×
18.03.2020
220.018.0cd6

Энергетическая установка с машинным преобразованием энергии

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к объектам энергетического машиностроения. Изобретение направлено на повышение КПД турбокомпрессорных энергетических установок путем уменьшения затрат энергии турбины на привод компрессора. Эта задача решается снижением потребной степени сжатия компрессора только до необходимой для прокачки газообразного теплоносителя через газовый контур величины и выработкой полезной мощности, идущей на привод электрогенератора 1, парожидкостным контуром. Для этого теплообменник-парогенератор 6 включен теплопередающим трактом в магистраль газового контура, реализующего термодинамический цикл Брайтона, между источником тепла 2 и турбиной турбокомпрессора 3, а теплопринимающим трактом - в магистраль парожидкостного контура на входе в паровую турбину турбонасосного агрегата 9, при этом в магистраль парожидкостного контура, реализующего термодинамический цикл Ренкина, между насосом турбонасосного агрегата 9 и теплообменником-парогенератором 6 последовательно включены межконтурный теплообменник 7, теплопринимающий тракт которого включен в магистраль газового контура между теплообменником-регенератором 5 и теплообменником-холодильником 8, и теплообменник-регенератор 11, теплопередающий тракт которого включен в магистраль между выходом турбины турбонасосного агрегата 9 и входом в холодильник-конденсатор 12. 1 ил.
Реферат Свернуть Развернуть

Изобретение относиться к области энергетического машиностроения и может быть использовано в конструкциях турбокомпрессорных энергетических установок.

Из технической литературы известно, что достаточно высокую эффективность преобразования тепловой энергии в электрическую могут обеспечить установки с машинным преобразованием энергии, реализующие замкнутый термодинамический цикл Брайтона, включающий нагрев газообразного рабочего тела, преобразование тепловой энергии в механическую энергию посредством турбокомпрессора, регенерацию тепла оставшегося в рабочем теле после преобразования и отвод остаточного (после регенерации) низкопотенциального тепла из рабочего контура во внешнюю среду (А.А. Гуров, Д.Д. Севрук, Д.Н. Суриков "Конструкция и проектирование жидкостных двигательных установок", изд. "машиностроение", 1980 г., стр. 16). Основной недостаток такой установки обусловлен значительными потерями тепловой энергии за счет отвода низкопотенциального тепла в окружающее пространство, что практически ограничивает ее коэффициент полезного действия (к.п.д.) величиной не более 30%.

Известна схема энергоустановки представленная патентом РФ №2508460 с приоритетом от 10.07.12; в которой, наряду с термодинамическим циклом Брайтона (в основном рабочем контуре) реализуется термодинамический цикл Ренкина (в контуре отвода тепла из основного рабочего контура), в котором, часть отводимого низкопотенциального тепла преобразуется в механическую энергию посредством турбонасосного агрегата, паровая турбина которого дополняет мощность, передаваемую на вал электрогенератора.

Выполненная в соответствии с вышеуказанной схемой и принятая за прототип изобретения энергетическая установка, в состав которой входят: электрогенератор; магистральный контур, реализующий замкнутый термодинамический цикл Брайтона, включающий источник тепла, турбокомпрессор, кинематически связанный с электрогенератором, теплообменник-регенератор, теплопередающий тракт теплообменника-парогенератора; и парожидкостной контур, реализующий цикл Ренкина, включающий источник тепла (в виде теплообменника-парогенератора), турбонасосный агрегат с паровой турбиной, кинематически связанный с электрогенератором, и холодильник-конденсатор. Эта установка обеспечивает за счет дополнительной мощности увеличение к.п.д. энергоустановки на 3% по сравнению с аналогом.

Недостаток данной энергоустановки, как и энергоустановки-аналога, заключается в том, что основная часть мощности турбины тратиться на привод компрессора, что обусловлено высокой работой сжатия газообразного рабочего тела с относительно низкой плотностью, при использовании его в цикле Брайтона.

