×
21.03.2020
220.018.0efe

Результат интеллектуальной деятельности: Аппарат для обработки газа

Вид РИД

Изобретение

Аннотация: Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью. Технической задачей предлагаемого изобретения является поддержание нормированной производительности аппарата для обработки газа при длительной эксплуатации с заданным качеством очистки путем устранения разрушения пористой пленки, покрывающей металлические пластины фильтрующего барабана, за счет отделения твердых частиц загрязнений в штуцере ввода газа в виде суживающегося сопла. 6 ил.

Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью.

Известен аппарат для обработки газа (см., патент РФ на изобретение №2627898 МПК B01D 53/18, B01D 45/08 опубл. 14.08.2017. Бюл.№ 23), содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой плёнкой, а корпус аппарата на 0,3-0,35 объёма заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, при этом наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной плёнки, причём каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, кроме того у основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса.

Недостатком является снижение качества очистки газа в результате отклонения нормированного температурного режима процесса абсорбции из-за наличия плёночной конденсации на поверхности желобообразного сборника, что приводит к значительному увеличению его термического сопротивления подачи тепла в окружающую среду и, как следствие, способствует изменению температурных полей в целом во внутреннем объёме корпуса аппарата.

Известен аппарат обработки газа (см., патент РФ на изобретение №2686151 МПК B01D 53/18, опубл. 24.04.2019 Бюл.№ 12), содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, кроме того, наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки, причём каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, кроме того у основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса, причем кривизна желобообразного сборника каплеобразной абсорбирующей жидкости выполнена по линии циклоида как брахистохрона.

Недостатком является снижение производительности аппарата для обработки газа при длительной эксплуатации из-за разрушения пористой пленки, покрывающей металлические пластины фильтрующего барабана, под ударным воздействием твердых частиц, загрязнений, сопутствующих обрабатываемому газу и выбрасываемых из штуцера входа газа в виде суживающегося сопла и бомбардирующих пористую пленку. В результате, активная часть по обработке газа абсорбирующей поверхности фильтрующегося барабана резко уменьшается, снижая в целом производительность аппарата.

Технической задачей предлагаемого изобретения является поддержание нормированной производительности аппарата для обработки газа при длительной эксплуатации с заданным качеством очистки путем устранения разрушения пористой пленки, покрывающей металлические пластины фильтрующего барабана, за счет отделения твердых частиц загрязнений в штуцере ввода газа в виде суживающегося сопла.

Технический результат достигается тем, что аппарат для обработки газа, содержит корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, кроме того, наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки, причём каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, кроме того у основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса, причем кривизна желобообразного сборника каплеобразной абсорбирующей жидкости выполнена по линии циклоида как брахистохрона, при этом криволинейные канавки, продольно расположенные от входного к выходному отверстиям суживающегося сопла, выполнены с профилем в виде «ласточкина хвоста», а у входного отверстия суживающегося сопла выполнена круговая канавка, соединенная с грязесборником.

На фиг.1 показан аппарат для обработки газа с барабаном, покрытым наноматериалом, на фиг. 2 – разрез А-А фиг. 1, на фиг. 3 – внутренняя поверхность суживающегося сопла с криволинейными канавками, на фиг.4 – каплеуловитель, выполненный в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, на фиг. 5 – кривизна желобообразующего сборника каплеобразной абсорбирующей жидкости выполнена по линии циклоида как брахистохрона, на фиг. 6 – профиль в виде «ласточкина хвоста» криволинейных канавок.

Аппарат для обработки газа состоит из корпуса 1 со штуцером входа 2 и выхода 3 газа, входа 4 и выхода 5 абсорбирующей жидкости, внутри которого на валу 6 установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин 7, покрытых пористой пленкой 8, при этом металлические пластины 7 укреплены на валу 6 посредством ребер 9. В корпусе 1 установлены каплеуловители 10 на одном горизонтальном уровне с осью 11 вала 6. Штуцер входа 2 имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки 12. В корпусе 1 расположены застойные зоны 13.

