×
13.03.2020
220.018.0b39

Система влажностного контроля течи трубопровода АЭС

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области контроля герметичности оборудования атомных электрических станций (АЭС) и может быть использовано для обнаружения, локализации и оценки величины течи из трубопроводов водо-водяных энергетических реакторов. Система влажностного контроля течи трубопровода атомной электростанции содержит устройство отбора и транспортировки воздуха из контролируемого объема, включающее по меньшей мере один первый патрубок, устройство измерения влажности воздуха, включающее установленный в первом патрубке датчик влажности воздуха и соединенный с ним электрическими линиями связи измерительно-вычислительный комплекс. В качестве контролируемого объема система использует объем, образованный зазором по всей длине трубопровода между трубопроводом и внутренним кожухом блочной теплоизоляции. Устройство отбора и транспортировки воздуха дополнительно включает по меньшей мере один второй патрубок, установленный в отверстии блочной теплоизоляции так, что один его торец соединен с одним торцом первого патрубка, а полость второго патрубка сообщена с контролируемым объемом трубопровода. Изобретение позволяет повысить чувствительность обнаружения течи трубопровода, имеющего блочный тип теплоизоляции. 2 з.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области контроля герметичности оборудования атомных электрических станций (АЭС) и может быть использовано для обнаружения, локализации и оценки величины течи из трубопроводов водо-водяных энергетических реакторов (ВВЭР).

Из уровня техники известна влажностная система контроля течи трубопроводов и оборудования АЭС с PWR, разработанная фирмой MGP Instruments Франция (Nuclear Engineering International October 1993, pp 44-45, ДОР №1354, ФЭИ, июнь 1994, Обнинск). Система состоит из каналов проботбора воздуха из гермооболочки АЭС, гидрометрических ячеек, измеряющих точки росы проб воздуха. Контроль герметичности оборудования осуществляется по разности показаний различных гидрометрических ячеек, расположенных в системах проботбора, с данными ячеек, расположенных в воздухе гермооболочки.

Также известна, входящая в состав системы мониторинга и диагностики оборудования ALLY™ фирмы «Вестингауз» США, влажностная система контроля герметичности оборудования АЭС (Интегрирование систем мониторинга и диагностики АЭС, Рекламный проект фирмы «Вестингауз», Copyright Westing-house Electric Company, 2000, с. 8). Данная система близка по технической сущности к рассмотренной ранее влажностной системе фирмы MGP Instruments. Датчики точки росы данной влажностной системы также установлены на различных воздушных проботборных линиях. Значения температур в точке росы обрабатываются блоком сбора данных и переводятся в значения абсолютной влажности.

Общим недостатком указанных решений является то, что технические характеристики систем не отвечают требованиям контроля течи теплоносителя в рамках концепции «Течь перед разрушением», принятой в настоящее время для АЭС/ГОСТ Р 58328-2018 «Трубопроводы атомных станций. Концепция «Течь перед разрушением»».

Известна система регистрации течей теплоносителя 1-го контура реакторных установок атомной электростанции. Система включает блок контролируемых помещений с оборудованием первого контура реакторной установки, соединенный через воздуховоды вытяжной вентиляции с блоком каналов измерения влажности воздуха в контролируемых помещениях (см. патент RU №2268509, опубликован 20.01.2006).

Недостаток указанной системы - точность определения места течи теплоносителя не удовлетворяет требованиям, предъявляемым к современным системам контроля (±3 м), а система определяет место течи с точностью до размеров помещения.

Наиболее близким по технической сущности и выполняемым функциям к предложенному решению является система влажностного контроля течи трубопровода АЭС, содержащая устройство отбора и транспортировки воздуха из воздухопроницаемой теплоизоляции трубопровода под кожухом, и устройство измерения влажности воздуха. Устройство отбора и транспортировки воздуха из воздухопроницаемой теплоизоляции трубопровода состоит из патрубка, сочлененного нижним торцом с отверстием в кожухе воздухопроницаемой теплоизоляции трубопровода. Устройство измерения влажности содержит датчик влажности, линии связи и измерительно-вычислительный комплекс (см. патент RU 2271045, опубликован 27.02.2006).

Недостатком наиболее близкого решения является неспособность контролировать течь трубопровода с блочным невоздухопроницаемым типом теплоизоляции.

