×
07.03.2020
220.018.0a5b

Результат интеллектуальной деятельности: Активный элемент на основе графена для газоанализаторов электропроводного типа

Вид РИД

Изобретение

Аннотация: Использование: для определения концентрации веществ в газах. Сущность изобретения заключается в том, что в качестве активного элемента электродов газоанализаторов используют графеновый материал, состоящий из волокон, образуемых свободным графеном, не связанным с физической подложкой из какого-либо другого материала. Технический результат: обеспечение возможности создания универсального газоанализатора для мониторинга малого содержания примесей различных газов. 2 ил., 3 табл.

Изобретение относится к измерительной технике, конкретно, к активным элементам на основе графена для газоанализаторов электропроводного типа, которые могут быть использованы для определения концентрации воды и кислорода в газах (аргоне, азоте, гелии), а также мониторинга окружающей среды на предмет определения состава газов и наличия вредных примесей аммиака, диоксида серы, метана, ацетилена, силана, хлора, и других газов для автоматического контроля технологических и химических процессов, взрывобезопасности, экологического контроля, в медицинских, военных целях и т.д.

Для измерения и контроля концентрации газов известны различные типы газоанализаторов, работающих на основе объемных (трехмерных) материалов, используемых в качестве активных элементов. Газоанализаторы, основанные на принципе ИК-поглощения являются специфическими, очень чувствительными и долговечными, но дорогими. Электрохимические газоанализаторы более дешевые, чем ИК-газоанализаторы, но имеют среднюю чувствительность и обладают низкой долговременной стабильностью. Газоанализаторы, работающие по принципу изменения теплопроводности, не очень селективны и нечувствительны, но являются долговременными и относительно низкими по стоимости.

Датчики, основанные на измерении электропроводности и удельного сопротивления являются точными, надежными, простыми в конструктивном исполнении и недорогими приборами. В них данные о концентрации газа, проходя через электроды с активными элементами, преобразуются непосредственно в электрический сигнал для регистрации которого используют измерительные приборы с достаточно простыми в настройке и эксплуатации электронными схемами. При этом активный элемент газоанализатора должен иметь достаточную химическую устойчивость, не образовывать соединений с адсорбируемыми молекулами, а также удовлетворять следующим основным критериям: высокая селективность и чувствительность, малое энергопотребление, небольшие габариты, высокая термическая и химическая стабильность, низкая себестоимость в условиях серийного производства.

Этим требованиям удовлетворяют углеродные материалы, состоящие из углеродных нанотрубок (УТ), в частности, графен, который представляет значительный интерес для использования в качестве сенсоров в газоанализирующих устройствах вследствие чрезвычайно высокого отношения поверхности к объему, поскольку изменение электропроводности активных чувствительных элементов при адсорбции на них газов тем больше, чем больше их удельная поверхность.

В отличие от всех известных трехмерных материалов графен, как двумерный материал, имеет наибольшую удельную поверхность (2630 м2/г) и существенно изменяет свои электропроводящие свойства в зависимости от молекул адсорбированного газа. Графен представляет собой полупроводник, в котором адсорбция некоторых молекул (например, NH3) может снижать его проводимость, а адсорбция других (например, NO2) увеличивать его проводимость. При этом, величина изменения проводимости (сопротивления) коррелируется с концентрацией молекул газа и возвращается к исходному значению после десорбции молекул газа [J. D. Fowler et al., Practical Chemical Sensors from Chemically Derived Graphene, ACS Nano, 3 (2009) 301; J.T. Robinson и др., Reduced Graphen Oxide Molecular Sensors, Nano Lett. 8 (2008) 3137; W. Yuan и др., Graphene-based gas sensors, J. Mater. Chem. A1 (2013) 10078]. Молекулярные газоанализаторы на основе графена, в отличие от трехмерных материалов, в которых молекулярная диффузия в объеме протекает медленно, могут восстанавливаться до первоначального сопротивления с высокой скоростью. Существенным преимуществом газоанализаторов на основе графена является его малый размер, что является несомненным достоинством при изготовлении переносных с автономным питанием и простых в обслуживании приборов для измерения и контроля концентрации газов.