Наружная поверхность 14 вала фиксирующего барабана, выполнена с покрытием из наноматериала 15 в виде стеклообразной пленки 16 (см., например, Киш. А. Кинетика электрохимического растворения металлов. М.: Мир, 1990. -272 с.). Каплеуловители 10 выполнены в виде полусферы 17 со смещением центральной оси 18 в сторону внутренней боковой поверхности 19 корпуса 1, причем у основания 20 полусферы 17 расположен желобообразный сборник 21 каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом 21 ее слива в днище 23 корпуса 1.

Кривизна 24 желобообразного сборника 21 каплеобразной абсорбирующей жидкости выполнена по линии 25 циклоида как брахистохрона.

Криволинейные канавки 12, продольно расположенные от входного 26 к выходному 27 отверстиям штуцера входа 2 в форме суживающегося сопла, выполнены с профилем 28 в виде «ласточкина хвоста», а у входного отверстия 26 выполнена круговая канавка 29, соединенная с грязесборником 30.

Аппарат для обработки газа работает следующим образом.

Твердые частицы загрязнений постоянно находятся в потоке обрабатываемого газа в виде ржавчины, окалины, а также сопутствующих различных технологических примесей, возникающих при добыче, производстве и транспортировке газа и поступают в штуцер входа 2 аппарата обработки.

В связи с тем, что масса каждой из твердых частиц загрязнений, находящихся в обрабатываемом газе, существенно превышает массу любого из газовых, парообразных и мелкодисперсных каплеобразных компонентов газового потока, поступающего в штуцер входа 2, твердые частицы, закручиваясь при перемещении по криволинейным канавкам 12 суживающегося сопла, на выходе из него накапливают значительную кинетическую энергию, которая переходит в энергию удара с последующим разрушением пористой пленки 8 фильтрующего барабана. В результате уменьшается активная поглощающая поверхность металлических пластин 7, покрытых пористой пленкой 8 и, как следствие, снижается и производительность по очистке аппарата для обработки газа.

При выполнении криволинейных канавок 12 с полостями, имеющими профиль 28 в виде «ласточкина хвоста» твердые частицы в процессе вращательного движения при перемещении от входного 26 к выходному 27 отверстиям штуцера входа 2, смещаются к периферии суживающегося сопла и заполняют полости в виде «ласточкина хвоста» 28. Под действием центробежных сил твердые частицы из полостей с профилем в виде «ласточкина хвоста» 28 криволинейных канавок 12 перемещаются к входному отверстию 26 и в круговую канавку 29 с последующим накоплением в грязесборнике 30 для выброса вручную или автоматически (на фиг. не показано).

В результате твердые частицы не поступают во внутренний объем корпуса 1 и, соответственно не бомбардируют пористую пленку 8 и, как следствие, поддерживается постоянство активной абсорбирующей поверхности фильтрующего барабана с заданной производительностью аппарата для обработки газа при длительной эксплуатации в условиях изменяющейся концентрации твердых частиц загрязнений, поступающих в штуцер входа 2.

Мелкодисперсные каплеобразующие частицы абсорбирующей жидкости, при выходе металлических пластин 7 после восстановления пористой плёнки 8, скользят по поверхности полусферы 17 к основанию 20 и далее в желобообразном сборнике 21, где после коагуляции и укрупнения в виде конденсатной плёнки перемещаются к вертикальному каналу 22 с последующим сливом в днище 23 корпуса 1 аппарата для обработки газа.

Наличие конденсатной плёнки в желобообразном сборнике 21 снижает интенсивность теплообмена в 10-15 раз по сравнению с капельной конденсацией (см., например, стр. 248 Исаченко В.П. и др. Теплопередача М.: Энергоиздат, 1981. -416 с., ил.)

