20.05.2016
216.015.4195

СИСТЕМА РАДИАЦИОННОГО КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА ЯЭУ С ВОДЯНЫМ ТЕПЛОНОСИТЕЛЕМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002584134
Дата охранного документа
20.05.2016
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к контролю ЯЭУ с водяным теплоносителем. Система содержит комплекс измерения активности анализируемой среды, включающий датчик радиоактивного излучения (6) и устройство отбора и транспортировки анализируемой среды к датчикам радиоактивного излучения (6), и информационно-вычислительное устройство (10). На каждом контролируемом участке трубопровода (1) дополнительно установлены, по крайней мере, два комплекса измерения активности среды, включающие датчики радиоактивного излучения (6), которые избирательно-чувствительны к излучению азота-16. Датчики радиоактивного излучения (6) расположены по всей длине трубопровода (1) на известных расстояниях. Устройства отбора и транспортировки анализируемой среды выполнены в виде патрубков (5), проходящих через в теплоизоляцию (2) трубопровода (1). Одни торцы патрубков (5) выведены в подизоляционное пространство (4) трубопровода (1), а другие торцы патрубков (5) выведены к датчикам радиоактивного излучения (6). Определение местоположения и массового расхода течи проводят по совокупным показаниям задействованных комплексов измерения активности азота-16. Технический результат - повышение точности определения местоположения и массового расхода течи. 1 ил.
Основные результаты: Система радиационного контроля течи трубопровода ЯЭУ с водяным теплоносителем, содержащая комплекс измерения активности анализируемой среды, включающий датчик радиоактивного излучения и устройство отбора и транспортировки анализируемой среды к датчику, и информационно-вычислительное устройство, отличающаяся тем, что на каждом контролируемом участке трубопровода дополнительно установлено, по крайней мере, два комплекса измерения активности анализируемой среды, включающие датчики радиоактивного излучения, которые избирательно-чувствительны к излучению азота-16, датчики радиоактивного излучения расположены по всей длине трубопровода на известных расстояниях, устройства отбора и транспортировки анализируемой среды выполнены в виде патрубков, проходящих через в теплоизоляцию трубопровода, одни торцы патрубков выведены в подизоляционное пространство трубопровода, а другие торцы патрубков выведены к датчикам радиоактивного излучения, информационно-вычислительное устройство снабжено техническими средствами программного определения местоположения и массового расхода течи по совокупным показаниям задействованных комплексов измерения активности азота-16.
Реферат Свернуть Развернуть

Изобретение относится к технологическому контролю ядерных энергетических установок с водяным теплоносителем и может быть использовано для обнаружения, локализации и определения величины течи теплоносителя из трубопроводов первого контура.

Известна система, рассмотренная в статье «Разработка системы радиационного контроля течи теплоносителя из первого контура реактора типа ВВЭР» (Гидродинамика и безопасность АЭС / Сборник тезисов докладов на отраслевой конференции «Теплофизика-99». - Обнинск, 1999).

Система включает измерительные каналы, устройства отбора и транспортировки воздушной среды из контролируемого помещения к датчикам излучения. Диагностическим признаком течи трубопровода главного циркуляционного контура с водяным теплоносителем является обнаружение в контролируемом объеме газообразных продуктов активации теплоносителя, таких как азот-13, азот-16 или фтор-18. Система с помощью устройства отбора и транспортировки воздушной среды из контролируемого объема направляет ее в детектирующий модуль. Величина активности газообразных продуктов активации в контролируемом объеме зависит от величины течи теплоносителя и мощности реактора. Обнаружение газообразного продукта активации теплоносителя в контролируемом объеме признается как факт обнаружения течи теплоносителя. Величину течи определяют исходя из измеренной объемной активности изотопа и знания его концентрации в теплоносителе.

Недостатком известной системы является то, что она определяет место течи трубопровода с точностью до длины контролируемого участка трубопровода, которая может достигать до 10 м. Это связано с тем, что некоторые из контролируемых изотопов имеют относительно малое время жизни (азот-16 - 7,11 с) и они распадаются в процессе транспортировки по данному трубопроводу к месту установки комплекса измерения активности.

Наиболее близким по технической сущности к заявляемой системе является система, рассмотренная в работе «Автоматизированная система обнаружения течи теплоносителя по объемной активности аэрозолей» (Системы и оборудование радиационного и технологического контроля. Каталог продукции ООО НПП «РАДИКО», Издание 1, 2011).