Технической проблемой, решаемой изобретением, является устранение указанных недостатков, а именно, создание системы контроля течи трубопровода АЭС по влажности воздуха, способной контролировать течь трубопровода, имеющего воздухонепроницаемую теплоизоляцию блочного типа.

Техническим результатом изобретения является повышение чувствительности обнаружения течи трубопровода, имеющего блочный тип теплоизоляции, расширение арсенала технических средств контроля течи трубопроводов АЭС по влажности воздуха.

Технический результат изобретения достигается благодаря тому, что система влажностного контроля течи трубопровода атомной электростанции (АЭС) содержит устройство отбора и транспортировки воздуха из контролируемого объема, включающее по меньшей мере один первый патрубок, устройство измерения влажности воздуха, включающее установленный в первом патрубке датчик влажности воздуха и соединенный с ним электрическими линиями связи измерительно-вычислительный комплекс, при этом в качестве контролируемого объема система использует объем, образованный зазором по всей длине трубопровода между трубопроводом и внутренней поверхностью блочной теплоизоляции, устройство отбора и транспортировки воздуха дополнительно включает по меньшей мере один второй патрубок, установленный в отверстии блочной теплоизоляции так, что один его торец соединен с одним торцом первого патрубка, а полость второго патрубка сообщена с контролируемым объемом трубопровода.

Кроме того, один торец второго патрубка может быть соединен с одним торцом первого патрубка посредством узла крепления.

Кроме того, второй патрубок может быть расположен соосно первому патрубку.

Изобретение поясняется чертежом, где показана схема системы с тремя устройствами отбора и транспортировки воздуха из контролируемого объема.

Предложенная система контроля течи трубопровода АЭС по влажности воздуха содержит: устройство отбора и транспортировки воздуха, включающее по меньшей мере один первый (основной) патрубок 1 и по меньшей мере один второй (дополнительный) патрубок 2; узел 3 соединения (сочленения) патрубков 1 и 2; устройство измерения влажности воздуха, включающее датчики 4 влажности воздуха, линии 5, 6, 7 связи и измерительно-вычислительный комплекс 8.

Предложенная система используется при блочной теплоизоляции 9 трубопровода 11, которая имеет внешний и внутренний кожух 10. При этом система отбирает и транспортирует воздух из контролируемого объема 12. Контролируемый объем 12 образован зазором (воздушной кольцевой полостью) по всей длине трубопровода 11 между внешней поверхностью трубопровода 11 и внутренним кожухом 10 теплоизоляции 9 (внутренней поверхностью теплоизоляции). Реакторная установка имеет гермооболочку 13.

Система устанавливается на контролируемом оборудовании следующим образом. Каждый первый (основной) патрубок 1 установлен на наружной поверхности блочной теплоизоляции 9 (на внешнем кожухе 10) так, что его ось направлена радиально относительно оси трубопровода 11. Каждый второй (дополнительный) патрубок 2 герметично установлен в отверстии, образованном в теплоизоляции 9 и его кожухе 10. Причем данное отверстие выполнено сквозным и его ось расположена радиально относительно оси трубопровода 11. Второй патрубок 2 установлен в отверстии теплоизоляции 9 так, что один (верхний) его торец (конец) соединен (сочленен) с одним (нижним) торцом (концом) первого патрубка 1 посредством узла крепления 3, а второй (нижний) его торец (конец) выведен в контролируемый объем 12 трубопровода 11 через отверстие в блочной теплоизоляции. Таким образом, полость каждого патрубка 2 сообщена с контролируемым объемом 12. Каждый второй патрубок 2 расположен, преимущественно, соосно соединенному с ним патрубку 1. При этом второй (нижний) торец патрубка 2 может быть расположен заподлицо с кожухом 10 (внутренним кожухом). Внутри каждого первого патрубка 1 установлен датчик 4. Количество патрубков 1 и 2 в предложенной системе может быть любым в зависимости от длины трубопровода 11, которые равномерно (или не равномерно) расположены вдоль всего трубопровода 11. Датчики 4 посредством линий 5, 6, 7 связи соединены с измерительно-вычислительным комплексом 8.