Следовательно, плёнка из соединившихся мелкодисперсных капелек абсорбционной жидкости, перемещающейся по желобообразному сборнику 21 создаёт локальное снижение тепломассообменных параметров процесса абсорбции (см., например, стр. 254 Цой П.В. Методы расчёта отдельных задач тепломасссопереноса. М.: Энергия, 1971. -384 с., ил.) и, как следствие, приводит к изменению температурных полей, гидрации, растворения, разбавления и конденсации во всём внутреннем объёме аппарата для обработки газа.

При выполнении кривизны 24 желобообразного сборника 21 по линии 25 циклоида как брахистохрона мелкодисперсные каплеобразные частицы абсорбирующей жидкости ускоренно, за кратчайшее время (см., например, стр. 802. Некоторые замечательные кривые М.Я. Выгодский. Справочник по высшей математике. М.: Наука, 1969. -872 с., ил) из начальной точки А (место соединения полусферы 17 и основания 20) в конечную точку В (место соединения желобообразного сборника 21 с вертикальным каналом 22) с центром кривизны в точке К перемещаются без образования плёнки из каплеуловителя 10 в днище 23 корпуса 1.

В результате осуществляется капельное перемещение абсорбирующей жидкости и, соответственно, устраняется локальное увеличение термического сопротивления в корпусе аппарата и в его внутреннем объёме поддерживается нормированный тепломассообменный режим абсорбирующей очистки газа с получением качественного готового продукта.

При выходе металлических пластин 7 после восстановления пористой пленки 8 из абсорбирующей жидкости, зеркало которой находится ниже горизонтального уровня, соответствующего оси вала 6, капельки жидкости с каплеуловителя 10 под действием силы тяжести спадают вниз и захватываются движущимся потоком обрабатываемого газа. Следовательно, наблюдается витание мелкодисперсных каплеобразных частиц над зеркалом абсорбирующей жидкости, что увеличивает аэродинамическое сопротивление аппарата для обработки газа и, следовательно, мощность на привод устройства подачи газа в корпус 1 достигает 20-25% (см., например, Курчавин В.М., Мезенцев А.П. Экономия тепловой и электрической энергии в поршневых компрессорах.- Л.: Энергоатомиздат, 1985. - 81 с.: ил.).

Для устранения «витания» мелкодисперсных каплеобразных частиц абсорбирующей жидкости, хаотически сбрасываемых с каплеуловителя 10, он выполнен в виде полусферы 17. Тогда мелкодисперсные каплеобразные частицы под совместным действием сил сцепления и тяжести в результате смещения центральной оси 18, каплеуловителя 10 в сторону боковой поверхности 19 корпуса 1, перемещаются к основанию 20 в желобообразный сборник 20, где коагулируют, укрупняются и по вертикальному каналу 22 сливаются в днище 23 корпуса 1 аппарата для обработки газа.

В результате устраняется «витание» мелкодисперсных частиц над зеркалом абсорбирующей жидкости, то есть поддерживается нормированное аэродинамическое сопротивление корпуса 1 и, как следствие, заданная мощность на привод устройства по подаче газа на обработку.

Перемещение обрабатываемого газа повышенного влагосодержания в корпусе 1 сопровождается выделением теплоты гидрации, растворения, разбавления и конденсации, обусловливающим суммарный тепловой эффект сорбции(см., например, Коун А.А., Резенфанд Ф.С. Очистка газа. М.: Химмаш, 1998. - 198 с.). Это приводит к интенсивному испарению абсорбционной жидкости, в результате чего осуществляется контакт с нижней стороны наружной поверхности 14 вала 6, находящейся по мере вращения фильтрующего барабана на пути перемещающегося насыщенного мелкодисперсной влагой испаряющегося потока. При этом налипающая на наружную поверхность 14 мелкодисперсная влага коагулирует, укрупняется и коррозирует металл вала 6.