Известен газоанализатор для измерения концентрации двуокиси углерода в различных средах (в воздухе помещения, в выхлопах промышленных установок и литий-ионных аккумуляторных батареях), активным элементом в котором является однослойный или многослойный графен, который может быть нелегирован или легирован различными элементами (например, азотом, бором, серой) (патент US №2015377824, МПК G01N 27/4073, 2015).

Согласно данному изобретению непрерывный слой графена может быть получен эксфолитацией (расслоением) графита, или путем эпитаксиального осаждения углерода на карбид кремния (SiC), или с помощью химического осаждения из газовой фазы. Для повышения сорбирующей способности в процессе анализа и десорбирующей способности при регенерации сенсора газоанализатора после проведения анализа, внешний слой графена обрабатывают соединениями класса халькогенидов, в частности, (CuO), (Сu2O), (CuS), (Cu2S), (ТiO2) и/или Сo3О4) методом химического либо электрохимического осаждения. В качестве материала для электродов используют электропроводящие материалы, как металлы (Au, Ni, Ti, Сu и другие металлы), так и неметаллы (графит, Si, легированный карбид кремния и т.п.).

К преимуществам газового газоанализатора с описанным активным элементом относятся его низкая стоимость, химическая стойкость, долговременная стабильность, высокий уровень селективности, низкая инерционность. Благодаря большой площади поверхности графенового сенсора чувствительность газоанализатора составляет менее 1 ррm. Недостатком описанного газоанализатора является ограничение возможности его использования только для анализа углекислого газа, сложность изготовления, в частности трудоемкость метода соединения частиц графена между собой, и необходимость осуществления дополнительной стадии функциализации графена с использованием халькогенидов металлов.

Известен графеновый газоанализатор для анализа содержания аммиака, который включает графеновый элемент, допированный на молекулярном уровне диоксидом азота (патент US №20170315075, МПК C01N 27/125, 2018). Концентрацию NH3 определяли путем измерения проводимости графенового элемента с помощью пары электродов напряжения и пары токовых электродов. Слой графена синтезировали методом газового осаждения на поверхностно окисленную кремниевую подложку, покрытую слоем SiO2 толщиной 300 нм с последующим осаждением на сформированный графеновый слой металлов (Сr - 5 nm /Аu - 45 nm), методом электроннолучевого испарения. Проведенное допирование повышает чувствительность газоанализатора более чем на порядок, обеспечивает малое время отклика, возможность проведения анализа при комнатной температуре и простое микроэлектронное интегрирование.

К недостаткам описанного газоанализатора относятся: возможность анализа только одного типа газа, высокая стоимость материалов и затрат на производство активного элемента.

Наиболее близким по технической сущности и принятым за прототип является газоанализатор с использованием в качестве чувствительного сенсора графена с протяженными дефектами (патент US №2012212242, МПК G01R 27/08, 2012,), что, по данным авторов, повышает чувствительность химического газоанализатора, поскольку искусственно созданные дефекты в сотообразной решетке графена (линии, кластеры, волны, зерна, трещины, каналы и т.д. длиной более, чем 30 нанометров с расстоянием между дефектами менее 50 мкм), влияют на его электрические свойства. В патенте рассматривают газоанализаторы, включающие как однослойный, так и графен из нескольких слоев.

Графен с протяженными дефектами готовили путем первоначального выращивания графена на медной фольге толщиной 35,5 мкм методом газового осаждения (Li et.al. Science 324 (5932) pp.1312-1314), которую предварительно отжигали при 1000°С в токе водорода или аргона в течение 60 минут, а затем выдерживали в токе метана (900 SCCM) и водорода (50 SCCM) в течение 20 минут при 1000°С и давлении 2 торр. Этот процесс приводил к росту поликристаллического графена на меди с размером зерна порядка сотен нанометров, что подтверждали методом КР спектроскопии.

