×
19.03.2020
220.018.0dd8

Результат интеллектуальной деятельности: Устройство и способ формирования пучков многозарядных ионов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области ускорительной техники и может быть использовано для формирования пучков (потоков) низкоэнергетических двух- и трехзарядных ионов щелочноземельных и редкоземельных металлов в установках для ионной имплантации и литографии, микрозондового анализа, в ионно-лучевых приборах для модификации поверхности, а также при разработке квантовых компьютеров и атомных часов. Технический результат - повышение эффективности работы источника ионов за счет генерации ионных пучков с заданной зарядностью и малым пространственным и энергетическим «размытием», что позволяет создать компактную модульную конструкцию источника, не требующую использования сложного и дорогостоящего масс-сепаратора. Устройство содержит съемный эмиттерный узел, состоящий из цилиндрического основания, выполняющего роль катодного электрода и изготовленного из металла с хорошей электро- и теплопроводностью, например меди, с плоскими торцами, на один из которых последовательно нанесены тонкая пленка рабочего вещества - щелочноземельного или редкоземельного металла, тонкая пленка твердого электролита на основе Na-β''-AlO керамики, в котором ионы Na замещаются двух- или трехвалентными подвижными ионами рабочего вещества, и тонкая пленка пористого проводящего материала, например углерода, выполняющего роль анодного электрода, и омический нагреватель, расположенный с другого торца твердотельного резервуара. Cпособ формирования пучков многозарядных ионов состоит в образовании двухзарядных ионов щелочноземельных металлов или трехзарядных ионов редкоземельных металлов за счет окислительно-восстановительных реакций на границе «катодный электрод-твердый электролит» с последующим их быстрым транспортированием через твердый электролит, стимулированным нагревом до температуры ниже температуры плавления, полевого испарения, в вакуум, и ускорения внешним электрическим полем в пространстве между анодным электродом и входной диафрагмой устройства. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области ускорительной техники и может быть использовано для формирования пучков (потоков) низкоэнергетических двух- и трехзарядных ионов щелочноземельных и редкоземельных металлов в установках для ионной имплантации и литографии, микрозондового анализа, в ионно-лучевых приборах для модификации поверхности, а также при разработке квантовых компьютеров и атомных часов. Особенностью взаимодействия низкоэнергетических (0.1-10 кэВ) многозарядных ионов с поверхностью твердых тел является низкий уровень радиационных дефектов, что способствует созданию неглубоких (приповерхностных) р-n переходов, актуальных для современных микро- и наноэлектронных полупроводниковых приборов. Также за счет повышенной по сравнению с однозарядными ионами потенциальной энергии многозарядные ионы могут использоваться для селективного наноструктурирования поверхности [1].

Из существующего уровня техники известны устройства для формирования многозарядных ионов, построенные на базе электронно- и ионно-лучевых источников, плазменных и лазерно-плазменных генераторов, приборов с электронно-циклотронным резонансом [2-5]. Способом формирования многозарядных ионов в этих устройствах является многократная ионизация рабочего вещества в плазме различной плотности и температуры, создаваемой за счет воздействия на рабочее вещество в твердом, паро- или газообразном состоянии электронными и ионными пучками, лазерным излучением. Недостатком подобных технических решений является широкий спектр зарядовых и энергетических состояний формируемых ионов. Для выделения ионов с заданным электрическим зарядом (зарядностью) и энергией используются масс-энергосепараторы, что усложняет конструкцию, повышает габариты и увеличивает стоимость таких устройств. Кроме того, вышеперечисленные устройства как правило работают при энергиях ионных пучков свыше 100 кэВ, что необходимо для хорошей фокусировки ионных пучков, но приводит к повышенному уровню радиационных дефектов в приповерхностных слоях облучаемых материалов.

