каждой точке этой области мощность сигнала меньше мощности шумов и помех.

Структурная скрытность сложных ФМн сигналов обусловлена большим разнообразием их форм и значительными диапазонами изменений параметров, что затрудняет оптимальную или хотя бы квазиоптимальную обработку сложных ФМн сигналов априорно неизвестной структуры с целью повышения чувствительности приемника.

Следовательно, использование сложных ФМн сигналов позволяет осуществлять уверенный обмен дискретной информации между пунктом контроля и управления и удаленными объектами (КБНК), на которых установлены солнечные концентраторные модули.

Для защиты от воздействия окружающей внешней среды солнечный концентраторный модуль установлен в герметичном прозрачном полусферическом колпаке на герметичной коробке, внутри которой расположены буферная щелочная батарея и второй модем. Указанное устройство может выполнять роль и антивандального устройства.

Таким образом, предлагаемая система по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение помехоустойчивости и достоверности обмена дискретной информации между пунктом контроля и управления и удаленными объектами (КБНК), устанавливаемыми и используемыми в удаленных районах, в том числе и в районах Крайнего Севера, на которых размещены солнечные концентраторные модули. Это достигается за счет подавления ложных сигналов (помех), принимаемых по дополнительным каналам, с помощью схемной конструкции, реализующей метод суммарной частоты.

Система дистанционного контроля и управления солнечным концентраторным модулем, включающая солнечный концентраторный модуль, содержащий приемник с двухсторонней рабочей поверхностью, установленный в плоскости симметрии между фокальной осью концентратора и поверхностью концентратора, выполненного в виде зеркальных отражателей, при этом приемник установлен в плоскости симметрии цилиндрического концентратора, ветви концентратора в поперечном сечении образованы окружностями радиуса R, равного высоте Н приемника, с центром в точках O и O, расположенными по краям приемника в верхней его кромке, фокальные оси ветвей цилиндрического концентратора, проходящие через центры окружностей O и O параллельно верхней кромке приемника, ориентированы в направлении север-юг и наклонены в северном полушарии к плоскости горизонта в южном направлении под углом ϕ=90°-α, где α - широта местности, в южном полушарии фокальные оси наклонены к горизонтальной поверхности в северном направлении под углом ϕ=90°-α, а в экваториальной зоне с широтой от 30° южной широты до 30° северной широты фокальные оси цилиндрического концентратора параллельны горизонтальной поверхности, два модема, первый из которых размещен на пунктах контроля и управления, а второй вместе с солнечным концентраторным модулем размещен на удаленном объекте, при этом солнечный концентраторный модуль размещается в герметичной прозрачной полусфере, на которой сверху установлена штыревая приемопередающая антенна, соединенная с коробкой, в которой размещены буферная щелочная батарея и второй модем, каждый модем состоит из последовательно включенных задающего генератора, фазового манипулятора, второй вход которого соединен с выходом источника дискретных сообщений, первого смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, первого усилителя мощности, дуплексера, вход-выход которого связан с приемопередающей антенной, второго усилителя мощности, второго смесителя, второй вход которого соединен с выходом второго гетеродина и усилителя второй промежуточной частоты, из последовательно включенных перемножителя, второй вход которого соединен с выходом первого гетеродина, полосового фильтра и фазового детектора, второй вход которого соединен с выходом второго гетеродина, а выход является выходом модема, причем первый модем излучает сложные сигналы с фазовой манипуляцией на частоте ω=ω=ω, а принимает на частоте ω=ω=ω, где ω, ω - частоты первого и второго гетеродинов, ω - первая промежуточная частота, ω - третья промежуточная частота, частоты гетеродинов разнесены на значение второй промежуточной частоты ω-ω=ω, а второй модем, наоборот, излучает сложные сигналы с фазовой манипуляцией на частоте ω, а принимает на частоте ω, отличающаяся тем, что каждый модем снабжен усилителем суммарной частоты, амплитудным детектором и ключом, причем к выходу второго смесителя последовательно подключены усилитель суммарной частоты, амплитудный детектор и ключ, второй вход которого соединен с выходом усилителя второй промежуточной частоты, а выход подключен к первому входу перемножителя, усилитель суммарной частоты первого модема настроен на вторую суммарную частоту ω, равную сумме частот ω=ω+ω, а усилитель суммарной частоты второго модема настроен на первую суммарную частоту ω, равную сумме частот ω=ω+ω.
Система дистанционного контроля и управления солнечным концентраторным модулем
Система дистанционного контроля и управления солнечным концентраторным модулем
Система дистанционного контроля и управления солнечным концентраторным модулем
Система дистанционного контроля и управления солнечным концентраторным модулем
Система дистанционного контроля и управления солнечным концентраторным модулем
Источник поступления информации: Роспатент