Так, энергоустановки, выполненные в соответствии с аналогом и прототипом изобретения, реализующие замкнутый термодинамический цикл (цикл Брайтона) с температурой газообразного рабочего тела на входе в турбину 1200 К, на входе в компрессор 400 К, максимальным давлением в контуре 37 ата и расходом через замкнутый контур 3,6 кг/с при уровне достигнутых к настоящему времени к.п.д. компрессора и турбины μкт=0,8, имеют следующие мощностные характеристики:

у энергоустановки-аналога мощность компрессора и турбины, соответственно, равны 436 кВт и 527 кВт (затраты мощности турбины на привод компрессора соответственно 82,7%), мощность, поступающая на вал электрогенератора 91 кВт, что при к.п.д. электрогенератора ~0,91 и мощности вырабатываемой им электроэнергии, отбираемой на самопотребление энергоустановки ~10 кВт, обеспечивает выход полезной электрической мощности энергоустановки ~79,5 кВт и ее к.п.д. ~0,1346;

у энергоустановки-прототипа мощность компрессора и суммарная мощность турбин, соответственно, равны 466 кВт и 546 кВт (затраты мощности на привод компрессора и насоса ~79,8%), мощность на валу электрогенератора 110 кВт, полезная мощность ~90 кВт, к.п.д. ~0,1646.

Изобретение направлено на повышение к.п.д. энергоустановки путем уменьшения затрат энергии турбин на привод компрессора.

Результат обеспечивается тем, что теплообменник-парогенератор включен теплопередающим трактом в магистраль газового контура, реализующего термодинамический цикл Брайтона, между источником тепла и турбиной турбокомпрессора, а теплопринимающим трактом - в магистраль парожидкостного контура - на входе в паровую турбину турбонасосного агрегата; при этом в магистраль парожидкостного контура между насосом турбонасосного агрегата и теплообменником-парогенератором последовательно включены теплопринимающими трактами межконтурный теплообменник, теплопередающий тракт которого включен в магистраль между теплообменником-регенератором тепла и теплообменником-холодильником газового контура, и теплообменник-регенератор тепла парожидкостного контура, теплопередающий тракт которого включен в магистраль между выходом турбины турбонасосного агрегата и входом в холодильник-конденсатор.

При таком исполнении энергетической установки суммарные затраты мощностей турбин (располагаемой мощности) на привод компрессора и насоса (потребная мощность) могут быть уменьшены до 37% от их величины за счет уменьшения степени сжатия компрессора с 2,6, как у прототипа, до величины 1,23, достаточной для прокачки газообразного теплоносителя через контур при равенстве мощностей компрессора и турбины, что позволяет (при снижении общего уровня энергобаланса кинематической группы турбокомрессор-электрогенератор-турбонасосный агрегат) за счет мощности паровой турбины, практически полностью поступающей на вращение электрогенератора, увеличить выход полезной электроэнергии энергетической установки и, соответственно, повысить ее коэффициент полезного действия.

На рисунке представлена принципиальная схема предлагаемой энергетической установки.

В состав энергоустановки входят:

- электрогенератор 1;

- замкнутый газовый контур, включающий нагреватель 2, турбокомпрессор 3, соединенный валом через муфту 4 с валом электрогенератора 1, теплообменник-регенератор 5, теплопередающий тракт теплообменника-парогенератора 6 в магистрали между нагревателем 2 и турбиной турбокомпрессора 3, теплопередающий тракт дополнительного межконтурного теплообменника 7 в магистрали на выходе теплопередающего тракта теплообменника-регенератора 5, теплообменник-холодильник 8;

- замкнутый парожидкостной контур, включающий турбонасосный агрегат 9, соединенный валом через муфту 10 с валом электрогенератора 1, теплопринимающий тракт теплообменника-парогенератора 6, теплообменник-регенератор 11, теплопринимающий тракт межконтурного теплообменника 7 в магистрали между насосом турбонасосного агрегата 9 и теплопринимающим трактом теплообменника-регенератора 11, холодильник-конденсатор 12;

- в состав энергоустановки входит также холодильник 13 системы отвода низкопотенциального тепла из газового контура.