Система содержит комплексы измерения объемной активности воздушной среды помещений, каждый из которых включает датчик радиоактивного излучения, модуль обработки сигналов датчика, устройство отбора и транспортировки проб воздушной среды из зоны возникновения течи к датчику и информационно-вычислительное устройство, обеспечивающее сбор, обработку, хранение и представление информации.

Работа системы заключается в следующем. Система производит отбор проб воздуха из контролируемого помещения и транспортировку его по длинному трубопроводу к месту установки датчиков измерения объемной активности воздуха. По результатам измерений поверхностной активности фильтра и прошедшего через него объема воздуха определяется объемная активность поступающего воздуха, и в случае статистически значимого отклонения этой активности от нормы делается вывод о наличии течи теплоносителя и проводится оценка ее величины.

Недостатком системы являются относительно большие неопределенности при определении местоположения и массового расхода течи. Система определяет местоположение течи с точностью до размера помещения, в котором устанавливается контролируемое оборудование. Погрешность определения величины течи возникает из-за отсутствия строгой зависимости между величиной течи и объемной активностью аэрозолей. Активность аэрозолей зависит от радиационного состояния активной зоны, количества твэлов с дефектными оболочками, находящимися в активной зоне, и размера дефектов. Поскольку процесс попадания продуктов деления в теплоноситель - процесс случайный, то это обстоятельство не позволяет однозначно связать суммарную объемную активность регистрируемых аэрозолей с величиной течи теплоносителя.

Задача изобретения состоит в устранении указанного недостатка, а именно снижении неопределенности при определении местоположения и массового расхода течи.

Технический результат изобретения - повышение точности определения местоположения и массового расхода течи.

Для устранения указанного недостатка в системе радиационного контроля течи трубопровода ЯЭУ с водяным теплоносителем, содержащей комплекс измерения активности анализируемой среды, включающий датчик радиоактивного излучения и устройство отбора и транспортировки анализируемой среды к датчику, и информационно-вычислительное устройство, предлагается:

- на каждом контролируемом участке трубопровода дополнительно установить, по крайней мере, два комплекса измерения активности анализируемой среды, включающие датчики радиоактивного излучения, которые избирательно-чувствительны к излучению азота-16;

- датчики радиоактивного излучения расположить по всей длине трубопровода на известных расстояниях;

- устройства отбора и транспортировки анализируемой среды выполнить в виде патрубков, проходящих через в теплоизоляцию трубопровода;

- одни торцы патрубков вывести в подизоляционное пространство трубопровода, а другие торцы патрубков вывести к датчикам радиоактивного излучения;

- информационно-вычислительное устройство снабдить техническими средствами программного определения местоположения и массового расхода течи по совокупным показаниям задействованных комплексов измерения активности азота-16.

Сущность изобретения поясняется схемой системы радиационного контроля течи теплоносителя и изображением контролируемого участка трубопровода, где приняты следующие обозначения: 1 - трубопровод; 2 - теплоизоляция; 3 - теплоноситель; 4 - подизоляционное пространство; 5 - патрубок; 6 - датчик радиоактивного излучения; 7 - кабельная линия связи; 8 - модуль обработки сигналов; 9 - информационная линия связи; 10 - информационно-вычислительное устройство.

Система радиационного контроля течи трубопровода ЯЭУ с водяным теплоносителем содержит, по крайней мере, три комплекса измерения активности анализируемой среды, установленных на каждом контролируемом участке трубопровода 1, устройство отбора и транспортировки анализируемой среды к датчику и информационно-вычислительное устройство 10.

Каждый комплекс измерения активности анализируемой среды включает датчик радиоактивного излучения 6, который избирательно-чувствителен к излучению азота-16.

Датчики радиоактивного излучения 6 расположены по всей длине трубопровода 1 на известных расстояниях.

Устройства отбора и транспортировки анализируемой среды выполнены в виде патрубков 5, проходящих через в теплоизоляцию 2 трубопровода 1. Одни торцы патрубков 5 выведены в подизоляционное пространство 4 трубопровода 1, а другие торцы патрубков 5 выведены к датчикам радиоактивного излучения 6.

Информационно-вычислительное устройство 10 снабжено техническими средствами программного определения местоположения и массового расхода течи по совокупным показаниям задействованных комплексов измерения активности азота-16.

В датчиках радиоактивного излучения 6 использован эффект Вавилова-Черенкова. Датчик радиоактивного излучения 6 имеет нижний порог регистрации бета-излучения, превышающий 6,13 МэВ.

В модуле обработки сигналов 8 заложена функция приема сигналов от датчика радиоактивного излучения 6 и выдачи на выходе оцифрованного сигнала, пропорционального активности азота-16.