Нанесение графена на электроды газоанализатора, изготовленные из Сr или Ti толщиной 5 нм и слоя золота толщиной от 100 до 300 нм, осуществляли методом оптической электронной литографии. Слой графена с одной стороны медной фольги покрывали полимерной пленкой ПММА, а с другой стороны удаляли плазменным травлением. Затем медную фольгу удаляли травлением в 1М растворе хлорида железа (FeCl3) в деионизованной воде. Оставшийся после травления на пленке ПММА графен переносили в деионизированную воду для промывки от остатков примесей. После промывки пленку ПММА со слоем графена переносили на сенсорную подложку с электродами. При этом, в процессе механического переноса на пленке графена образовывались складки, играющие роль протяженных дефектов. После выдержки в течение 30 минут графен приклеивали к сенсорным подложкам. Далее пленку ПММА удаляли растворением в растворе смеси метанола и метиленхлорида в объемных соотношениях 1/1. На конечной стадии для удаления остатков ПММА графен очищали в среде водорода и аргона при 400°С.

При сравнительном эксперименте по воздействию паров толуола и 1,2-дихлорбензола на изготовленный сенсор и бездефектный сенсор было установлено, что отклик на присутствие паров была на порядок быстрее, чем у бездефектного сенсора, что доказывает повышенную чувствительность газоанализаторов при наличии дефектов в структуре графена.

К недостаткам известного способа относятся его сложность, многостадийность, нетехнологичность, а также невозможность формирования воспроизводимых дефектов графена. Кроме того, не представлены данные по чувствительности полученного газоанализатора к различным газовым средам.

Для исключения вышеуказанных недостатков была поставлена задача по разработке нового активного элемента на основе графена для создания недорогого, простого в исполнении универсального газоанализатора электропроводного типа для мониторинга малого содержания примесей различных газов в окружающей среде, а также воды и кислорода в инертных газах, который не уступал бы по своим характеристикам газоанализаторам на основе графена, известным из уровня техники.

Поставленная задача достигается тем, что в качестве активного элемента газоанализатора электропроводного типа для определения газовых примесей и водяных паров в газе используют объемный материал в виде переплетенных между собой графеновых микротрубок, не связанный с физической подложкой из какого-либо другого материала.

Активный элемент на основе графена газоанализаторов электропроводного типа, отличающийся тем, что в качестве активного элемента газоанализаторов используют объемный материал в виде переплетенных между собой графеновых микротрубок, не связанный с физической подложкой из какого-либо другого материала.

Использование предлагаемого активного элемента на основе свободного графена позволяет создать недорогой, универсальный, простой в исполнении высокоскоростной газоанализатор с временем срабатывания менее 3 с, не требующий использования высокотехнологичной дорогостоящей техники и трудоемких технологий, таких, как электронной литографии, вакуумного осаждения, нанесения дополнительных полимерных слоев, химического травления.

Синтез графенового материала проводили по методике, описанной нами ранее (патент РФ №2611509, МПК С01В 31/02, 2017), следующим образом: порошок полиакрилонитрила, полученный методом суспензионной полимеризации, окисляют на воздухе при температуре 200-250°С. Затем окисленный полиакрилонитрил термообрабатывают при 1300-1800°С в атмосфере инертного газа. В результате формируется легко отделяемый от подложки сплошной слой объемного материала, состоящего из плотно переплетенных графеновых микротрубок диаметром 0,5-3 мкм.

Для формирования сенсора графеновый материал разрезают на фрагменты размером 5×5 мм, которые приклеивают к медным электродам на стеклотекстолитовых подложках проводящим клеем, содержащим частицы Ag. Далее определяют значения сопротивления графенового материала при низких величинах разности потенциалов (не более 1 мВ) и силе тока, протекающего через образец, не более 0,2 мА. Выбор таких малых напряжений и токов для исследования обусловлен необходимостью исключить влияние нагрева от выделяющегося джоулева тепла

Для иллюстрации работы газоанализатора с активным элементом на основе свободного графена была создана система подготовки испытательных газовых смесей, схема которой представлена на фиг. 1.

В систему подготовки испытательных газовых смесей входит: 1 - вакуумная камера с сенсором; 2 - нано вакуумметр; 3 - вакуумный измерительный разъем; 4 - смеситель с вентилями; 5 - ресивер; 6 - баллон с основным газом; 7 - редуктор; 8 - емкость с водой; 9 - регулятор потока паров воды; 10 - баллон с примесным газом; 11 - регулятор потока газа.