Система работает следующим образом. Система постоянно измеряет относительную влажность и температуру воздуха и вычисляет абсолютную влажность воздуха в местах установки датчиков 4 влажности. При отсутствии течи трубопровода 11 температура воздуха в местах установки датчиков 4 влажности превышает температуру воздуха в герметичной оболочке 13 АЭС и относительная влажность воздуха в этом случае низкая. При наличии течи трубопровода 11 образовавшийся пар, в силу избыточного давления, распространяется от места течи в обе стороны по контролируемому объему 12 трубопровода 11. Некоторая часть пара через патрубки 1 и 2 выходит в гермооболочку 13 реакторной установки АЭС, что приводит к повышению влажности и температуры воздуха в патрубках 1 и 2 и росту показаний датчика 4 влажности. Измененные параметры воздуха в патрубках 1 фиксируются датчиками 4 влажности воздуха, сигналы с которых по линиям связи 5, 6, 7 поступают в измерительно-вычислительный комплекс 8. Поскольку, датчики 4 влажности находятся на различных расстояниях от места течи, то моменты времени увеличения показаний будут различными и зависящими от величины течи. Моменты времени достижения уставок по росту влажности в местах установки трех ближайших датчиков 4 влажности на контролируемом участке фиксируются и используются для вычисления координаты течи и ее величины.

Использование системой контролируемого объема 12, образованного зазором по всей длине трубопровода 11 между трубопроводом 11 и внутренним кожухом 10 теплоизоляции 9, позволяет контролировать течь трубопровода 11 с теплоизоляцией блочного типа и получить дополнительный эффект - повысить чувствительность системы к обнаружению течи. Увеличение чувствительности оценивается по соотношению толщины традиционной теплоизоляции матового типа (около 200 мм) к величине зазора, образующего контролируемый объем 12 трубопровода 11 с блочной конструкцией теплоизоляции (от 5 до 35 мм), и составляет примерно от 8 до 40 раз.

Техническая реализуемость предложения подтверждена расчетами и экспериментами.


Система влажностного контроля течи трубопровода АЭС
Система влажностного контроля течи трубопровода АЭС
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
01.12.2019
№219.017.e96d

Датчик наклона и вибрации

Изобретение может быть использовано в энергетике, строительстве и других отраслях, где необходимо контролировать наклон и вибрацию при малых величинах параметров и малых частотах виброперемещения. Датчик наклона и вибрации содержит корпус и расположенные внутри него маятник в виде стержня с...
Тип: Изобретение
Номер охранного документа: 0002707583
Дата охранного документа: 28.11.2019
21.12.2019
№219.017.f04e

Система акустического контроля течи трубопровода аэс

Изобретение относится к контролю герметичности оборудования потенциально опасных промышленных объектов и, в частности, может быть использовано для обнаружения, локализации и определения величины утечки теплоносителя из трубопроводов первого контура водо-водяных энергетических реакторов (ВВЭР)....
Тип: Изобретение
Номер охранного документа: 0002709474
Дата охранного документа: 18.12.2019
17.01.2020
№220.017.f62d

Система диагностирования электроприводной арматуры

Изобретение относится к области контрольных устройств. Технический результат заключается в расширении арсенала средств. Система диагностирования электроприводной арматуры содержит электропривод арматуры, имеющий приводной элемент и соединенный с блоком концевых выключателей посредством...
Тип: Изобретение
Номер охранного документа: 0002711240
Дата охранного документа: 15.01.2020
13.02.2020
№220.018.024d

Система контроля течи теплообменника системы пассивного отвода тепла влажностным методом

Изобретение относится к области атомной энергетики. Система контроля течи теплообменника пассивного отвода тепла влажностным методом содержит устройство отбора и транспортировки воздуха, выполненное в виде патрубка с диафрагмой. Система содержит устройство измерения влажности воздуха,...
Тип: Изобретение
Номер охранного документа: 0002713918
Дата охранного документа: 11.02.2020
05.06.2020
№220.018.247b

Система контроля течи теплообменника системы пассивного отвода тепла акустическим методом

Изобретение относится к области атомной энергетики. Система контроля течи теплообменника пассивного отвода тепла акустическим методом содержит волноводы, акустические датчики, соединенные аналоговыми линиями связи с программно-техническим комплексом, включающим вычислительное устройство,...
Тип: Изобретение
Номер охранного документа: 0002722684
Дата охранного документа: 03.06.2020
Показаны записи 1-10 из 14.
10.03.2015
№216.013.2fb1

