×
14.03.2020
220.018.0bb9

Результат интеллектуальной деятельности: Деформируемый свариваемый алюминиево-кальциевый сплав

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к сплаву на основе алюминия, и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, пригодных для аргонодуговой сварки и допускающих нагревы до 350°С. Предложенный деформируемый сплав на основе алюминия содержит в мас.%: 2,2-3,0 Са, 3,5-4,5 Zn, 2,0-2,5 Mg, 0,1-0,4 Fe, 0,05-0,15 Si, 0,12-0,28 Zr, 0,06-0,12 Sc, остальное - алюминий. Он имеет структуру, состоящую из алюминиевой матрицы, содержащей не менее 2,5% цинка, не менее 2,0% магния, не менее 0,1% циркония и не менее 0,06% скандия, и кальцийсодержащих частиц со средним размером не более 5 мкм и с объемной долей не менее 6,5%. Обеспечивается создание термостойкого сплава, предназначенного для получения деформированных полуфабрикатов и сварных соединений с высоким уровнем механических свойств при сохранении пластичности. 1 пр., 4 табл., 2 ил.

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов (в частности листовых), предназначенных для получения деталей ответственного назначения, пригодных для аргонодуговой сварки и допускающих нагревы до 350°С. Среди них: детали автомобильных двигателей, детали судостроения, водозаборной арматуры, радиаторов отопления и др.

Деформируемые термически неупрочняемые алюминиевые сплавы типа АМг2, содержащие 2-3%Mg (здесь и далее масс. %, если иное не оговорено), обладают высокой технологичностью и коррозионной стойкостью, вследствие чего они нашли широкое применение в различных областях [Фазовый состав промышленных и перспективных алюминиевых сплавов. Н.А. Белов. М: Изд. дом МИСиС, 2010- 511 с. ISBN 978-5-87623-375-2]. Эти сплавы предназначены преимущественно для получения листового проката. Основным недостатком сплавом типа АМг2 является невысокая прочность, особенно в отожженном состоянии (согласно ГОСТ 21631-76 требование к временному сопротивлению составляет менее 200 МПа). Это препятствует их использованию в нагруженных изделиях. Увеличение содержания магния до 5-6% (сплавы АМг5, АМг6) позволяет заметно повысить прочность, однако при этом снижается технологичность (в частности, сопротивление деформированию) и коррозионная стойкость (из-за образования по границам зерен вторичных выделений фазы Al3Mg2) [Фазовый состав промышленных и перспективных алюминиевых сплавов. Н.А. Белов. М: Изд. дом МИСиС, 2010- 511 с. ISBN 978-5-87623-375-2]. Кроме того, слитки сплавов с высоким содержанием магния требуют гомогенизирующего отжига.

Для повышения прочностных свойств алюминиево-магниевых сплавов целесообразно дополнительно легировать их такими элементами, которые бы сохраняли высокий уровень технологичности и коррозионной стойкости. Среди них скандий и цирконий, которые нашли применение в сплавах типа 01570 [Резник, Павел Львович; Чикова, Ольга Анатольевна; Овсянников, Б.В. / Влияние режимов гомогенизации слитков на микроструктуру, фазовый состав и механические свойства сплава 01570 при повышенных температурах. В: Металловедение и термическая обработка металлов. 2016; №4(730). стр. 18-22]. Последние в настоящее время рассматриваются как одни из наиболее перспективных материалов для авиастроения, поскольку они позволяет добиться существенно большей прочности по сравнению с классическими магналиями. Это упрочнение достигается за счет присутствия в структуре деформированных полуфабрикатов наночастиц фазы Al3(Sc,Zr)-Ll2, которые являются эффективными антирекристаллизаторами. Эти наночастицы образуются при отжиге (или технологическом нагреве) слитков в процессе распада пересыщенного алюминиевого твердого раствора (далее (Al)), который формируется при кристаллизации.

Известен сплав, раскрытый в патенте RU 2226565 (публ. 10.04.2004, бюл. №10). Данный сплав, предназначенный для изготовления деформированных полуфабрикатов, содержит 5-6 масс. % магния (Mg), 0,05-0,15 масс. % циркония (Zr), 0,05-0,12 масс. % марганца (Mn), 0,01-0,2 масс. % титана (Ti), 0,05-0,5 масс. % одного либо нескольких элементов группы, состоящей из скандия (Sc), тербия (Tb), церия (Се) и остальных лантаноидов, при этом в его составе содержится, по меньшей мере, скандий (Sc), кроме того, 0,1-0,2 масс. % меди (Cu) и/или 0,1-0,4 масс. % цинка (Zn), а также алюминий (Al) и неизбежные включения кремния в количестве до 0,1 масс. %. В частном исполнении сплав содержит, по меньшей мере, 0,15 масс. % скандия (Sc).

