×
06.03.2020
220.018.099c

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ПУАССОНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области определения упругих свойств конструкционных материалов и может быть использовано для определения коэффициента Пуассона. Сущность: испытуемый материал подвергают индентированию и определяют коэффициент Пуассона, при этом используют упругий индентор в виде сферы, определяют упругие константы материала сферического индентора, производят однократное индентирование нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измеряют в процессе снятия нагрузки суммарную величину упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упругодеформированной поверхности сферического индентора в центре контакта, измеряют диаметр остаточного отпечатка на поверхности испытуемого материала, а величину коэффициента Пуассона определяют по предложенной формуле. Технический результат: создание нового способа определения коэффициента Пуассона без разрушения материала деталей. 3 табл.

Изобретение относится к области механических испытаний материалов и может быть использовано для определения коэффициента поперечной деформации (коэффициента Пуассона μ) испытуемого материала.

Известен способ определения коэффициента Пуассона (ГОСТ 1497-84, ИСО 6892-84 «Металлы. Методы испытания на растяжение"), который предусматривает вырезку из детали заготовок и последующее изготовление образцов для испытания на растяжение (сжатие). При этом коэффициент Пуассона μ определяют как отношение относительного поперечного сужения (расширения) к относительному продольному удлинению (сжатию).

Недостатком этого способа является то, что он требует изготовления специальных образцов, вырезанных из готовой детали, что очевидно, приводит к частичному или полному разрушению испытуемой детали; этот способ невозможно использовать при необходимости стопроцентного контроля деталей или малом размере контролируемых деталей. Таким образом, этот способ не позволяет оперативно и без разрушения производить определение коэффициента Пуассона.

Наиболее близким по технической сущности является способ (патент РФ №2410667, опуб. 27.01.2011. Бюл. №3) определения коэффициента Пуассона μ, включающий определения модуля Юнга Е, при этом испытуемый материал подвергают индентированию жестким индентором в виде правильной пирамиды при непрерывном вдавливании с построением диаграммы «нагрузка-перемещение индентора», по которой определяют характеристику пластичности δA, как отношение площади между ветвями нагружения-разгружения к общей площади под кривой нагружения, определяют твердость по Мейеру НМ, как отношение нагрузки к площади проекции отпечатка индентора на контактной поверхности, а величину коэффициента Пуассона μ, рассчитывают по формуле

где γ - угол между осью и боковой гранью пирамиды.

Недостатком этого способа является то, что он предусматривает индентирование жестким индентором, то есть этот способ не учитывает реально имеющиеся упругие свойства (константы) материала индентора; в то же время использованный в прототипе алмазный индентор очевидно обладает упругими свойствами и имеет модуль нормальной упругости (8,25…9,0) 105 Н/мм2 соответственно для природного или синтетического алмаза; см. например, книгу Васильева Л.А., Белых З.П. Алмазы, их свойства и применение. М.: Недра. - 1983. - 101 с). Отсутствие учета упругих свойств индентора снижает точность определения коэффициента Пуассона. Недостатком этого способа также является необходимость непрерывного вдавливания индентора и построение диаграммы «нагрузка-перемещение индентора», что требует использования специального оборудования и существенно затрудняет применение этого способа в производственных условиях и снижает его оперативность.

Таким образом, известные способы имеют низкий технический уровень, поскольку не позволяют оперативно и высокой точностью определять коэффициент Пуассона.

В этой связи важнейшей задачей является создание нового способа определения коэффициента Пуассона, который позволял бы оперативно и с высокой точностью производить определение коэффициента Пуассона.

Техническим результатом заявленного способа является создание нового способа определения коэффициента Пуассона, который позволяет повысить точность и оперативно производить определение коэффициента Пуассона.

Указанный технический результат заключается в том, что определяют модуль Юнга испытуемого материала, затем испытуемый материал подвергают индентированию и определяют коэффициент Пуассона, при этом используют упругий индентор в виде сферы, определяют упругие константы материала сферического индентора, производят однократное индентирование нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измеряют в процессе снятия нагрузки суммарную величину упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта, измеряют диаметр остаточного отпечатка на поверхности испытуемого материала, а величину коэффициента Пуассона определяют по формуле

где μ2 - коэффициент Пуассона испытуемого материала,

Е2 - модуль Юнга испытуемого материала (МПа),

d - диаметр остаточного отпечатка на поверхности испытуемого материала (мм),

αУ - суммарная величина упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта (мм),

F - нагрузка на сферический индентор (Н),

μ1 - коэффициент Пуассона материала сферического индентора,

E1 - модуль Юнга материала сферического индентора (МПа).