Показаны записи 101-106 из 106.
21.06.2020
№220.018.2942

Компьютерная система дистанционного управления навигационными комплексами для автоматизированного мониторинга окружающей среды в условиях арктики

Предлагаемая система относится к области автоматизированного мониторинга окружающей среды в условиях Арктики, а именно состояния атмосферы и льда с одновременным определением координат собственного местонахождения навигационных комплексов и передачи полученной информации по радиоканалам, и...
Тип: Изобретение
Номер охранного документа: 0002723928
Дата охранного документа: 18.06.2020
04.07.2020
№220.018.2eb0

Способ и устройство автоматического управления процессами возделывания сельскохозяйственных культур

Группа изобретений относится к области сельского хозяйства. В способе проводят оценку состава почвы возделываемого угодья и ее продукционного потенциала по пробам почвы, контроль состояния развития сельскохозяйственных культур по их видеоизображениям, полученным с помощью модуля визуального...
Тип: Изобретение
Номер охранного документа: 0002725482
Дата охранного документа: 02.07.2020
06.07.2020
№220.018.2feb

Способ радиочастотной идентификации крупного и мелкого рогатого скота и устройство для его реализации

Группа изобретений относится к животноводству, в частности к скотоводству, охоте, лесному и подсобному хозяйствам, и может быть использована для идентификации и соблюдения ветеринарно-санитарных правил содержания животных. Способ радиочастотной идентификации крупного и мелкого рогатого скота...
Тип: Изобретение
Номер охранного документа: 0002725728
Дата охранного документа: 03.07.2020
21.07.2020
№220.018.3513

Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби

Изобретение относится к ледоведению и ледотехнике и служит для прогноза момента образования трещин или разлома ледяного поля. Система, реализующая способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби, содержит четыре...
Тип: Изобретение
Номер охранного документа: 0002727081
Дата охранного документа: 17.07.2020
23.05.2023
№223.018.6ec0

Способ контроля транспортных средств и устройство для его осуществления

Изобретение относится к способу и устройству контроля транспортных средств. Способ контроля транспортных средств, при реализации которого размещают стационарный пункт контроля, оснащенный блоком дистанционной связи и связанным с ним компьютером, снабженным блоком ввода в него цифровой...
Тип: Изобретение
Номер охранного документа: 0002745459
Дата охранного документа: 25.03.2021
23.05.2023
№223.018.6f07

Способ мониторинга состояния подземных сооружений метрополитена и система для его реализации

Группа изобретений относится к вычислительной технике. Техническим результатом является повышение помехоустойчивости и достоверности мониторинга состояния подземных сооружений метрополитена путем ослабления узкополосных помех. Для этого предложена система для мониторинга состояния подземных...
Тип: Изобретение
Номер охранного документа: 0002740514
Дата охранного документа: 15.01.2021
Показаны записи 101-110 из 178.
26.08.2017
№217.015.ec6a

Вертолетный радиотехнический комплекс для обнаружения "черного ящика" с сигнализацией самолета, потерпевшего катастрофу

Изобретение относится к области авиации и может быть использовано для поиска, обнаружения и определения местоположения "черного ящика" с сигнализацией самолета, потерпевшего катастрофу. Достигаемый технический результат - повышение оперативности и достоверности обнаружения самолета,...
Тип: Изобретение
Номер охранного документа: 0002627683
Дата охранного документа: 10.08.2017
26.08.2017
№217.015.ede7