Недостатком этого сплава является высокое содержание магния, что требует проведения операции гомогенизации в узком температурном диапазоне. Также недостатком этого сплава является строгое ограничение по содержанию железа и кремния, что исключает возможность его приготовления на основе первичного алюминия низких марок, а также использования вторичного сырья. Еще одним недостатком этого сплава является высокое содержание в его составе дорогостоящего скандия.

Известен коррозионно-стойкий алюминиево-магниевый сплав, раскрытый в патенте РФ №2478131 (публ. RU 2226565, 10.08.1999, 10.04.2002). Этот сплав содержит 3-5 масс. % магния (Mg), 0,05-0,15 масс. % циркония (Zr), 0,05-0,12 масс. % марганца (Mn), 0,01-0,2 масс. % титана (Ti), 0,05-0,5 масс. % одного либо нескольких элементов из скандиевой группы и/или тербия (Tb), при этом в его составе содержится по меньшей мере скандий (Sc), а также алюминий (Al) и неизбежные включения кремния в количестве максимум 0,2 масс. %. В частном исполнении этот сплав содержит не менее 0,15 масс. % скандия (Sc). Сплав предназначен для изготовления методом сварки, прокатки, экструзии или ковки деталей для воздушного транспортного средства, прежде всего фюзеляжа самолета, для морского транспортного средства или для автотранспортного средства.

Недостатком данного сплава является строгое ограничение по содержанию железа и кремния, что исключает возможность его приготовления на основе первичного алюминия низких марок, а также использования вторичного сырья. Еще одним недостатком этого сплава является высокое содержание в его составе дорогостоящего скандия.

Наиболее близким к предложенному материалу является деформируемый алюминиевый сплав, раскрытый в патенте Патент РФ 2699422, (публ. 16.08.2019 Бюл. № 23). Данный сплав содержит, масс. %: 2,0-2,6 Са; 1,5-2,5 Mg; 0,4-0,6 Fe, 0,3-0,5 Si, 0,8-1,2 Mn, 0,10-0,15 Zr, 0,08-0,12 Sc, остальное - алюминий. Благодаря высокой термической стабильности структуры прочностные свойства сплава после нагрева при температурах до 350°С и выдержке до 10 часов не снижаются. Недостатком данного сплава является то, что обладает низкой технологичностью при аргонно-дуговой сварке, что не позволяет применять его для создания сварных конструкций.

Техническим результатом является создание нового кальций-содержащего свариваемого сплава на основе алюминия, предназначенного для получения листовых полуфабрикатов, допускающих нагрев до 350°С включительно.

Технический результат достигается тем, что деформируемый сплав на основе алюминия, обладающий гетерофазной структурой, содержащий кальций, магний, цирконий, скандий, железо и кремний, отличающийся тем, что он дополнительно содержит цинк при следующих концентрациях легирующих компонентов, масс. %:

Кальций 2,2-3,0
Цинк 3,5-4,5
Магний 2,0-2,5
Железо 0,1-0,4
Кремний 0,05-0,15
Цирконий 0,12-0,28
Скандий 0,06-0,12
Алюминий основа

Структура сплава состоит из алюминиевой матрицы, содержащей не менее 2,5% цинка, не менее 2,0% магния, не менее 0,1% циркония, не менее 0,06% скандия, и кальцийсодержащих частиц со средним размером не более 5 мкм и с объемной долей не менее 6,5%.

Сплав данного состава может быть выполнен в виде листов со следующими свойствами на растяжение после нагрева до температуры 350°С и выдержки в течение 3 часов: временное сопротивление (σв) не менее 300 МПа, относительное удлинение (δ) - не менее 5%. Листы из данного сплава могут быть сварены методом аргонодуговой сварки со следующими свойствами сварных соединений на растяжение после нагрева до температуры 350°С и выдержки в течение 3 часов: временное сопротивление (σв) не менее 260 МПа, относительное удлинение (δ) - не менее 3%.

Изобретение поясняется чертежом, где на фиг. 1 показан лист, изготовленный из заявляемого сплава состава №3, на фиг. 2 показаны микроструктуры в зоне сварного шва, полученного методом аргонодуговой сварки.

Сущность изобретения состоит в следующем.

Кальций способствует формированию частиц эвтектического происхождения и обеспечивает необходимый уровень технологичности при аргонодуговой сварке. Кальций позволяет связать железо и кремний и тройные соединения, которые обладают благоприятной морфологией и не оказывает отрицательного влияния на механические свойства и коррозионную стойкость. Концентрации цинка и магния в заявленных пределах обеспечивает необходимый уровень прочностных свойств, позволяет сохранить достаточно высокую деформационную пластичность и технологичность при аргонодуговой сварке.