Известно устройство для формирования низкоэнергетических пучков многозарядных ионов переходных и редкоземельных металлов, в котором ионы с зарядностью до 6+ создаются за счет испарения и ионизации рабочего вещества электронным пучком [6]. Устройство содержит накаливаемый катод-источник электронов, анод-резервуар рабочего вещества и электроды для формирования бомбардирующего электронного пучка, экстракции и фокусировки ионного пучка. В состав устройства входят блок питания катода и источники ускоряющего напряжения для электронов и ионов. Для выделения ионов с заданной отношением массы к заряду используется магнитный масс-спектрометр. Недостатком прототипа является присутствие в сформированном пучке ионов с различной зарядностью и разными продольными и поперечными скоростями (для каждой зарядности), что приводит к пространственному и энергетическому «размытию» пучка.

Задача предлагаемого изобретения состоит в создании компактного твердотельного источника ионов щелочноземельных и редкоземельных металлов, позволяющего генерировать пучок ионов заданной зарядности с меньшим пространственным и энергетическим «размытием», чем у известного прототипа, за счет физических процессов, протекающий в суперионных проводниках (твердых электролитах с быстрым ионным транспортом) без использования плазменного или электронно-лучевого ионизатора и масс-сепаратора сформированного пучка.

Решение указанной задачи достигается тем, что устройство для формирования пучков многозарядных ионов содержит съемный эмиттерный узел, состоящий из цилиндрического основания, выполняющего роль катодного электрода и изготовленного из металла с хорошей электро- и теплопроводностью, например, меди, с плоскими торцами, на один из которых последовательно нанесены тонкая пленка рабочего вещества - щелочноземельного или редкоземельного металла, тонкая пленка твердого электролита на основе Na-β''-Al2O3 керамики, в котором ионы Na+ замещаются двух- или трехвалентными подвижными ионами рабочего вещества, и тонкая пленка пористого проводящего материала, например, углерода, выполняющего роль анодного электрода, и омический нагреватель, расположенный с другого торца твердотельного резервуара. При этом способ формирования пучков многозарядных ионов состоит в образовании двухзарядных ионов щелочноземельных металлов или трехзарядных ионов редкоземельных металлов за счет окислительно-восстановительных реакций на границе «катодный электрод-твердый электролит» с последующим их быстрым транспортом через твердый электролит, стимулированном нагревом до температуры ниже температуры плавления, полевого испарения в вакуум и ускорения внешним электрическим полем в пространстве между анодным электродом и входной диафрагмой устройства.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является повышение эффективности работы источника ионов за счет генерации ионов с заданной зарядностью и малым пространственным и энергетическим «размытием», что позволяет создать компактную модульную конструкцию источника, не требующую использования сложного и дорогостоящего масс-сепаратора.

Сущность технического решения поясняется фиг. 1, на которой приведена схема изобретения - устройства для формирования пучков (потоков) низкоэнергетических двух- и трехзарядных ионов щелочноземельных и редкоземельных металлов.

Изобретение содержит цилиндрическое основание 1, изготовленное из металла с хорошей электро- и теплопроводностью, например, меди. Основание выполняет роль катодного электрода; на его внешний торец методом магнетронного напыления наносится пленка рабочего вещества 2 - щелочноземельного (например, Sr или Ва) или редкоземельного (например, Се или Eu) металла толщиной несколько мкм. Пленка является резервуаром рабочего вещества, ее толщина, как и диаметр основания, на которое она наносится, не оказывают принципиального влияния на работу устройства, но определяют запас рабочего вещества и величину ионного тока. На поверхность пленки-резервуара методом импульсного лазерного напыления наносится тонкая пленка (1-1.5 мкм) твердого электролита 3. В качестве твердого электролита используются суперионный проводник на основе Na-β''-Al2O3 керамики [7-9], в котором ионы Na+ замещаются двух- или трехвалентными мобильными ионами щелочноземельного или редкоземельного металла (рабочего вещества). Далее на поверхность твердого электролита наносится тонкий слой (0.2-0.5 мкм) пористого проводящего материала 4, например, углерода, который выполняет роль анодного электрода и одновременно предохраняет твердый электролит от воздействия влаги и атмосферного воздуха. Цилиндрическое основание с пленкой твердого электролита и анодным электродом образуют съемный эмиттерный узел 5, который с внутреннего торца подогревается омическим нагревателем 6 до температуры ниже температуры плавления твердого электролита. Источник тока 7 используется для питания омического нагревателя, а источник напряжения 8 создает разность потенциалов между катодным и анодным электродами эмиттерного узла, которая определяет интенсивность формируемого ионного потока 9. Этот поток ускоряется разностью потенциалов между эмиттерным узлом и входной диафрагмой 10, находящейся под потенциалом земли, а затем фокусируется и отклоняется электростатической системой 11, состоящей в простейшем случае из одиночной линзы и отклоняющих X-Y пластин. Источником ускоряющего напряжения для потока эмитированных ионов служит высоковольтный блок питания 12, который задает кинетическую энергию ионов. Питание электростатической системы фокусировки и отклонения ионного потока осуществляется блоком 13. Устройство помещается в вакуумную камеру и откачивается до давления остаточных газов не хуже 10-4 Па.