Существенным отличием является то, что используют реальный упругий (а не условно жесткий) индентор в виде сферы и определяют упругие свойства (константы) материала сферического индентора (модуль Юнга и коэффициент Пуассона). Учет упругих свойств (констант) материала сферического индентора позволяет повысить точность определения коэффициента Пуассона.

Существенным отличием способа является предложение производить однократное индентирование нагрузкой, находящейся в диапазоне, соответствующем измерению твердости. Это позволяет существенно сократить время проведения испытания и соответственно повысить оперативность определения коэффициента Пуассона.

Существенным отличием способа является предложение измерять в процессе снятия нагрузки суммарную величину упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта. Это позволяет одновременно количественно оценить упругие свойства испытуемого материала и материала сферического индентора, что также позволяет повысить точность определения коэффициента Пуассона испытуемого материала.

Существенным отличием способа является предложение измерять диаметр остаточного отпечатка на поверхности испытуемого материала.

Совокупность отличительных признаков предлагаемого способа и новые взаимосвязи, установленные авторами между ними, позволили предложить новую зависимость для определения коэффициента Пуассона испытуемого материала. Эта зависимость в новой форме устанавливает взаимосвязи между всеми существенными параметрами, определяющими величину коэффициента Пуассона испытуемого материала: модулем Юнга испытуемого материала Е2 (учитывает упругие свойства испытуемого материала), модулем Юнга E1 и коэффициентом Пуассона μ1 материала сферического индентора (учитывают упругие свойства материала сферического индентора), суммарной величиной упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта (этот параметр в интегральной форме характеризует упругие свойства контактирующих деталей: испытуемого материала и индентора) диаметром остаточного отпечатка d на поверхности испытуемого материала и нагрузкой F на сферический индентор. Это позволяет оперативно и с высокой точностью определять коэффициент Пуассона испытуемого материала без разрушения детали.

Способ определения коэффициента Пуассона испытуемого материала реализуется следующим образом.

Предварительно любым известным способом определяют модуль Юнга Е2 испытуемого материала. Это можно реализовать, используя справочные данные (см., например, книгу Анурьев В.И. Справочник конструктора-машиностроителя: в 3-х т. Т 1. - М.: Машиностроение, 2006. - 928 с, на стр. 51, табл.14 или книгу Марковца М.П. Определение механических свойств металлов по твердости. - М.: Машиностроение, 1979. - 191 с, на стр. 39, табл. 7 или экспериментально (например, растяжением по ГОСТ 1497-84, ИСО 6892-84. Металлы. Методы испытания на растяжение). Определяют упругие свойства (константы) материала сферического индентора (модуль Юнга E1 и коэффициент Пуассона μ1); эти параметры можно определить по справочным данным, приведенным в указанных выше справочнике конструктора машиностроителя на стр. 51, табл. 14 или в книге Марковца М.П. на стр. 38 и 39, табл. 6 и 7).

Затем в испытуемый материал однократно индентируют упругий сферический индентор нагрузкой, находящейся в диапазоне, соответствующем измерению твердости. Значение нагрузки может быть выбрано, например, согласно ГОСТ 18835-73 Металлы. Метод измерения пластической твердости или согласно ГОСТ 9012-59. ИСО 6506-81 Металлы. Метод измерение твердости по Бринеллю. В качестве индентора используют термически обработанный стальной сферический индентор с твердостью материала не менее HV8500 МПа. Диаметр индентора можно выбирать согласно рекомендациям ГОСТ 18835-73 или ГОСТ 9012-59: 2,5, 5,0 или 10 мм. В качестве нагружающего устройства можно использовать: пресс Бринелля, прибор Роквелла, ручные винтовых прессы и т.п.

Далее измеряют в процессе снятия нагрузки суммарную величину упругого восстановления αу упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта. Эту операцию можно выполнить с помощью приспособления для измерения контактных деформаций (см. книгу Н.Б. Демкина, Э.В. Рыжова "Качество поверхности и контакт деталей машин" - М: Машиностроение, 1981. - 244 с, на стр. 214, рис. 5.1), снабженное индикатором часового типа (с ценой деления 1,0 мкм), которое устанавливают, например, на предметный столик пресса Бринелля. Измеряют диаметр d остаточного отпечатка на поверхности испытуемого материала. Эту операцию можно выполнить с помощью инструментального микроскопа, например, ММИ-2 (с ценой деления 5,0 мкм). Затем определяют величину коэффициента Пуассона μ2 испытуемого материала по формуле (2)

Пример. Проведена экспериментальная проверка предложенного способа.