Концентрации циркония и скандия в заявленных пределах обеспечивают необходимый эффект дисперсионного твердения за счет образования при отжиге наночастиц фазы Al3(Zr,Sc) с решеткой Ll2, обладающих высокой термической стабильностью.

ПРИМЕР

Были приготовлены 6 сплавов, составы которых указаны в табл.1. Все сплавы готовили в электрической печи сопротивления в графитошамотных тиглях на основе первичного алюминия марки А5Е. Из этих сплавов готовили плоские слитки, из которых на прокатном стане получали листы толщиной 2 мм (Фиг. 1). Образцы листов подвергали стабилизирующему отжигу при 350°С в течение 3-х часов в муфельной электропечи.

Параметры структуры, приведенных сплавов (в виде листового проката) приведены в табл. 2. Их измерение проводили с использованием сканирующего электронного микроскопа TESCAN VEGA 3 (СЭМ), укомплектованного энергодисперсионной приставкой-микроанализатором производства Oxford Instruments и программным обеспечением AZtec.

Механические свойства (временное сопротивление - σв, условный предел текучести - σ0,2 и относительное удлинение - δ) определяли по результатам испытаний на одноосное растяжение на машине Zwick Z250. Испытания при комнатной температуре проводили по ГОСТ 1497-84.

Сварку проводили ручным аргонодуговым способом с нерасходуемым вольфрамовым электродом (TIG-сварка) с использованием сварочного аппарата EWM Tetrix 270 AC/DC при токе дуги 100-110 А, примерной скорости сварки 18 см/мин и расходе аргона 6л/мин. Соединяли две карточки с габаритами 150×150 мм, вырезанные из горячекатаных листов. В качестве присадочного материала использовали проволоку квадратного сечения 2×2 мм, концентрации элементов в которой для каждого сплава соответствовали его составу. Проволоку изготавливали способом поперечно-винтовой прокатки цилиндрических слитков и последующей сортовой прокатки.

Из табл. 2 видно, что только заявляемый сплав (составы 2-4) обеспечивает требуемое сочетание параметров структуры. В сплаве 1 недостаточное содержание цинка, магния, циркония и скандия в алюминиевой матрице и низкая доля кальций-содержащих частиц, что не позволяет достичь требуемых механических свойств и технологичности при сварке. В сплаве 5 размер кальций-содержащих частиц больше требуемого, что приводят к огрублению структуры и снижению механических свойств. Кроме того, структура сплава 5 содержит первичные кристаллы цирконий- и скандий-содержащей фазы, поэтому содержание циркония и скандия в алюминиевой матрице меньше, чем в составе сплава. В сплаве 6 (прототип) алюминиевая матрица не содержит цинка, что не позволяет достичь требуемых механических свойств.

Из табл. 3 видно, что только заявляемый сплав (составы 2-4) обеспечивает наилучшее сочетание механических свойств (σв, σ0,2, δ). В сплаве 1 прочность меньше требуемого уровня, что связано с недостаточным содержанием цинка, магния, циркония и скандия в алюминиевой матрице. Сплав 5 имеет низкое значение δ, что связано с грубой микроструктурой.

Из табл. 4 видно, что только заявляемый сплав (составы 2-4) обеспечивает наилучшее сочетание механических свойств (временного сопротивления, предела текучести и относительного удлинения). Сварные соединения сплавов 1,5 и 6 содержали трещины, вследствие чего они были не пригодны для механических испытаний.


Деформируемый свариваемый алюминиево-кальциевый сплав
Источник поступления информации: Роспатент

Показаны записи 251-260 из 322.
20.06.2019
№219.017.8d34

Способ получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий

Изобретение относится к термомеханической обработке титановых сплавов для медицины, а именно к созданию способа получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий, и может быть использовано для изготовления костных имплантатов. Способ получения прутков из сверхупругих...
Тип: Изобретение
Номер охранного документа: 0002692003
Дата охранного документа: 19.06.2019
26.06.2019
№219.017.92b2

Установка для измерения характеристик процесса свс неорганических соединений в автоволновом режиме

Изобретение относится к области металлургии, в частности к установкам (устройствам) реакторам для проведения самораспространяющегося высокотемпературного синтеза. Может применяться для синтеза материалов из реакционных смесей, состоящих из твердофазных реагентов или с введением газофазных...
Тип: Изобретение
Номер охранного документа: 0002692352
Дата охранного документа: 24.06.2019
10.07.2019
№219.017.a9e3