Измеритель искривления трубчатого канала

Изобретение относится к измерительной технике и может быть использовано для измерения профиля искривления протяженных трубчатых каналов. Измеритель искривления трубчатого канала содержит датчики изгиба (4), подключенные к измерительной схеме. Измеритель искривления трубчатого канала выполнен в...
Тип: Изобретение
Номер охранного документа: 0002543677
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fb2

Емкостный измеритель искривления трубчатого канала

Изобретение относится к измерительной технике и может быть использовано для контроля изгиба удлиненных изделий, в частности каналов активной зоны ядерного реактора. Сущность: измеритель искривления содержит емкостные датчики зазора, закрепленные на контролируемом изделии и подключенные к...
Тип: Изобретение
Номер охранного документа: 0002543678
Дата охранного документа: 10.03.2015
10.05.2016
№216.015.3ded

Способ проверки работоспособности системы контроля течи трубопровода

Изобретение относится к диагностике технического состояния систем контроля технологических процессов. Предложен способ проверки работоспособности системы контроля течи трубопровода, который включает воспроизведение системой параметров эталонного имитатора измеряемых системой физических...
Тип: Изобретение
Номер охранного документа: 0002583893
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.40a0

Термоэлектрический преобразователь и способ его метрологического контроля в процессе эксплуатации без демонтажа с объекта

Изобретение относится к термометрии и может быть использовано для измерения температуры объекта. Термоэлектрический преобразователь содержит защитный чехол (1), термометрическую вставку, направляющую трубку (2) для временного размещения в ней контрольного средства измерения температуры и...
Тип: Изобретение
Номер охранного документа: 0002584379
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.4195

Система радиационного контроля течи трубопровода яэу с водяным теплоносителем

Изобретение относится к контролю ЯЭУ с водяным теплоносителем. Система содержит комплекс измерения активности анализируемой среды, включающий датчик радиоактивного излучения (6) и устройство отбора и транспортировки анализируемой среды к датчикам радиоактивного излучения (6), и...
Тип: Изобретение
Номер охранного документа: 0002584134
Дата охранного документа: 20.05.2016
20.01.2018
№218.016.12bb

Способ измерения концентрации гелия в тепловыделяющем элементе

Изобретение относится к атомной энергетике и может быть использовано при изготовлении тепловыделяющих элементов (твэлов). Способ измерения концентрации гелия в твэле включает подачу твэла в установку на позицию измерения. Проводят локальный импульсный нагрев участка оболочки твэла, измерение...
Тип: Изобретение
Номер охранного документа: 0002634309
Дата охранного документа: 25.10.2017
09.06.2019
№219.017.768c

Система влажностного контроля течи трубопровода аэс

Изобретение относится к области контроля герметичности оборудования атомных электрических станций и используется для обнаружения утечек из трубопроводов с водяным теплоносителем. Система влажностного контроля течи трубопровода АЭС содержит устройство отбора и транспортировки воздуха из...
Тип: Изобретение
Номер охранного документа: 0002271045
Дата охранного документа: 27.02.2006
21.12.2019
№219.017.f04e

Система акустического контроля течи трубопровода аэс

Изобретение относится к контролю герметичности оборудования потенциально опасных промышленных объектов и, в частности, может быть использовано для обнаружения, локализации и определения величины утечки теплоносителя из трубопроводов первого контура водо-водяных энергетических реакторов (ВВЭР)....
Тип: Изобретение
Номер охранного документа: 0002709474
Дата охранного документа: 18.12.2019
13.02.2020
№220.018.024d

Система контроля течи теплообменника системы пассивного отвода тепла влажностным методом

Изобретение относится к области атомной энергетики. Система контроля течи теплообменника пассивного отвода тепла влажностным методом содержит устройство отбора и транспортировки воздуха, выполненное в виде патрубка с диафрагмой. Система содержит устройство измерения влажности воздуха,...
Тип: Изобретение
Номер охранного документа: 0002713918
Дата охранного документа: 11.02.2020
05.06.2020
№220.018.247b

Система контроля течи теплообменника системы пассивного отвода тепла акустическим методом

Изобретение относится к области атомной энергетики. Система контроля течи теплообменника пассивного отвода тепла акустическим методом содержит волноводы, акустические датчики, соединенные аналоговыми линиями связи с программно-техническим комплексом, включающим вычислительное устройство,...
Тип: Изобретение
Номер охранного документа: 0002722684
Дата охранного документа: 03.06.2020
+ добавить свой РИД