Одновременно на выходе штуцера 2 входа газа в виде суживающегося сопла осуществляется внезапное расширение в корпусе 1 обрабатываемого воздуха повышенного влагосодержания со снижением температуры насыщения пара с последующей конденсацией монодисперсной влаги, налипающей на верхнюю сторону внешней поверхности 14 вала 6 (эффект Джоуля-Томсона, см., например, Нащокин В.В. Техническая термодинамика и теплопередача М.: Высш. школа. 1980. -469 с.). В результате пузырьки пара, соприкасаясь с верхней стороной внешней поверхности 14 сжимаются до высоких давлений и быстро распадаются, приводя к разрушению металла вала 6, т.к. наблюдается явление локальной кавитации.

Совместное коррозионное и кавитационное воздействие на наружную поверхность 14 вала 6 приводит к разрушению его с последующим ремонтом или заменой и, соответственно, к внеплановым демонтажным работам, что, как следствие, способствует возрастанию энергозатрат на процесс очистки газа.

Для устранения разрушающего действия коррозии и кавитации на наружную поверхность 14 вала 6 наносится покрытие, выполненное из наноматериала 15 с образованием стеклоподобной пленки 16. В результате не осуществляется налипание как мелкодисперсных частиц абсорбционной жидкости с нижней стороны, так и конденсирующихся капелек пара с верхней стороны наружной поверхности 14 вала 6. Следовательно, практически отсутствуют коррозийные и кавитационные воздействия, и вал 6 с фильтрующим барабаном эксплуатируется в заданном временном режиме по условию нормативного ремонта или замены.

Обрабатываемый газ с нормированными параметрами по расходу подают в корпус 1 через штуцер входа 2 с криволинейными канавками 12. В результате перемещения потока обрабатываемого газа от входного отверстия штуцера входа 2, выполненного в форме суживающегося сопла, по продольно расположенным криволинейным канавкам 12, он закручивается и в виде вихревого потока (см., например, Меркулов А.П. Вихревой эффект и его использование в технике. Куйбышев, 1969. - 369 с.) поступает в полость очистки газа корпуса 1 аппарата. Наличие вихревого потока в полости корпуса 1 приводит к образованию в застойных зонах 13 микровихрей, в результате чего в застойных зонах 13 ламинарный режим движения газа в пограничном слое (место контакта внутренней поверхности корпуса 1 и обрабатываемого газа) переходит в турбулентный (см., например, А.Д. Альтшуль и др. Аэродинамика и гидравлика. М.: 1975. -438 с.). В результате весь объем газа, поступающий в корпус 1, участвует в процессе абсорбционной обработки. Обрабатываемый газ по мере перемещения в корпусе 1 воздействует на металлические пластины 7, перпендикулярно расположенные к направлению движения обрабатываемого газа. Так как металлические пластины 7 укреплены на валу 6, то последние начинают вращаться на оси 11. По мере перемещения металлических пластин 7 из горизонтального положения в вертикальное изменяется площадь контакта абсорбирующей поверхности в виде смоченной абсорбирующей жидкостью пленки 8, и, следовательно, осуществляется переменный по времени процесс абсорбционного отделения от газа вредных загрязнений, определяемых абсорбирующей способностью жидкости, находящейся в полости корпуса 1.

Наибольшая интенсивность абсорбционной очистки газа происходит на пористой пленке 8, когда металлическая пластина 7 занимает верхнее вертикальное положение. По мере вращения вала 6 на оси 11 площадь контакта абсорбирующей поверхности пористой пленки 8 вновь уменьшается, и очищенный закрученный газ огибает металлическую пластину 7, в застойной зоне 13, находящейся перед штуцером выхода 3 полости корпуса 1, ламинарный режим в пограничном слое преобразуется в турбулентный, в результате чего весь объем газа, поступающий в корпус 1, участвует в процессе абсорбционной очистки.