Электрически соединяют выход датчика радиоактивного излучения 6 со входом модуля обработки сигналов 8, находящегося на удалении от датчика радиоактивного излучения 6.

Датчик радиоактивного излучения 6, модуль обработки сигналов 8 и кабельная линия связи 7 образуют измерительный канал системы.

Выходы измерительных каналов соединены информационными линями связи 9 с информационно-вычислительным устройством 10.

Система работает следующим образом. В качестве информативного физического признака течи трубопровода 1 в системе используется факт обнаружения в подизоляционном пространстве 4 контролируемого участка трубопровода 1 радиоактивного изотопа азота-16. Радиоактивный изотоп азота-16 образуется непосредственно в теплоносителе 3 при прохождении им активной зоны реактора при взаимодействии быстрых нейтронов с ядрами кислорода-16. Изотоп азота-16 путем бета-распада превращается обратно в кислород-16 с периодом полураспада 7,11 с. Особенностью излучения азота-16 является наличие в нем бета-частиц с очень высокой энергией, доходящей до 10,4 МэВ, что позволяет в системе использовать датчики, избирательно-чувствительные к излучению изотопа азота-16 на фоне интенсивного гамма-излучения трубопровода. При возникновении течи трубопровода перегретый пар, включающий радиоактивный азота-16, от места течи Хm распространяется в обе стороны подизоляционного пространства 4. При достижении парогазовым фронтом мест установки патрубков 5 (Х1, Х2 и Х3) часть парогазовой смеси под действием некоторого избыточного давления будет выходить из подизоляционного пространства 4 через патрубки 5 к датчикам радиоактивного излучения 6. В этих условиях бета-частицы азота-16 с энергией выше 6,13 МэВ, попадая в чувствительные объемы датчиков радиоактивного излучения 6, будут производить сигналы. Регистрация присутствия азота-16 в подизоляционном пространстве 4 принимается за факт обнаружения течи.

Местоположение и величина массового расхода течи определяется из того, что датчики радиоактивного излучения 6 находятся на различных и известных расстояниях от места течи Хm и моменты времени регистрации азота-16 тремя датчиками различаются и зависят от величины расхода течи. Моменты времени t1, t2, t3 регистрации фиксируются и используются в качестве входных данных для вычисления параметров течи - координаты места течи и величины течи. Так как характерные времена распространения парогазового фронта вдоль подизоляционного пространства соизмеримы с периодом полураспада, Т1/2=7,11, с азота-16, то измеренные временные параметры достижения уставок корректируются введением поправок, учитывающих распад активности азота-16 при его распространении от места течи до мест установок датчиков радиоактивного излучения 6. Уточненные временные параметры определяются по формулам

где t1<t2<t3.

Координата места течи ХT и величина течи Gm определяются соответственно по формулам 4, 5 и 6:

где G - массовый расход течи, кг/с; - средняя скорость распространения парогазового фронта вдоль подизоляционного пространства, м/с; - откорректированные времена достижения соответствующими измерительными каналами показаний, превышающих величину уставки, с; S - площадь сечения подизоляционного пространства, м2; ν - удельный объем пара при температуре подизоляционного пространства и атмосферном давлении, кг/м3.

Таким образом, использование в системе трех комплексов регистрации активности азота-16, расположенных на трубопроводе 1 на известных расстояниях, позволяет использовать время-пролетный метод определения местоположения и массового расхода течи, позволяющий удовлетворить современные требования, предъявляемые к системам контроля течи, по точности определения массового расхода течи, равной ±50%, и точности определения местоположения течи, равной ±2 м от длины контролируемого участка трубопровода 1.

Техническая реализуемость предложенной системы подтверждается положительными результатами выполненных расчетов и экспериментов.

Изобретение промышленно применимо, оно может быть использовано в ЯЭУ с водяным теплоносителем для контроля течи трубопровода.

Система радиационного контроля течи трубопровода ЯЭУ с водяным теплоносителем, содержащая комплекс измерения активности анализируемой среды, включающий датчик радиоактивного излучения и устройство отбора и транспортировки анализируемой среды к датчику, и информационно-вычислительное устройство, отличающаяся тем, что на каждом контролируемом участке трубопровода дополнительно установлено, по крайней мере, два комплекса измерения активности анализируемой среды, включающие датчики радиоактивного излучения, которые избирательно-чувствительны к излучению азота-16, датчики радиоактивного излучения расположены по всей длине трубопровода на известных расстояниях, устройства отбора и транспортировки анализируемой среды выполнены в виде патрубков, проходящих через в теплоизоляцию трубопровода, одни торцы патрубков выведены в подизоляционное пространство трубопровода, а другие торцы патрубков выведены к датчикам радиоактивного излучения, информационно-вычислительное устройство снабжено техническими средствами программного определения местоположения и массового расхода течи по совокупным показаниям задействованных комплексов измерения активности азота-16.
СИСТЕМА РАДИАЦИОННОГО КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА ЯЭУ С ВОДЯНЫМ ТЕПЛОНОСИТЕЛЕМ
СИСТЕМА РАДИАЦИОННОГО КОНТРОЛЯ ТЕЧИ ТРУБОПРОВОДА ЯЭУ С ВОДЯНЫМ ТЕПЛОНОСИТЕЛЕМ
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
10.03.2015
№216.013.2fb1