Для измерения электрофизических характеристик графеновых образцов в газовых средах и в условиях радиационного облучения был создан измерительный стенд на основе модулей системы КАМАК с цифровым источником малых напряжений и высокоточным аналого-цифровым преобразователем малых значений напряжения, а также высокоточного цифрового измерителя малых значений токов, структурная схема которого изображена на фиг. 2, где: 1 - вакуумная камера с сенсором; 12 - микроамперметр; 13 - гальванометр микроамперметра; 14 - внутреннее сопротивление микроамперметра; 15 - микровольтметр; 16 - цифроаналоговый преобразователь; 17 - аналого-цифровой преобразователь; 18 - крейт-контроллер; 19 - крейт КАМАК; 20 - компьютер.

Работа газоанализатора продемонстрирована примерами, результаты испытаний которых приведены в таблицах 1, 2 и 3.

Пример 1. Определение содержания паров воды в аргоне.

Сенсор, представляющий собой электроды с активным элементом на основе графена, помещали в вакуумную камеру 1 установки, блок-схема которой показана на фиг. 1, и через соединительные провода внутри камеры и вакуумный измерительный разъем 3 подсоединяли к внешнему измерительному стенду, изображенному на фиг. 2.

Далее вокруг электродов в вакуумной камере газоанализатора создавали газовые среды аргона как чистого при атмосферном давлении, так и с различным содержанием паров воды. Для этого в камере 1, в смесителе 4 и ресивере 5 с помощью системы вакуумирования создавали вакуум 101 Па.

Для проведения измерений в среде чистого аргона в камеру 1 из баллона 6 через редуктор 7 напускали аргон до давления 1атм (105 Па). И проводили измерения с помощью измерительного стенда (фиг. 2).

Для проведения измерений в среде аргона с заданным содержанием паров воды первоначально из емкости 8, через регулятор потока 9 в смеситель 4 и ресивер 5 напускали пары воды до заданного давления. Далее получали смесь аргона с водой. Для этого из баллона 6 через редуктор 7 в смеситель 4 и ресивер 5 напускали аргон до давления 1 атм (105 Па). Затем полученную газовую смесь из смесителя и ресивера напускали в измерительную камеру 1. Время изменения давления при напуске газа в измерительную камеру от вакуума до давления 1атм составляло менее 3 с. После чего проводили измерения с помощью измерительного стенда (фиг. 2).

Изменение содержания паров воды в аргоне вызывает соответствующее изменение электрического сопротивления при различных значения разности потенциалов (напряжения). Результаты измерений приведены в таблице 1.

Пример 2. Определение содержания примесей кислорода в азоте.

Сенсор, представляющий собой электроды с активным элементом на основе графена, помещали в вакуумную камеру 1 по примеру 1.

Далее, вокруг электродов в вакуумной камере газоанализатора создавали газовые среды азота как чистого при атмосферном давлении, так и с различным содержанием кислорода. Для этого в камере 1, в смесителе 4 и ресивере 5 с помощью системы вакуумирования создавали вакуум 101 Па.

Для проведения измерений в среде чистого азота в камеру 1 из баллона 6 через редуктор 7 напускали азот до давления 1 атм (105 Па) и проводили измерения.

Для проведения измерений в среде азота с заданным содержанием кислорода первоначально из баллона 10, через регулятор потока газа 11 в смеситель 4 и ресивер 5 напускали кислород до заданного давления. Далее получали смесь азота с кислородом. Для этого из баллона 6 через редуктор 7 в смеситель 4 и ресивер 5 напускали азот до давления 1атм (105 Па). Затем полученную газовую смесь из смесителя и ресивера напускали в измерительную камеру 1. Время изменения давления при напуске газа в измерительную камеру от вакуума до давления 1атм составляло менее 3 с. После чего проводили измерения с помощью измерительного стенда (фиг. 2).

Изменение содержания кислорода в азоте вызывает соответствующее изменение электрического сопротивления при различных значения разности потенциалов (напряжения). Результаты измерений приведены в таблице 2.

Пример 3. Определение содержания примесей аммиака в азоте.

Датчик, представляющий собой электроды с активным элементом на основе графена, помещали в вакуумную камеру 1 по примеру 1.