Определение коэффициента Пуассона проводили на образцах, изготовленных из различных материалов: стали 30ХГСА, бронзы Бр. АЖ9-4, меди М2, титана ВТ3-1.

В качестве упругого сферического индентора использовали термически обработанный стальной (из стали ШХ15) шарик диаметром 5 мм.

В таблице 1 представлены упругие свойства испытанных материалов и материала сферического индентора. Эти свойства определены по справочным данным, принятым в качестве эталонных; эти данные приведены в книге Марковца М.П. Определение механических свойств металлов по твердости. - М.: Машиностроение, 1979. - 191 с, на стр. 38 и 39, табл. 6 и 7 (модуль Юнга для меди - из книги Анурьева В.И. Справочник конструктора-машиностроителя: в 3-х т. Т. 1. - М.: Машиностроение, 2006. - 928 с, на стр. 51, табл. 14).

В таблице 2 приведены результаты экспериментального определения коэффициента Пуассона испытуемого материала по предлагаемому способу. В таблице 3 сопоставлены результаты определения коэффициента Пуассона предлагаемым способом и приведенными в таблице 1 справочными данными, принятыми в качестве эталонных. Как видно из таблицы 3, при использовании предлагаемого способа погрешность определения коэффициента Пуассона по сравнению с эталонным данными не превышает (3…5)% и имеет характер двухстороннего разброса.

Таким образом, результаты экспериментальной проверки свидетельствуют о пригодности предлагаемого способа для практического использования.

Использование предлагаемого способа по сравнению с известными обеспечивает следующие преимущества.

Способ обладает достаточно высокой точностью: погрешность определения коэффициента Пуассона не превышает (3…5)% для различных черных и цветных металлов в широком диапазоне изменения упругих свойств их материалов, что для оценки коэффициента Пуассона материала деталей вполне удовлетворительно. Отметим, что погрешность при определении коэффициента Пуассона по способу-прототипу (патент РФ №2410667) может достигать 9%.

В связи с этим предлагаемый способ позволяет повысить точность определения коэффициента Пуассона без разрушения материала и может быть использован для определения коэффициента Пуассона различных черных и цветных металлов, из которых изготавливаются детали машин.

Таким образом, способ, воплощающий заявленное изобретение, предусматривает, определение модуля Юнга испытуемого материала, затем испытуемый материал подвергают индентированию и определяют коэффициент Пуассона, при этом используют упругий индентор в виде сферы, определяют упругие константы материала сферического индентора, производят однократное индентирование нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измеряют в процессе снятия нагрузки суммарную величину упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упруго деформированной поверхности сферического индентора в центре контакта, измеряют диаметр остаточного отпечатка на поверхности испытуемого материала, а величину коэффициента Пуассона определяют по предложенной формуле.

Способ предназначен для использования в промышленности для определения коэффициента Пуассона без разрушения материала деталей.


СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ПУАССОНА
Источник поступления информации: Роспатент

Показаны записи 131-140 из 362.
09.06.2018
№218.016.6008

Фильтрующий нетканый материал

Предлагаемое изобретение относится к текстильной промышленности, к области изготовления нетканых материалов, и может быть использовано для создания фильтрующих элементов газопылеулавливающих установок. Фильтрующий нетканый материал состоит из волокнистого холста, скрепленного петлями...
Тип: Изобретение
Номер охранного документа: 0002656764
Дата охранного документа: 07.06.2018
09.06.2018
№218.016.600f

Теплозащитный материал

Изобретение относится к теплозащитным материалам на основе этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении. Теплозащитный материал содержит этиленпропилендиеновый каучук СКЭПТ-40, вулканизующие агенты – серу и тиурам Д, ускоритель вулканизации...
Тип: Изобретение
Номер охранного документа: 0002656864
Дата охранного документа: 07.06.2018
16.06.2018
№218.016.638c

Способ получения меланина из лузги подсолнечника

Изобретение относится к получению биополимера растительного происхождения - меланина, обладающего высокой биологической активностью, и может быть использовано для производства лечебно-профилактических препаратов, биологически активных и пищевых добавок. Способ получения меланина из лузги...
Тип: Изобретение
Номер охранного документа: 0002657499
Дата охранного документа: 14.06.2018
10.07.2018
№218.016.6ede