Способ формирования пучков многозарядных ионов осуществляется следующим образом. Между катодным и анодным электродами эмиттерного узла подается ускоряющее напряжение порядка 100-500 В, что соответствует напряженности электрического поля внутри пленки твердого электролита порядка (1-5)×106 В/см при толщине этой пленки ~1 мкм. Под действием приложенного электрического поля атомы металла, из которого изготовлен резервуар, в результате окислительно-восстановительных реакций на границе «катодный электрод-твердый электролит» образуют положительные двухзарядные (например, Sr2+ или Ва2+ в случае щелочноземельных металлов) или трехзарядные (например, Се3+ или Eu3+ в случае редкоземельных металлов) подвижные ионы. Эти ионы перемещаются по туннелям быстрого ионного транспорта внутри электролита к границе «твердый электролит - анодный электрод», испаряются в вакуум и ускоряются внешним электрическим полем в пространстве между анодным электродом и входной диафрагмой. На подобном принципе работает твердотельный источник однозарядных положительных ионов серебра с твердым электролитом [10, 11]. Наличие двух источников электрического напряжения позволяет осуществлять независимую регулировку интенсивности и кинетической энергии потока эмитированных ионов. Нагрев источника до температуры 150-200°С стимулирует миграцию ионов рабочего вещества через электролит, что улучшает эффективность работы источника. Уменьшение концентрации ионов в пленке твердого электролита из-за их эмиссии в вакуум компенсируется доставкой этих ионов из резервуара, и в идеальном случае источник может работать до тех пор, пока не израсходуется весь объем резервуара.

Эффективность работы заявленного устройства выше, чем у известных технических решений за счет того, что способ формирования многозарядных ионов в таком устройстве базируется на физических процессах образования мобильных ионов на границе «резервуар-твердый электролит» и их быстрого транспорта в пленке твердого электролита, которые определяют зарядность, пространственный и энергетический разброс сформированного ионного потока. Заявленное устройство отличается компактным исполнением, так оно работает без плазменного или электронно-лучевого ионизатора и масс-сепаратора сформированного пучка, а переход от одного типа ионов к другому осуществляется простой заменой съемного эмиттерного узла.

ЛИТЕРАТУРА

1. Aumayr F., Winter H. // e-J. Surface Science and Nanotechnology. 2003. V. 1. P. 171.

2. Симонов В.В., Корнилов Л.А., Шашелев А.В., Шокин Е.В. Оборудование для ионной имплантации. М.: Радио и связь, 1988. 184 с.

3. Форрестер А.Т. Интенсивные ионные пучки. Перевод с англ. Под редакцией Н.Н. Семашко. М.: Мир, 1992. 358 с.

4. Elsayed-Ali Н.Е., Korwin M.L. Patent WO 2013106759 // Priority 18.07. 2013.

5. Турчин В.И. Патент на изобретение RU 2538764 // Опубл. 20.07. 2014. Бюл. №1.

6. Evtukhov R.N., Belykh S.F., Redina I.V. // Rev. Sci. Instrum. 1992. V. 63 (4). P. 2463.

7. Carrillo-Cabrera W., Thomas J.O., Farrington G.C. // Solid State Ionics 1983. V. 9-10. P. 245.

8. Dunn B. // Solid State Ionics 1986. V. 19. P. 31.

9. Иванов-Шиц A.К., Мурин И.В. Ионика твердого тела. Т. 1. СПб.: СПбГУ, 2000. 616 с.