Далее, вокруг электродов в вакуумной камере газоанализатора создавали газовые среды азота как чистого при атмосферном давлении, так и с различным содержанием аммиака. Для этого в камере 1, в смесителе 4 и ресивере 5 с помощью системы вакуумирования создавали вакуум 101 Па.

Для проведения измерений в среде азота с заданным содержанием аммиака первоначально из баллона 10, через регулятор потока газа 11 в смеситель 4 и ресивер 5 напускали аммиак до заданного давления. Далее получали смесь азота с аммиаком. Для этого из баллона 6 через редуктор 7 в смеситель 4 и ресивер 5 напускали азот до давления 1 атм (105 Па). Затем полученную газовую смесь из смесителя и ресивера напускали в измерительную камеру 1. Время изменения давления при напуске газа в измерительную камеру от вакуума до давления 1атм составляло менее 3 с. После чего проводили измерения с помощью измерительного стенда (фиг. 2). Изменение содержания аммиака в азоте вызывает соответствующее изменение электрического сопротивления при различных значения разности потенциалов (напряжения). Результаты измерений приведены в таблице 3.

В процессе проведенных испытаний было установлено, что измеряемые значения электрического сопротивления изменялись практически мгновенно, сразу по окончании процесса напуска газа в вакуумную камеру, при этом время срабатывания газоанализатора составляет менее 3 с.

Приведенные примеры иллюстрируют, но не исчерпывают возможности использования предлагаемого активного элемента в универсальных газоанализирующих устройствах электропроводного типа для определения состава широкого спектра газовых смесей и содержания паров воды в различных газах.

Активный элемент на основе графена электродов для газоанализаторов электропроводного типа, отличающийся тем, что в качестве активного элемента электродов газоанализаторов используют графеновый материал, состоящий из волокон, образуемых свободным графеном, не связанным с физической подложкой из какого-либо другого материала.
Активный элемент на основе графена для газоанализаторов электропроводного типа
Активный элемент на основе графена для газоанализаторов электропроводного типа
Активный элемент на основе графена для газоанализаторов электропроводного типа
Источник поступления информации: Роспатент

Показаны записи 31-40 из 45.
29.01.2020
№220.017.fafc

Способ получения металлополикарбосиланов

Изобретение относится к способам получения металлополикарбосиланов AlYПКС (AlYМПКС). Предложен способ получения металлополикарбосиланов AlYПКС (AlYМПКС) взаимодействием в среде органического растворителя, при температуре от 20 до 420°С и давлении 0,2-0,4 кПа поликарбосилана-сырца и...
Тип: Изобретение
Номер охранного документа: 0002712240
Дата охранного документа: 27.01.2020
05.02.2020
№220.017.fe1b

Способ получения линейных поли(метил)(гидрид)силоксанов с заданной средней длиной силоксановой цепи

Изобретение относится к химии и технологии получения линейных поли(органо)(гидрид)силоксанов. Предложен способ получения линейных поли(метил)(гидрид)силоксанов [(CH)SiO][CH(H)SiO] с заданной средней длиной силоксановой цепи (m=5÷60) ацидогидролитической сополиконденсацией смеси...
Тип: Изобретение
Номер охранного документа: 0002712931
Дата охранного документа: 03.02.2020
06.03.2020
№220.018.09d6

Способ получения низкомолекулярного полидиметилметилфенилсилоксанового каучука с концевыми гидроксильными группами

Изобретение относится к технологии получения кремнийорганических низкомолекулярных каучуков, которые могут быть использованы в производстве термо-, морозостойких композиционных материалов (покрытия, герметики, клеи и др.). Предложен способ получения низкомолекулярного силоксанового каучука...
Тип: Изобретение
Номер охранного документа: 0002715888
Дата охранного документа: 04.03.2020
15.03.2020
№220.018.0c66

Способ получения модифицированных волокон оксида алюминия

Изобретение относится к способам получения модифицированных волокон оксида алюминия для создания новых материалов, которые позволят работать в окислительных средах при высоких температурах и нагрузках, обеспечивая при этом снижение массы летательных аппаратов. Способ получения модифицированных...
Тип: Изобретение
Номер охранного документа: 0002716621
Дата охранного документа: 13.03.2020
15.07.2020
№220.018.326a