Измеритель искривления трубчатого канала

Изобретение относится к измерительной технике и может быть использовано для измерения профиля искривления протяженных трубчатых каналов. Измеритель искривления трубчатого канала содержит датчики изгиба (4), подключенные к измерительной схеме. Измеритель искривления трубчатого канала выполнен в...
Тип: Изобретение
Номер охранного документа: 0002543677
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fb2

Емкостный измеритель искривления трубчатого канала

Изобретение относится к измерительной технике и может быть использовано для контроля изгиба удлиненных изделий, в частности каналов активной зоны ядерного реактора. Сущность: измеритель искривления содержит емкостные датчики зазора, закрепленные на контролируемом изделии и подключенные к...
Тип: Изобретение
Номер охранного документа: 0002543678
Дата охранного документа: 10.03.2015
10.05.2016
№216.015.3ded

Способ проверки работоспособности системы контроля течи трубопровода

Изобретение относится к диагностике технического состояния систем контроля технологических процессов. Предложен способ проверки работоспособности системы контроля течи трубопровода, который включает воспроизведение системой параметров эталонного имитатора измеряемых системой физических...
Тип: Изобретение
Номер охранного документа: 0002583893
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.40a0

Термоэлектрический преобразователь и способ его метрологического контроля в процессе эксплуатации без демонтажа с объекта

Изобретение относится к термометрии и может быть использовано для измерения температуры объекта. Термоэлектрический преобразователь содержит защитный чехол (1), термометрическую вставку, направляющую трубку (2) для временного размещения в ней контрольного средства измерения температуры и...
Тип: Изобретение
Номер охранного документа: 0002584379
Дата охранного документа: 20.05.2016
20.08.2016
№216.015.4c51

Способ определения наличия отложений в полости линейного участка трубы постоянного проходного сечения при прокачке кислородосодержащего потока и устройство для его реализации

Способ и устройство предназначены для определения наличия отложений в полости линейного участка трубы постоянного проходного сечения при прокачке кислородосодержащего потока. Способ включает облучение кислородосодержащего потока. Создают радиоактивную метку в кислородосодержащем потоке...
Тип: Изобретение
Номер охранного документа: 0002594397
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.522d

Способ определения границ раздела сред в сепараторах сырой нефти и устройство для его реализации

Изобретение относится к области измерительной техники. Способ определения границ раздела сред в сепараторах сырой нефти включает облучение сепаратора с отстоявшимся скважинным флюидом, регистрацию гамма-квантов и анализ полученных спектров гамма-квантов. Производят пошаговое перемещение сверху...
Тип: Изобретение
Номер охранного документа: 0002594114
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.530d

Способ определения массы силикатных отложений на единицу длины канала

Изобретение относится к области измерительной техники. Способ определения массы силикатных отложений на единицу длины канала включает в себя этапы, на которых осуществляют облучение силикатных отложений нейтронами, регистрацию гамма-квантов, при этом облучение проводят быстрыми нейтронами,...
Тип: Изобретение
Номер охранного документа: 0002594116
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5312

Способ определения массы кислорода в кислородосодержащем потоке

Изобретение относится к области измерительной техники. Способ определения массы кислорода в кислородосодержащем потоке включает облучение кислородосодержащего потока и регистрацию гамма-квантов. Облучают быстрыми нейтронами в импульсном режиме Кислородосодержащий поток, регистрируют...
Тип: Изобретение
Номер охранного документа: 0002594113
Дата охранного документа: 10.08.2016
20.01.2018
№218.016.12bb

Способ измерения концентрации гелия в тепловыделяющем элементе

Изобретение относится к атомной энергетике и может быть использовано при изготовлении тепловыделяющих элементов (твэлов). Способ измерения концентрации гелия в твэле включает подачу твэла в установку на позицию измерения. Проводят локальный импульсный нагрев участка оболочки твэла, измерение...
Тип: Изобретение
Номер охранного документа: 0002634309
Дата охранного документа: 25.10.2017
Показаны записи 1-10 из 13.
10.03.2015
№216.013.2fb1