10. Tolstogouzov A., Aguas Н., Ayouchi R., Belykh S.F., Fernandes F., Gololobov G.P., Moutinho A.M.C., Schwarz R., Suvorov D.V., Teodoro O.M.N.D. // Vacuum. 2016. V. 131. P. 252.

11. Толстогузов А.Б., Дягилев А.А. Патент на полезную модель RU 165683 // Опубл. 27.10.2016. Бюл. №30.


Устройство и способ формирования пучков многозарядных ионов
Устройство и способ формирования пучков многозарядных ионов
Источник поступления информации: Роспатент

Показаны записи 11-20 из 88.
26.08.2017
№217.015.ee51

Вычислитель для режектирования помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Техническим результатом является повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002628904
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.00bd

Зонд атомно-силового микроскопа с программируемым спектральным портретом излучающего элемента, легированного квантовыми точками структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что кантилевер соединен с электропроводящей зондирующей...
Тип: Изобретение
Номер охранного документа: 0002629713
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00ce

Вычислитель доплеровской скорости движения объекта

Изобретение относится к вычислительной технике. Технический результат заключается в повышении точности измерения скорости за счет меньшего числа функциональных преобразований и расширении диапазона однозначно измеряемой доплеровской скорости. Вычислитель доплеровской скорости движения объекта...
Тип: Изобретение
Номер охранного документа: 0002629642
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.010c

Фазометр когерентных неэквидистантных импульсов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентных неэквидистантных импульсов на фоне шума и может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской...
Тип: Изобретение
Номер охранного документа: 0002629710
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.01fd

Градиентное защитное покрытие

Изобретение относится к области электротехники, а именно к защитному покрытию электрических контактов, например магнитоуправлемых контактов (герконов), микроэлектромеханических (МЭМС) коммутаторов, слаботочных и сильноточных контактов коммутационных приборов, электромагнитных реле, и может быть...
Тип: Изобретение
Номер охранного документа: 0002629954
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.089c

Способ получения покрытий на основе нанопористого диоксида титана

Изобретение относится к области электрохимии, в частности к технологии получения пористого покрытия, представляющего собой высокоупорядоченный массив нанотрубок диоксида титана, и может быть использовано в устройствах для очистки воды и воздуха от органических соединений, в производстве...
Тип: Изобретение
Номер охранного документа: 0002631780
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.09c0

Способ обнаружения механического воздействия для идентификации пользователя и устройство для его осуществления

Предлагаемое изобретение относится к средствам распознавания с использованием электронных средств. Технический результат – повышение вероятности идентификации. Для этого предложен способ, который основан на сравнении на интервале времени анализа бинарного кода, формируемого из...
Тип: Изобретение
Номер охранного документа: 0002631977
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.125d

Вычислитель для подавления помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634190
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.126c

Вычислитель для режекции помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634191
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.13af

Фильтр режектирования помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634615
Дата охранного документа: 02.11.2017
Показаны записи 11-20 из 28.
25.08.2017
№217.015.c638

Ионный источник для электростатического ракетного двигателя

Изобретение относится к области электростатических ионных двигателей. Ионный источник содержит ионные и электронные эмиттеры, изготовленные из серебра высокой степени чистоты в виде конусов или пирамид, выполняющих роль резервуаров рабочего вещества, причем поверхность ионных эмиттеров покрыта...
Тип: Изобретение
Номер охранного документа: 0002618761
Дата охранного документа: 11.05.2017
29.12.2017
№217.015.f05b

Способ увеличения чувствительности магнитоуправляемых коммутаторов

Изобретение относится к области коммутаторов электрического тока, управляемых внешним магнитным полем: магнитоуправлемых контактов (герконов), микроэлектромеханических (МЭМС) коммутаторов и переключателей, и может быть использовано для улучшения эксплуатационных и потребительских свойств данных...
Тип: Изобретение
Номер охранного документа: 0002629002
Дата охранного документа: 24.08.2017
19.01.2018
№218.016.01fd