Способ получения полилактидов

Изобретение относится к способу получения полилактидов, которые находят применение в различных областях науки, техники, медицины и народного хозяйства. Способ включает полимеризацию лактидов с раскрытием цикла (ROP) в расплаве в присутствии катализатора ROP и сокатализатора. Способ проводят в...
Тип: Изобретение
Номер охранного документа: 0002726362
Дата охранного документа: 13.07.2020
15.07.2020
№220.018.326f

Способ получения органомагнийоксаналюмоксансилоксанов

Изобретение относится к способам получения органомагнийоксаналюмоксансилоксанов для использования в качестве прекурсоров высокочистой керамики на основе оксидов магния, алюминия и кремния. Предложен способ получения органомагнийоксаналюмоксансилоксанов общей формулы (1), где k, р=0,1-12,...
Тип: Изобретение
Номер охранного документа: 0002726365
Дата охранного документа: 13.07.2020
12.04.2023
№223.018.4248

Твердый катализатор разложения высококонцентрированного пероксида водорода и способ его получения

Изобретение относится к области создания твердых катализаторов разложения высококонцентрированного пероксида водорода (ВПВ), пригодных для использования в ракетно-космической технике, в частности в турбонасосных агрегатах двигателей ракет-носителей типа «Союз», системах безопасной посадки...
Тип: Изобретение
Номер охранного документа: 0002773399
Дата охранного документа: 03.06.2022
20.04.2023
№223.018.4b74

Способ получения предкерамических волокнообразующих олигоорганосилазанов

Изобретение относится к способу получения прекерамических волокнообразующих олигоорганосилазанов для получения керамических волокон состава SiCN. Реакционную смесь три- и дифункциональных органохлорсиланов при их суммарном мольном соотношении более 0,66, но менее 0,85 подвергают аммонолизу....
Тип: Изобретение
Номер охранного документа: 0002767238
Дата охранного документа: 17.03.2022
14.05.2023
№223.018.55e7

Способ глубокой осушки толуола

Изобретение относится к технологии обезвоживания растворителей, а именно к способу глубокой осушки толуола. Способ глубокой осушки толуола осуществляется в двух аппаратах колонного типа, работающих попеременно в режиме сорбции-регенерации, проводимых одновременно и непрерывно. Новым является...
Тип: Изобретение
Номер охранного документа: 0002731274
Дата охранного документа: 01.09.2020
15.05.2023
№223.018.57fd

Способ получения гранатовых волокон, модифицированных хромом

Изобретение относится к способу получения модифицированных хромом гранатовых волокон. Полимерные волокна формуют при 160-200°С из волокнообразующих органохромоксаниттрийоксаналюмоксанов с мольным отношением Al:Y=1,5-2,5 и Al:Cr=100-250. Дальнейшая ступенчатая термообработка при 900°С в...
Тип: Изобретение
Номер охранного документа: 0002767236
Дата охранного документа: 17.03.2022
Показаны записи 31-40 из 139.
27.12.2014
№216.013.148e

Способ региоселективного синтеза моногалогенпроизводных 1,2-,1,7-,1,12-дикарба-клозо-додекаборанов(12) с использованием ультразвуковой активации

Изобретение относится к способу получения моногалогенпроизводных 1,2-, 1,7-, 1,12-дикарба-клозо-додекаборанов(12). Способ включает взаимодействие о(м,п)-карборанов с галогенирующими агентами, в качестве которых используют N-галогенимиды(амиды): N-галоген-сукцинимиды,...
Тип: Изобретение
Номер охранного документа: 0002536686
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1758

Способ получения 7,8(7,9)-додекагидродикарба-нидо-ундекаборатов алкиламмония и алкилгуанидиния

Изобретение относится к способу получения незамещенных 7,8(7,9)-додекагидродикарба-нидо-ундекаборатов алкиламмония и алкилгуанидиния. Способ включает взаимодействие незамещенных о(м)-карборанов с алкиламинами и алкилгуанидинами в среде низших алифатических спиртов. При этом процесс осуществляют...
Тип: Изобретение
Номер охранного документа: 0002537404
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2338