Способ изготовления коррозионностойких постоянных магнитов

Изобретение относится к изготовлению постоянных магнитов на основе сплавов Nd-Fe-B. Способ включает прессование заготовок, их механическую обработку, нанесение на поверхность слоя алюминия толщиной 10-15 мкм холодным газодинамическим напылением и термообработку в расплаве солей с последующим...
Тип: Изобретение
Номер охранного документа: 0002693887
Дата охранного документа: 05.07.2019
11.07.2019
№219.017.b262

Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа

Изобретение относится технологии изготовления фотовольтаических преобразователей. Согласно изобретению предложен способ изготовления фотовольтаических (ФВЭ) элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа, включающий получение прекурсора...
Тип: Изобретение
Номер охранного документа: 0002694118
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b2d7

Гибридный фотопреобразователь, модифицированный максенами

Изобретение относится к технологии полупроводниковых тонкопленочных гибридных фотопреобразователей. Гибридные, тонкопленочные фотопреобразователи с гетеропереходами и слоями, модифицированными максенами TiCT, работающие в видимом спектре солнечного света, а также ближних УФ и ИК областей...
Тип: Изобретение
Номер охранного документа: 0002694086
Дата охранного документа: 09.07.2019
20.08.2019
№219.017.c17f

Способ получения слитков из алюмоматричного композиционного сплава

Изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия, и может быть использовано при получении слитков различными методами литья, в частности методом полунепрерывного вертикального литья. Способ получения слитков из алюминиевых сплавов, содержащих...
Тип: Изобретение
Номер охранного документа: 0002697683
Дата охранного документа: 16.08.2019
20.08.2019
№219.017.c180

Противопригарная краска для песчаных форм и стержней, используемых при литье магниевых сплавов

Изобретение относится к области литейного производства и может быть использовано для получения фасонных отливок, в т.ч. крупногабаритных (более 1000 мм) в разовых песчаных формах из холоднотвердеющих смесей с синтетическими связующими (ХТС). Противопригарная краска содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002697680
Дата охранного документа: 16.08.2019
20.08.2019
№219.017.c19e

Способ переработки марганецсодержащего сырья

Изобретение относится к черной металлургии и может быть использовано при переработке марганецсодержащего сырья. Процесс выплавки ведется непрерывно в трехзонной печи. В первой зоне расплавляют марганецсодержащее сырье, подавая кислород и углеродсодержащие материалы. При этом между плавильной...
Тип: Изобретение
Номер охранного документа: 0002697681
Дата охранного документа: 16.08.2019
20.08.2019
№219.017.c1a5

Способ изготовления керамических форм для литья по выплавляемым моделям

Изобретение относится к литейному производству, а именно к способу изготовления керамических форм, предназначенных для литья изделий с равноосной структурой, применяемых преимущественно в качестве лопаток газотурбинных двигателей (ГТД). Способ включает формирование на модельном блоке по меньшей...
Тип: Изобретение
Номер охранного документа: 0002697678
Дата охранного документа: 16.08.2019
21.08.2019
№219.017.c1c9

Многокомпонентный двухслойный биоактивный материал с контролируемым антибактериальным эффектом

Изобретение относится к области медицинской техники, а именно к двухслойному многокомпонентному наноструктурному покрытию для металлических, полимерных и костных имплантатов, используемых при замене поврежденных участков костной ткани. Покрытие состоит из нижнего слоя толщиной от 100 нм до...
Тип: Изобретение
Номер охранного документа: 0002697720
Дата охранного документа: 19.08.2019
Показаны записи 41-44 из 44.
16.05.2023
№223.018.614b

Литейный алюминиево-кальциевый сплав на основе вторичного сырья

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 300°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный сплав на...
Тип: Изобретение
Номер охранного документа: 0002741874
Дата охранного документа: 29.01.2021
21.05.2023
№223.018.69f1

Заэвтектический деформируемый алюминиевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих в условиях износа и повышенных температур до 300-350°С, в частности...
Тип: Изобретение
Номер охранного документа: 0002795622
Дата охранного документа: 05.05.2023
21.05.2023
№223.018.69f2

Заэвтектический деформируемый алюминиевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих в условиях износа и повышенных температур до 300-350°С, в частности...
Тип: Изобретение
Номер охранного документа: 0002795622
Дата охранного документа: 05.05.2023
17.06.2023
№223.018.8020

Способ изготовления пули

Изобретение относится к производству вооружения и может быть использовано при изготовлении снарядов, в частности пуль из вольфрамового сплава. Из вольфрамового сплава на заготовке нарезают две кольцевые канавки, на поверхность канавок наносят гальваническое никелевое покрытие. Из медного прутка...
Тип: Изобретение
Номер охранного документа: 0002760119
Дата охранного документа: 22.11.2021
+ добавить свой РИД