Синусоидальный характер абсорбционной очистки газа от вредных частиц 20 обеспечивает высокое качество очистки с минимизацией затрат абсорбирующей жидкости (см., например, Берман Л.Д. О теплообмене при пленочной конденсации движущегося пара//Теплообмен, температурный режим и гидродинамика при генерации пара-Л.: Наука, 1981.-С. 93-102.).

Истощенная в результате контакта с обрабатываемым газом пористая пленка 8 по мере перемещения металлических пластин 7 погружается в абсорбирующую жидкость, где восстанавливается и, выходя из жидкости, зеркало которой находится ниже горизонтального уровня, соответствующего оси 11 вала 6 на величину, определяемую заполнением внутренней полости корпуса 1, после каплеуловителей 10 вновь переходит в рабочее состояние для последующего контактного взаимодействия с обрабатываемым потоком газа. Процесс обновления абсорбирующей жидкости в корпусе 1 осуществляется или постоянно, путем подачи жидкости через штуцер 5 выхода, или периодически по мере необходимости так же через штуцеры входа 4 и выхода 5 жидкости.

При незначительном увеличении расхода обрабатываемого газа, например, по производственной необходимости, но с соблюдением заданной степени абсорбционной обработки, осуществляется поворот металлических пластин 7 в ребрах 9 на угол от 15° до 25° (большему значению увеличения расхода соответствует большее значение угла —Поворота). В этом случае обрабатываемый газ входит через штуцер 2 и, проходя корпус 1, воздействует на абсорбирующую поверхность металлической пластины 7, частично сходя по ней под углом к плоскости вращения, т.е. усилие на металлическую пластину 7 с возрастанием расхода обрабатываемого газа практически не увеличивается, а время его контакта с абсорбирующей поверхностью пористой пленки 8 остается неизменным и, соответственно, качество очистки газа от загрязнений не ухудшается. Величина угла поворота металлических пластин 7 на ребрах 9 от 15° до 25° позволяет при увеличении расхода обрабатываемого газа до 20% поддерживать заданное качество очистки путем постоянной скорости вращения вала 6 (в пределах изменения расхода обрабатываемого газа от нормативного до увеличенного на 20%), т.е. достигается равенство нахождения по времени металлических пластин 7 с пористой пленкой 8 как в режиме контакта с обрабатываемым газом, так и с абсорбирующей жидкостью.

Заполнение корпуса 1 абсорбирующей жидкостью обусловлено необходимостью стекания с пористых пленок 8 абсорбирующей жидкости до перехода металлических пластин 7 в горизонтальное положение, и расположение каплеуловителей 10 на одном горизонтальном уровне с осью 11 вала 6 устраняет возможность захвата обрабатываемым потоком газа каплеобразующих частиц с зеркала абсорбирующей жидкости.

Оригинальность предложенного изобретения заключается в том, что поддерживается постоянство производительности по готовому продукту с заданным качеством аппаратом для обработки газа при длительной эксплуатации в условиях изменяющейся концентрации твердых частиц. Это осуществляется за счет устранения разрушения пористой пленки фильтрующего барабана, бомбардирующим воздействием загрязнений, путем выполнения профиля криволинейных канавок в виде «ласточкина хвоста» и расположения у входного отверстия штуцера входа круговой канавки, соединенной с грязесборником, являющимся накопителем твердых частиц.

Аппарат для обработки газа, содержащий корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала, при этом штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, кроме того, наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки, причём каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса, кроме того, у основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса, причем кривизна желобообразного сборника каплеобразной абсорбирующей жидкости выполнена по линии циклоида как брахистохрона, отличающийся тем, что криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла, выполнены с профилем в виде «ласточкина хвоста», а у входного отверстия суживающегося сопла выполнена круговая канавка, соединенная с грязесборником.
Аппарат для обработки газа
Аппарат для обработки газа
Источник поступления информации: Роспатент