Измеритель искривления трубчатого канала

Изобретение относится к измерительной технике и может быть использовано для измерения профиля искривления протяженных трубчатых каналов. Измеритель искривления трубчатого канала содержит датчики изгиба (4), подключенные к измерительной схеме. Измеритель искривления трубчатого канала выполнен в...
Тип: Изобретение
Номер охранного документа: 0002543677
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fb2

Емкостный измеритель искривления трубчатого канала

Изобретение относится к измерительной технике и может быть использовано для контроля изгиба удлиненных изделий, в частности каналов активной зоны ядерного реактора. Сущность: измеритель искривления содержит емкостные датчики зазора, закрепленные на контролируемом изделии и подключенные к...
Тип: Изобретение
Номер охранного документа: 0002543678
Дата охранного документа: 10.03.2015
10.05.2016
№216.015.3ded

Способ проверки работоспособности системы контроля течи трубопровода

Изобретение относится к диагностике технического состояния систем контроля технологических процессов. Предложен способ проверки работоспособности системы контроля течи трубопровода, который включает воспроизведение системой параметров эталонного имитатора измеряемых системой физических...
Тип: Изобретение
Номер охранного документа: 0002583893
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.40a0

Термоэлектрический преобразователь и способ его метрологического контроля в процессе эксплуатации без демонтажа с объекта

Изобретение относится к термометрии и может быть использовано для измерения температуры объекта. Термоэлектрический преобразователь содержит защитный чехол (1), термометрическую вставку, направляющую трубку (2) для временного размещения в ней контрольного средства измерения температуры и...
Тип: Изобретение
Номер охранного документа: 0002584379
Дата охранного документа: 20.05.2016
20.08.2016
№216.015.4c51

Способ определения наличия отложений в полости линейного участка трубы постоянного проходного сечения при прокачке кислородосодержащего потока и устройство для его реализации

Способ и устройство предназначены для определения наличия отложений в полости линейного участка трубы постоянного проходного сечения при прокачке кислородосодержащего потока. Способ включает облучение кислородосодержащего потока. Создают радиоактивную метку в кислородосодержащем потоке...
Тип: Изобретение
Номер охранного документа: 0002594397
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.522d

Способ определения границ раздела сред в сепараторах сырой нефти и устройство для его реализации

Изобретение относится к области измерительной техники. Способ определения границ раздела сред в сепараторах сырой нефти включает облучение сепаратора с отстоявшимся скважинным флюидом, регистрацию гамма-квантов и анализ полученных спектров гамма-квантов. Производят пошаговое перемещение сверху...
Тип: Изобретение
Номер охранного документа: 0002594114
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.530d

Способ определения массы силикатных отложений на единицу длины канала

Изобретение относится к области измерительной техники. Способ определения массы силикатных отложений на единицу длины канала включает в себя этапы, на которых осуществляют облучение силикатных отложений нейтронами, регистрацию гамма-квантов, при этом облучение проводят быстрыми нейтронами,...
Тип: Изобретение
Номер охранного документа: 0002594116
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5312

Способ определения массы кислорода в кислородосодержащем потоке

Изобретение относится к области измерительной техники. Способ определения массы кислорода в кислородосодержащем потоке включает облучение кислородосодержащего потока и регистрацию гамма-квантов. Облучают быстрыми нейтронами в импульсном режиме Кислородосодержащий поток, регистрируют...
Тип: Изобретение
Номер охранного документа: 0002594113
Дата охранного документа: 10.08.2016
20.01.2018
№218.016.12bb

Способ измерения концентрации гелия в тепловыделяющем элементе

Изобретение относится к атомной энергетике и может быть использовано при изготовлении тепловыделяющих элементов (твэлов). Способ измерения концентрации гелия в твэле включает подачу твэла в установку на позицию измерения. Проводят локальный импульсный нагрев участка оболочки твэла, измерение...
Тип: Изобретение
Номер охранного документа: 0002634309
Дата охранного документа: 25.10.2017
21.12.2019
№219.017.f04e

Система акустического контроля течи трубопровода аэс

Изобретение относится к контролю герметичности оборудования потенциально опасных промышленных объектов и, в частности, может быть использовано для обнаружения, локализации и определения величины утечки теплоносителя из трубопроводов первого контура водо-водяных энергетических реакторов (ВВЭР)....
Тип: Изобретение
Номер охранного документа: 0002709474
Дата охранного документа: 18.12.2019

Похожие РИД в системе