Способ определения места утечки жидкости или газа из трубопровода, находящегося в грунте, и устройство для его осуществления

Группа изобретений относится к области дистанционного контроля герметичности газонефтесодержащего оборудования и может быть использована для определения места утечки жидкости или газа из магистрального трубопровода, находящегося в траншее под грунтом. Сущность: устройство, реализующее способ,...
Тип: Изобретение
Номер охранного документа: 0002628872
Дата охранного документа: 22.08.2017
20.11.2017
№217.015.ef64

Территориальная система контроля транспортировки особо важных и опасных грузов

Предлагаемая система относится к области контроля и тревожной сигнализации и может быть использована для оперативного контроля и управления транспортировкой особо важных и опасных грузов. Технической задачей изобретения является повышение избирательности и помехоустойчивости радиоприемников,...
Тип: Изобретение
Номер охранного документа: 0002628986
Дата охранного документа: 23.08.2017
20.11.2017
№217.015.efd9

Спутниковая система для определения местоположения судов и самолетов, потерпевших аварию

Изобретение предназначено для определения местоположения аварийных радиобуев (АРБ), передающих радиосигналы бедствия на частоте 121,5 МГц и в диапазоне частот 406-406,1 МГц. Достигаемый технической результат изобретения - расширение функциональных возможностей системы путем формирования...
Тип: Изобретение
Номер охранного документа: 0002629000
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.f117

Устройство для контроля концентрации опасных газов

Изобретение предназначено для мониторинга окружающей среды, в частности для автоматического непрерывного контроля концентрации горючих газов (метана - СН, кислорода - O и угарного газа - СО) в жилых, коммунальных и производственных помещениях с целью обнаружения превышения допустимых...
Тип: Изобретение
Номер охранного документа: 0002638915
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f5bc

Система определения параметров движения астероида

Изобретение относится к комплексам защиты Земли от космических объектов. Система определения параметров движения астероида содержит передатчик, дуплексер, приемопередающую антенну, приемные антенны, опорный генератор, генератор импульсов, электронный коммутатор, гетеродин, смеситель, фильтр...
Тип: Изобретение
Номер охранного документа: 0002637048
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f687

Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов

Изобретение относится к радиолокации пассивных космических объектов (КО), например, крупных метеоритов и астероидов. Способ включает радиолокационное зондирование КО, вращающегося в процессе полета, периодической последовательностью высокоразрешающих радиосигналов наносекундной длительности....
Тип: Изобретение
Номер охранного документа: 0002634453
Дата охранного документа: 30.10.2017
29.12.2017
№217.015.fe59

Способ идентификации субъекта на обслуживаемом объекте и устройство для его осуществления

Предлагаемые способ и устройство относятся к методам защиты объектов от доступа посторонних лиц и регистрации штатного персонала, обслуживающего объекты, а именно к способам идентификации, позволяющим регистрировать субъекты, получившие доступ на объекты, а также регистрировать отпирание замков...
Тип: Изобретение
Номер охранного документа: 0002638504
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.0203

Устройство для дистанционного измерения параметров атмосферы

Изобретение относится к области метеорологии и может быть использовано для дистанционного измерения параметров атмосферы. Сущность: устройство состоит из сканирующего устройства и приемоответчика. Сканирующее устройство содержит задающий генератор (1), усилитель (2) мощности, дуплексер (3),...
Тип: Изобретение
Номер охранного документа: 0002629897
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.0279

Система для определения местоположения самолетов, потерпевших катастрофу

Система для определения местоположения самолетов, потерпевших катастрофу, содержит «черный ящик» с сигнализацией, помещенный в хвосте самолета, приемник GPS-сигналов, генератор электромагнитных волн и пункт контроля. «Черный ящик» содержит блок генераторов звука и электромагнитных волн, блок...
Тип: Изобретение
Номер охранного документа: 0002630272
Дата охранного документа: 06.09.2017
+ добавить свой РИД