Применение комплекса-трис-(2-гидроксиэтил)амина с бис-(2-метилфеноксиацетатом) цинка (цинкатрана) для стимуляции экспрессии матричной рнк триптофанил-трнк-синтетазы

Изобретение относится к медицине, фармакологии и биологии. Предложено применение цинкатрана (цитримина) в качестве средства, стимулирующего экспрессию матричной РНК триптофанил-тРНК-синтетазы. 1 табл., 1 пр.
Тип: Изобретение
Номер охранного документа: 0002540469
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.233f

Повышение работоспособности

Изобретение относится к биологии и медицине, в частности к биохимии и фармакологии, в котором для повышения статической и динамической работоспособности предлагается применять комплекс трис-(2-гидроксиэтил)амина с бис-(2-метил-феноксиацетатом) цинка (цинкатран или цитримин) формулы:...
Тип: Изобретение
Номер охранного документа: 0002540476
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2369

Вещество, снижающее активность холестеролэстеразы

Изобретение относится к медицине, фармакологии и биологии. Предложен комплекс трис-(2-гидроксиэтил)амина с бис-(2-метилфеноксиацетатом)цинка [цинкатрана или цитримина] формулы: (НОСНСН)N·Zn(ООССНОСНСН-2) в качестве средства, снижающего активность холестеролэстеразы. 2 табл.
Тип: Изобретение
Номер охранного документа: 0002540518
Дата охранного документа: 10.02.2015
27.03.2015
№216.013.35ec

Способ получения нано,- микроструктурированных гибридных золей

Гибридный золь, содержащий нано- и микрочастицы, получают смешением силиказоля, содержащего нано- и микрочастицы и золя оксида тугоплавкого металла, содержащего микрочастицы, в соотношении, при котором оксид тугоплавкого металла в гибридном золе составляет от 0,1 до 20 масс. %. Образование...
Тип: Изобретение
Номер охранного документа: 0002545288
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3840

Применение комплекса-трис-(2-гидроксиэтил)амина с бис-(2-метилфеноксиацетатом) цинка (цинкатрана) для снижения общей активности кислой фосфолипазы а1

Изобретение относится к медицине, фармакологии и биологии. Предложено применение комплекса трис-(2-гидроксиэтил)амина с бис-(2-метилфенокси-ацетатом)цинка[цинкатрана или цитримина] формулы: (HOCHCH)N·Zn(OOCCHOCHCH-2) в качестве ингибитора кислой фосфолипазы Al. Изобретение позволяет расширить...
Тип: Изобретение
Номер охранного документа: 0002545888
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ac9

Применение комплекса-трис-(2-гидроксиэтил)амина с бис-(2-метилфеноксиацетатом) цинка (цинкатрана) в качестве средства, угнетающего общую активность основной (щелочной) фосфолипазы а2 мононуклеаров

Изобретение относится к медицине, фармакологии и биологии. Предложено применение комплекса трис-(2-гидроксиэтил)амина с бис-(2-метилфеноксиацетатом) цинка[цинкатрана или цитримина] формулы: (HOCHCH)N·Zn(OOCCHOC6HCH-2) в качестве в качестве средства, угнетающего общую активность основной...
Тип: Изобретение
Номер охранного документа: 0002546537
Дата охранного документа: 10.04.2015
27.05.2015
№216.013.4dc9

Волокнообразующие органоиттрийоксаналюмоксаны

Изобретение относится к получению предкерамических волокнообразующих органо-иттрийоксаналюмоксанов. Предложен способ получения предкерамических волокно-образующих органоиттрийоксаналюмоксанов взаимодействием полиалкоксиалюмоксанов с раствором гидрата ацетилацетоната иттрия...
Тип: Изобретение
Номер охранного документа: 0002551431
Дата охранного документа: 27.05.2015
20.06.2015
№216.013.57b8

Герматранол-гидрат, стимулирующий экспрессию матричной рнк триптофанил-трнк-синтетазы

Изобретение относится к применению моногидрата 1-гидроксигерматрана (герматранол-гидрат), формулы для стимуляции экспрессии матричной РНК триптофанил-тРНК-синтетазы. 1 табл., 2 пр.
Тип: Изобретение
Номер охранного документа: 0002553986
Дата охранного документа: 20.06.2015
+ добавить свой РИД