При работе энергетической установки в газовом контуре, реализующем замкнутый термодинамический цикл Брайтона, газообразное рабочее тело с выхода компрессора турбокомпрессора 3 поступает теплообменник-регенератор 5, где нагревается за счет теплообмена с отработанным в турбине турбокомпрессора 3 рабочим телом, после чего поступает в нагреватель р 2, где нагревается до максимальной температуры цикла. Из нагревателя 2, высокотемпературное газообразное рабочее тело поступает в теплообменник-парогенератор 6, в котором передает часть тепла рабочему телу парожидкостного контура энергоустановки, после чего направляется в турбину турбокомпрессора 3. В турбине турбокомпрессора 3 тепловая энергия газа преобразуется в механическую энергию, которая полностью или частично компенсирует затраты потребной энергии привода компрессора, а избыток ее через муфту 4 передается электрогенератору 1. Из турбины турбокомпрессора 3 газообразное рабочее тело поступает в теплообменник-регенератор 5, где часть тепловой энергии передается рабочему телу на выходе компрессора турбокомпрессора 3 и, далее, в теплопередающий тракт межконтурного теплообменника 7, где оставшаяся в газообразном теплоносителе (за вычетом низкопотенциального тепла) тепловая энергия передается в парожидкостный контур энергоустановки. Из теплообменника 7 газообразное рабочее тело поступает в теплообменник-холодильник 8, в котором осуществляется теплоотвод оставшегося в нем низкопотенциального тепла в холодильник 13.

При этом параметрической особенностью реализуемого в предлагаемой энергетической установке цикла Брайтона является следующее: потребная и располагаемая мощность турбокомпрессора 3 незначительны и близки по величине, так-как газовый контур обеспечивает лишь теплосъем с нагревателя 2 и передачу тепла в парожидкостной контур теплообменника-парогенератора 6, для чего необходим минимальный (необходимый для преодоления гидросопротивления тракта газового контура) напор компрессора и, соответственно, его минимальная потребная мощность, а передача мощности на вал электрогенератора 1 в основном осуществляется в парожидкостном контуре энергоустановки, реализующем термодинамический цикл Ренкина, где при минимальной потребной мощности насоса, обусловленной высокой плотностью его рабочего тела (в 32…55 раз выше, чем в цикле Брайтона), практически вся мощность турбины турбонасосного агрегата 9 передается на вал электрогенератора 1.

В процессе, реализующим цикл Ренкина при работе энергоустановки, в теплообменнике-парогенераторе 6 за счет поступившего из газового контура тепла происходит испарение оставшейся в теплоносителе жидкой фазы (основная часть ее переходит в парообразное состояние в теплообменнике-регенераторе 11), и подогрев его до максимальной температуры цикла - температуры рабочего тела на входе в турбину турбонасосного агрегата 9. Посредством турбины тепловая энергия перегретого пара преобразуется в механическую энергию, незначительная часть которой расходуется на привод насоса турбонасосного агрегата 9, а основная часть через муфту 10 передается электрогенератору 1, который при вращении ротора преобразует механическую энергию в электрическую энергию. Перегретый пар, с выхода турбины, поступает в теплообменник-регенератор 11, где за счет передаваемого от него тепла происходит подогрев и испарение основной части поступающего из насоса турбонасосного агрегата 9 и подогретого в межконтурном теплообменнике 7 жидкого теплоносителя. После теплообменника-регенератора 11 охлажденное парообразное рабочее тело поступает в холодильник- конденсатор 12, где происходит его конденсация и охлаждение до минимальной температуры цикла Ренкина, после чего жидкое рабочее тело поступает в насос турбонасосного агрегата 9.

Расчетная оценка, проведенная применительно к энергетической установке с расходом газового теплоносителя в цикле Брайтона 3,6 кг/с, параметрами и характеристиками, указанными выше для аналога и прототипа и использованием в парожидкостном контуре воды с расходом ~0,204 кг/с, минимальной температурой цикла Ренкина (на входе в насос турбонасосного агрегата) 400 К; с давлением на входе в насос 4,4 ата, а на выходе из насоса 60 ата, показывает, что при значении коэффициентов полезного действия насоса и турбины турбонасосного агрегата, соответственно, 0,3 и 0,7 (экспериментально подтвержденные величины) возможно достижение коэффициента полезного действия энергоустановки ~0,2, что на ~3,5% выше, чем у прототипа.