N-(адамантан-2-ил)- и n-[(адамантан-1-ил)метил]- производные амида 2-(4-аллил-2-метоксифенокси)уксусной кислоты, являющиеся потенциальными синтетическими адаптогенами экстренного действия

Изобретение относится к амидам 2-(4-аллил-2-метоксифенокси)уксусной кислоты, а именно к N-(адамантан-2-ил)- и N-[(адамантан-1-ил)метил]- производным амида 2-(4-аллил-2-метоксифенокси)уксусной кислоты, общей формулы (1), где R=2-Ad, 1-AdCH. Соединения по изобретению являются потенциальными...
Тип: Изобретение
Номер охранного документа: 0002660654
Дата охранного документа: 09.07.2018
09.08.2018
№218.016.799d

Способ получения термопластичного эластомера на основе натурального каучука и поливинилхлорида

Изобретение относится к полимерной промышленности и может быть использовано для изготовления изделий с повышенным уровнем бензомаслостойкости - уплотнителей, ремней, конвейерных лент, шлангов, и деталей с повышенной озоно- и атмосферостойкостью. Осуществляют коагуляцию смеси латекса...
Тип: Изобретение
Номер охранного документа: 0002663045
Дата охранного документа: 01.08.2018
17.08.2018
№218.016.7bc5

Способ получения производных n-алкил- и n,n-диалкилизоцитозина

Настоящее изобретение относится в химии гетероциклических соединений, конкретно к способу получения новых функциональных производных изоцитозина, являющихся биоизостерическими аналогами ненуклеозидных ингибиторов обратной транскриптазы ВИЧ-Технический результат достигается в способе получения...
Тип: Изобретение
Номер охранного документа: 0002664121
Дата охранного документа: 15.08.2018
17.08.2018
№218.016.7c4c

Эластомерная композиция на основе натурального каучука

Изобретение относится к полимерной промышленности и может быть использовано для производства автомобильных шин, напольных покрытий, промышленных шлангов, транспортеров, лент, ремней, строительных материалов. Эластомерная композиция на основе натурального каучука включает компоненты при...
Тип: Изобретение
Номер охранного документа: 0002664070
Дата охранного документа: 14.08.2018
13.09.2018
№218.016.86f4

Способ производства желированных мясных продуктов

Изобретение относится к пищевой промышленности, а именно к производству желированных мясных продуктов, к которым относится холодец. Способ включает процессы предварительной подготовки мясного сырья, его варку, варку мясного бульона при температуре 90-96°С, подготовку пряностей и материалов,...
Тип: Изобретение
Номер охранного документа: 0002666798
Дата охранного документа: 12.09.2018
13.09.2018
№218.016.8750

Посыпка для панировки пищевых продуктов

Изобретение относится к посыпкам для панировки пищевых продуктов, подлежащих термической обработке. Посыпка содержит экструдат нута из цельнозерновой нутовой муки сорта нута «Донской». Изобретение позволяет повысить пищевую и биологическую ценность, пролонгировать срок годности, снизить...
Тип: Изобретение
Номер охранного документа: 0002666794
Дата охранного документа: 12.09.2018
19.10.2018
№218.016.944c

Способ производства йогурта с зеленым чаем матча

Изобретение относится к пищевой промышленности, в частности к молочной, и может быть использовано при производстве йогурта. Способ предусматривает внесение в предварительно нормализованные и подогретые до 80°C 100 масс. ч. молока, 0,75 масс. ч. зеленого чая матча и 3,5 масс. ч. сахара. Смесь...
Тип: Изобретение
Номер охранного документа: 0002670132
Дата охранного документа: 18.10.2018
Показаны записи 11-12 из 12.
15.05.2023
№223.018.5b04

Способ определения предела выносливости материала цилиндрической детали при кручении

Изобретение относится к области определения прочностных свойств металлов и может быть использовано для определения предела выносливости при кручении без разрушения материала деталей, работающих в условиях нагружения переменным во времени крутящим моментом. Сущность: осуществляют измерение...
Тип: Изобретение
Номер охранного документа: 0002765340
Дата охранного документа: 28.01.2022
15.05.2023
№223.018.5b0c

Способ определения предела текучести материала цилиндрической детали при кручении

Изобретение относится к области определения предела текучести при кручении без разрушения материала деталей, работающих в условиях нагружения крутящим моментом. Сущность: осуществляют нагружение поверхности испытуемого материала посредством индентора под углом скрещивания 90° оси...
Тип: Изобретение
Номер охранного документа: 0002765342
Дата охранного документа: 28.01.2022
+ добавить свой РИД