Показаны записи 21-30 из 320.
20.04.2016
№216.015.350a

Мостовой измеритель параметров n-элементных двухполюсников

Изобретение относится к контрольно-измерительной технике, автоматике и промышленной электронике и может быть использовано для контроля и определения параметров объектов измерения, а также физических величин посредством параметрических датчиков. Задача, на решение которой направленно...
Тип: Изобретение
Номер охранного документа: 0002581404
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3bca

Способ изготовления электрода свинцово-кислотного аккумулятора

Изобретение относится к электрохимической промышленности, в частности к технологии производства свинцово-кислотных аккумуляторов. Техническим результатом изобретения является повышение электрических характеристик электрода, а также повышение ресурса работы свинцового токоотвода за счет...
Тип: Изобретение
Номер охранного документа: 0002583447
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cf6

Стереоскопическое устройство выделения динамических объектов

Изобретение относится к области автоматизированных систем видеонаблюдения. Техническим результатом является повышение точности и скорости выделения динамических объектов. Стереоскопическое устройство выделения движущихся объектов содержит: идентичные датчики изображения, аналого-цифровые...
Тип: Изобретение
Номер охранного документа: 0002583708
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d56

Устройство для удаления наледи с кромки кровли (варианты)

Изобретение относится к области строительства, а именно к устройству для удаления наледи с кромки кровли. Техническим результатом изобретения является повышение эксплуатационной надежности кровли. Устройство включает два варианта. 1-ый вариант содержит кровлю, туго натянутый трос, пропущенный...
Тип: Изобретение
Номер охранного документа: 0002583472
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d74

Способ статистического приемочного контроля крупногабаритных цилиндрических оболочек топливных баков ракет

Изобретение относится к области управления качеством продукции, в частности, крупногабаритных топливных баков ракет. Способ заключается в выборе информативных параметров качества (ИПК) изготовления тонкостенной оболочки бака. При этом выделяют так называемые реперные точки, определяющие...
Тип: Изобретение
Номер охранного документа: 0002583421
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3e56

Способ изготовления электрода свинцово-кислотного аккумулятора

Изобретение относится к электрохимической промышленности, в частности к технологии производства свинцово-кислотных аккумуляторов. Способ изготовления электрода свинцово-кислотного аккумулятора, включающий электрохимическое получение активной массы из поверхностного слоя свинцового токоотвода,...
Тип: Изобретение
Номер охранного документа: 0002584001
Дата охранного документа: 20.05.2016
10.06.2016
№216.015.463f

Способ и устройство управления охлаждением резца

Изобретение относится к области высокоскоростной обработки деталей на станках с ЧПУ. Устройство, реализующее предложенный способ управления, содержит последовательно соединенные термопару, установленную с возможностью измерения температуры в режущей части резца, нечеткий контроллер и...
Тип: Изобретение
Номер охранного документа: 0002586189
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.4e44

Комплексный воздухоподогреватель

Изобретение относится к теплоэнергетике, а именно к хвостовому оборудованию котельных установок, и может быть использовано для утилизации тепла и очистки от агрессивных примесей уходящих дымовых газов. Изобретение позволит увеличить эффективность комплексного воздухоподогревателя. Суть...
Тип: Изобретение
Номер охранного документа: 0002595289
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.57ad

Способ изготовления положительного электрода свинцового аккумулятора

Изобретение относится к химическим источникам тока и может быть использовано при производстве свинцовых аккумуляторов. В предлагаемом способе изготовления положительного электрода свинцового аккумулятора электрохимическое формирование активной массы из поверхностного слоя проводят путем...
Тип: Изобретение
Номер охранного документа: 0002588495
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5b0a

Платформенный сборно-монолитный стык

Изобретение относится к области строительства и предназначено для устройства сборно-монолитных платформенных стыков панелей стен и перекрытий зданий различного назначения. Технический результат изобретения заключается в повышении точности монтажа конструкций и обеспечении жесткого соединения...
Тип: Изобретение
Номер охранного документа: 0002589779
Дата охранного документа: 10.07.2016
Показаны записи 21-30 из 125.
27.06.2015
№216.013.5a07