Энергетическая установка с машинным преобразованием энергии, в состав которой входят электрогенератор, магистральный замкнутый газовый контур, реализующий термодинамический цикл Брайтона, включающий источник тепла, турбокомпрессор, кинематически связанный с электрогенератором, теплообменник-регенератор тепла, теплообменник-холодильник системы отвода низкопотенциального тепла из газового контура и магистральный парожидкостный замкнутый контур, реализующий термодинамический цикл Ренкина, включающий источник тепла в виде теплообменника-парогенератора, турбонасосный агрегат, кинематически связанный с электрогенератором, холодильник-конденсатор паровой фазы рабочего тела, отличающаяся тем, что теплообменник-парогенератор включен теплопередающим трактом в магистраль газового контура между нагревателем и турбиной турбокомпрессора, теплопринимающим трактом - в магистраль парожидкостного контура на входе в турбину турбонасосного агрегата, при этом в магистраль парожидкостного контура между насосом турбонасосного агрегата и теплообменником-парогенератором последовательно включены теплопринимающими трактами межконтурный теплообменник, теплопередающий тракт которого включен в магистраль между теплообменником-регенератором тепла и теплообменником-холодильником газового контура, и теплообменник-регенератор парожидкостного контура, теплопринимающий тракт которого включен в магистраль между выходом турбины турбонасосного агрегата и входом в холодильник-конденсатор.
Энергетическая установка с машинным преобразованием энергии
Энергетическая установка с машинным преобразованием энергии
Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
01.09.2019
№219.017.c592

Способ имитации высотных условий при испытании ракетных двигателей

Изобретение относится к ракетной технике и может быть использовано при испытаниях сопел ракетных двигателей больших степеней расширения с целью их отработки и подтверждения работоспособности. При имитации высотных условий при испытании ракетных двигателей тепловые, механические и...
Тип: Изобретение
Номер охранного документа: 0002698555
Дата охранного документа: 28.08.2019
01.11.2019
№219.017.dcd8

Камера жидкостного ракетного двигателя малой тяги

Изобретение относится к ракетной технике. Камера жидкостного ракетного двигателя малой тяги, состоящая из смесительной головки с форсунками, корпуса камеры с докритической и сверхзвуковой частями сопла, при этом корпус камеры образован концентрическими оболочками с зазорами между ними, которые...
Тип: Изобретение
Номер охранного документа: 0002704518
Дата охранного документа: 29.10.2019
25.03.2020
№220.018.0f77

Щелевое уплотнение-демпфер центробежного насоса

Изобретение относится к области насосостроения и может быть использовано, в частности в турбонасосных агрегатах жидкостных ракетных двигателей. Щелевое уплотнение-демпфер для гашения энергии колебаний вращающегося в бесконтактных подшипниках ротора центробежного насоса содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002717482
Дата охранного документа: 23.03.2020
18.07.2020
№220.018.33aa

Способ останова жидкостного ракетного двигателя с турбонасосной системой подачи топлива

Изобретение относится к ракетно-космической технике. Способ останова жидкостного ракетного двигателя с турбонасосной системой подачи топлива в составе космической двигательной установки, основанный на последовательной подаче 2-х команд с заданным интервалом времени между ними, при этом по...
Тип: Изобретение
Номер охранного документа: 0002726863
Дата охранного документа: 16.07.2020
Показаны записи 1-10 из 62.
27.01.2013
№216.012.20ab

Способ формирования команды управления одноканальной вращающейся по углу крена ракетой и устройство для его осуществления (варианты)

Предлагаемая группа изобретений относится к области ракетного вооружения. Способ формирования команды управления одноканальной вращающейся по углу крена ракетой включает формирование программно-временного сигнала, формирование сигнала крена ракеты, модуляцию им программно-временного сигнала и...
Тип: Изобретение
Номер охранного документа: 0002473864
Дата охранного документа: 27.01.2013
10.03.2013
№216.012.2e53