Градиентное защитное покрытие

Изобретение относится к области электротехники, а именно к защитному покрытию электрических контактов, например магнитоуправлемых контактов (герконов), микроэлектромеханических (МЭМС) коммутаторов, слаботочных и сильноточных контактов коммутационных приборов, электромагнитных реле, и может быть...
Тип: Изобретение
Номер охранного документа: 0002629954
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.089c

Способ получения покрытий на основе нанопористого диоксида титана

Изобретение относится к области электрохимии, в частности к технологии получения пористого покрытия, представляющего собой высокоупорядоченный массив нанотрубок диоксида титана, и может быть использовано в устройствах для очистки воды и воздуха от органических соединений, в производстве...
Тип: Изобретение
Номер охранного документа: 0002631780
Дата охранного документа: 26.09.2017
29.05.2018
№218.016.5730

Реверсивная матричная ракетная двигательная система с индивидуальным цифровым управлением величиной тяги каждой реверсивной двигательной ячейки для малоразмерных космических аппаратов

Изобретение относится к двигательным ракетным системам для малоразмерных космических аппаратов и предназначено для использования в качестве маневрового двигателя при выполнении линейных и угловых перемещений. Согласно изобретению плоская монолитная термостойкая диэлектрическая подложка содержит...
Тип: Изобретение
Номер охранного документа: 0002654782
Дата охранного документа: 22.05.2018
06.07.2018
№218.016.6cce

Матричная ракетная двигательная система с индивидуальным цифровым управлением величиной тяги каждой двигательной ячейки для малоразмерных космических аппаратов

Изобретение относится к двигательным системам для малоразмерных космических аппаратов (МКА). Монолитная термостойкая диэлектрическая подложка содержит упорядоченно размещенные на поверхности конусообразные микропоры, заполненные твердым топливом. На центры оснований конусообразных микропор...
Тип: Изобретение
Номер охранного документа: 0002660210
Дата охранного документа: 05.07.2018
19.07.2018
№218.016.72a0

Пирофосфатно-аммонийный электролит контактного серебрения

Изобретение относится к области нанесения серебряных покрытий на медь и ее сплавы и может быть использовано в технологии электронных приборов, радиотехнической промышленности для нанесения декоративных покрытий, для серебрения волноводов и изделий сложной конфигурации, в качестве электролита...
Тип: Изобретение
Номер охранного документа: 0002661644
Дата охранного документа: 18.07.2018
03.07.2019
№219.017.a429

Способ очистки металлургического кремния от примесей

Изобретение относится к очистке металлургического кремния до степени чистоты солнечного кремния. Сущность изобретения заключается в расплавлении кремния в вакуумной камере и регулировке температуры расплава, при этом обеспечивается давление порядка 0,0001 бар и поддерживается температура...
Тип: Изобретение
Номер охранного документа: 0002693172
Дата охранного документа: 01.07.2019
02.10.2019
№219.017.ccb5

Многослойное коррозионностойкое покрытие на основе бинарного сплава тугоплавкого металла ni-w

Изобретение относится к области защитных металлических покрытий, например, для защиты изделий из стали, меди и ее сплавов от коррозии, и может быть использовано для улучшения эксплуатационных и потребительских свойств изделий. Многослойное коррозионностойкое покрытие на основе бинарного сплава...
Тип: Изобретение
Номер охранного документа: 0002701607
Дата охранного документа: 30.09.2019
02.10.2019
№219.017.cd8d

Мультивекторная матричная ракетная двигательная система с цифровым управлением величиной и направлением тяги двигательных ячеек для малоразмерных космических аппаратов

Изобретение относится к двигательным системам для маневрирования и ориентации, преимущественно малых (нано- и пико-) спутников. Система, связанная штангой (57) со спутником (58), содержит круглую (1) и кольцеобразную (2) термостойкие диэлектрические подложки. В подложке (1) размещена квадратная...
Тип: Изобретение
Номер охранного документа: 0002700299
Дата охранного документа: 16.09.2019
+ добавить свой РИД