Адсорбер

Изобретение относится к технике очистки газов адсорбентами, а именно к газоочистному оборудованию, и может найти применение в химической, металлургической и других отраслях промышленности для очистки газовых смесей. Технической задачей предлагаемого изобретения является снижение энергоемкости...
Тип: Изобретение
Номер охранного документа: 0002554588
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.6099

Устройство для удаления конденсата из главного резервуара локомотива

Изобретение относится к железнодорожному транспорту и может быть использовано в пневмосистемах локомотивов. Устройство для удаления конденсата из главного резервуара локомотива содержит расположенный в нижней части главного резервуара конденсатоотводчик, полый направляющий стержень, кольцевой...
Тип: Изобретение
Номер охранного документа: 0002556270
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.61dc

Ограждающий элемент с солнечным коллектором

Изобретение относится к строительству, а именно к конструкциям ограждающих элементов с солнечным коллектором, и может быть использовано в строительстве различных отапливаемых зданий, преимущественно сельскохозяйственных. Технический результат: поддержание заданных теплоизоляционных свойств...
Тип: Изобретение
Номер охранного документа: 0002556594
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6ab4

Трехслойная ресурсосберегающая железобетонная панель

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Технический результат - обеспечение энергосберегающих условий эксплуатации промышленных зданий и сооружений, особенно в условиях отрицательных температур окружающей среды. Трехслойная...
Тип: Изобретение
Номер охранного документа: 0002558874
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.73d2

Вентиляторная градирня

Изобретение относится к области энергетики. Технической задачей предлагаемого изобретения является снижение энергоемкости за счет поддержания стационарности тепломассообмена в условиях различных температурных воздействий окружающей среды на наружную поверхность вытяжной башни путем обеспечения...
Тип: Изобретение
Номер охранного документа: 0002561225
Дата охранного документа: 27.08.2015
27.09.2015
№216.013.7fbb

Устройство для гранулирования удобрений

Изобретение относится к сельскому и лесному хозяйству, а именно к производству гранулированного удобрения преимущественно из отходов производства, например дефеката сахарных заводов или смеси дефеката и чернозема, смываемого с корнеплодов свеклы. Технической задачей изобретения является...
Тип: Изобретение
Номер охранного документа: 0002564296
Дата охранного документа: 27.09.2015
20.11.2015
№216.013.8fee

Забивная сейсмостойкая свая

Изобретение относится к области строительства и может быть использовано для погружения сборных железобетонных свай сплошного сечения в грунт способом забивки. Забивная сейсмостойкая свая включает ствол с раздвигающейся нижней частью и размещенным внутри последней клиновидным элементом,...
Тип: Изобретение
Номер охранного документа: 0002568462
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9451

Экструдер пресса для производства макаронных изделий улучшенного качества

Экструдер включает содержащийся в корпусе шнек с выходным валом привода экструдера с одной стороны и с формующим устройством с другой стороны. Винтовая поверхность шнека разделена на три ступени, первая из которых связана с тестосмесителем, вторая ступень является зоной дозированной подачи...
Тип: Изобретение
Номер охранного документа: 0002569588
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9523

Система оборотного водоснабжения

Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий. Система оборотного водоснабжения, содержащая теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой...
Тип: Изобретение
Номер охранного документа: 0002569798
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9b0f

Водоотвод для скатной крыши многоэтажного дома

Изобретение относится к области строительства, в частности к водоотводу для скатной крыши многоэтажного здания. Техническим результатом изобретения является ресурсосберегающая эксплуатация здания за счет использования для освещения в темное время суток подъездов и вспомогательных помещений...
Тип: Изобретение
Номер охранного документа: 0002571320
Дата охранного документа: 20.12.2015
+ добавить свой РИД