Агрегат с радиальным потоком

Изобретение относится к машиностроению и может быть использовано в конструкции центробежных высокооборотных компрессоров. Агрегат с радиальным потоком содержит корпус, рабочее колесо, расположенное на валу, щелевое уплотнение и магистраль возврата утечек на всасывание. В указанном агрегате...
Тип: Изобретение
Номер охранного документа: 0002477390
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.32c1

Ракетный летательный аппарат

Изобретение относится к ракетной технике и может быть использовано в конструкциях ракетных летательных аппаратов и ракетных двигателей. Ракетный летательный аппарат содержит корпус, ракетный двигатель с осесимметричным сверхзвуковым соплом, а также установленный на корпусе вокруг двигателя,...
Тип: Изобретение
Номер охранного документа: 0002478536
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3436

Электронный блок двухканальной лазерной полуактивной головки самонаведения

Изобретение относится к технике управления вращающимися по углу крена беспилотными летательными аппаратами и может быть использовано в комплексах вооружения, в которых на конечном участке траектории осуществляется самонаведение методом пропорциональной навигации. Электронный блок (ЭБ) включает...
Тип: Изобретение
Номер охранного документа: 0002478909
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.37b9

Способ одновременного наведения телеориентируемых в луче управления ракет (варианты) и система наведения для его осуществления

Способы и система относятся к ракетной технике и могут быть использованы в комплексах управляемого вооружения. Варианты способов одновременного наведения телеориентируемых в луче ракет включают формирование луча управления, совмещение его оптической оси с линией визирования цели, сужение луча...
Тип: Изобретение
Номер охранного документа: 0002479818
Дата охранного документа: 20.04.2013
20.05.2013
№216.012.41d8

Способ формирования сигналов управления вращающимся по углу крена самонаводящимся снарядом

Изобретения относятся к области разработки систем управления беспилотными летательными аппаратами и может быть использовано в комплексах управляемого артиллерийского вооружения и других комплексах вооружения, в которых на конечном участке траектории осуществляется самонаведение по методу...
Тип: Изобретение
Номер охранного документа: 0002482426
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.5121

Способ и устройство для регулирования основных параметров ракетных двигателей двигательной установки, использующей газообразные компоненты топлива

Изобретение относится к ракетно-космической технике. Способ регулирования основан на поддержании массовых расходов компонентов топлива через двигатели путем обеспечения заданных давлений на входах в блоки двигателей, при этом в процессе работы двигателей измеряют температуры газообразных...
Тип: Изобретение
Номер охранного документа: 0002486362
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5163

Способ наведения вращающейся ракеты и система наведения для его осуществления

Изобретение относится к области разработки систем наведения ракет. Способ наведения вращающейся ракеты включает формирование модулированного излучения на пусковом устройстве, прием излучения на ракете и выработку сигналов управления в вертикальной и горизонтальной плоскостях, формирование...
Тип: Изобретение
Номер охранного документа: 0002486428
Дата охранного документа: 27.06.2013
27.09.2013
№216.012.6ff5

Агрегатированная горелка

Изобретение относится к объектам энергетического машиностроения. Изобретение направлено на создание экономичных котельных, использующих горелки без электропотребления от внешних источников. Эта задача решается использованием части тепловой энергии продуктов сгорания топлива для выработки...
Тип: Изобретение
Номер охранного документа: 0002494312
Дата охранного документа: 27.09.2013
10.11.2013
№216.012.7f07

Способ наведения по оптическому лучу ракеты, стартующей с подвижного носителя

Изобретение относится к области наведения управляемых ракет. Способ наведения по оптическому лучу ракеты, стартующей с подвижного носителя, включает формирование на носителе лазерного луча с информационным полем управления, наведение на цель оптического прицела, ось которого съюстирована с осью...
Тип: Изобретение
Номер охранного документа: 0002498192
Дата охранного документа: 10.11.2013
+ добавить свой РИД