×
05.03.2020
220.018.0976

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОДУГОВОГО НАПЫЛЕНИЯ ПОКРЫТИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу электродугового напыления покрытий и может быть использовано в машиностроении для повышения удобства в эксплуатации при нанесении покрытий на труднодоступные поверхности изделий. Нанесение покрытия осуществляют с помощью металлизационной струи и инжектирования в металлизационную струю полимерных термопластичных материалов. Создают металлизационную струю и сначала наносят металлический слой толщиной 20-600 мкм. Наносят композитный слой толщиной 20-600 мкм таким образом, что инжектируют в металлизационную струю полимерные термопластичные материалы и затем отключают металлизационную струю и наносят полимерный слой толщиной 20-600 мкм без участия металлизационной струи. При выполнении слоев с участием полимерных термопластичных материалов дополнительно вводят пропан или пропан-бутан, или пропан-воздушную смесь. Технический результат состоит в сокращении количества технологических видов оборудования (объединение двух технологических видов оборудования в один), уменьшении времени нанесения металлополимерного покрытия (за счет исключения времени на переналадку оборудования под другой процесс нанесения покрытий), формировании металлополимерного покрытия в рамках одного процесса без переналадки оборудования, получении функционального металлополимерного покрытия с требуемыми свойствами. 2 пр.

Изобретение относится к способам нанесения защитных газотермических коррозионно-стойких, антифрикционных, антиобледенительных и антиобрастающих металлополимерных покрытий из проволочных материалов при помощи электродуговых устройств, и может быть использовано для защиты изделий в химической, машиностроительной, авиационной, судостроительной и других отраслях промышленности.

Известен способ получения металлополимерного покрытия (RU 2332524 С1, МКП С23С 24/04, C09D 5/10), при котором смешивают порошкообразные полимерные частицы и порошкообразные частицы металлсодержащего прекурсора. Далее осаждают порошкообразную смесь на поверхность детали, нагревают, оплавляют полимерные частицы. Затем проводят термолиз прекурсора и монолитизацию покрытия.

Недостатком данного способа является предварительный нагрев изделия до температуры плавления полимера, что не применимо для больших поверхностей.

Также известен способ, описанный в журнале "Journal of Thermal Spray Technology", Volume 23(1-2), January 2014, p. 40-50, "Metal Matrix Composites Deposition in Twin Wire Arc Spraying Utilizing an External Powder Injection Composition" W. Tillmann, M. Abdulgader, L. Hagen, and J. Nellesen, (Submitted May 15, 2013; in revised form November 5, 2013). Описан способ электродугового нанесения покрытий, путем подачи проволочных материалов, при соприкосновении которых возбуждается электрическая дуга и включающий нанесение покрытия с помощью металлизационной струи и инжектирование в металлизационную струю легирующего материала.

Недостатком (ограничением) данного способа является то, что он позволяет подавать в металлизационную струю только тугоплавкие материалы (оксиды, карбиды) и создавать металлизационные покрытия с включениями оксидов или карбидов.

В качестве прототипа предлагается способ электродугового напыления покрытий (SU 1359336 А1, МПК С23С 4/04, опубликовано 15.12.1987),, включающий нанесение покрытия с помощью металлизационной струи и инжектирование в металлизационную струю полимерных термопластичных материалов

Недостатком вышеуказанного способа является сложность изготовления порошковой проволоки, сложность и необходимость поддержания постоянного расстояния от токоотводов до точки пересечения электродов не более 12 мм, так как увеличение вылета электродов приводит к недопустимому нагреву и разложению материала сердечника, а также невозможность вести раздельно напыление металла без полимера (металлизационный слой) и полимера без металла (финишнный слой).

Задачей, на решение которой направлено настоящее изобретение, является сочетание в одном устройстве процесса электродуговой металлизации с процессом нанесения термопластических полимерных материалов для получения металлополимерных покрытий.

Желаемым техническим результатом является:

- сокращение количества технологического оборудования (объединение двух видов технологического оборудования в один),

- уменьшение времени нанесения металлополимерного покрытия (за счет исключения времени на переналадку оборудования под другой процесс нанесения покрытий),

- формирование металлополимерного покрытия в рамках одного процесса без переналадки оборудования,

- получение функционального металлополимерного покрытия с требуемыми свойствами, за счет и включения в металлизационное покрытие различных термопластичных полимерных порошковых материалов с возможностью изменять их концентрацию по толщине,

- эргономика (за счет исключения отдельного оборудования под каждый вид процесса).

Желаемый технический результат достигается тем, что создают металлизационную струю и сначала наносят металлический слой толщиной 20-600 мкм, затем наносят композитный слой толщиной 20-600 мкм таким образом, что инжектируют в металлизационную струю полимерные термопластичные материалы и затем отключают металлизационную струю и наносят полимерный слой толщиной 20-600 мкм без участия металлизационной струи, при этом при выполнении слоев с участием полимерных термопластичных материалов дополнительно вводят пропан или пропан-бутан, или пропан-воздушную смесь.

Металлизационный слой (подслой Bond Coat) - нанесение выполняется по стандартной технологии, толщина данного слоя при этом составляет 20-600 мкм, данный слой обеспечивает адгезию покрытия и формирует поверхность для нанесения последующего композитного слоя. В качестве материалов для нанесения металлизационного слоя могут использоваться проволочные материалы диаметром 1,0-4,0 мм из антикоррозионных нержавеющих металлов и сплавов, цинка, алюминия, алюминия-магния, цинк-алюминия, псевдосплавов, а также порошковая проволока с заданным химическим составом.

Композитный слой (переходный слой «металл-полимер») - данный слой выполняется с инжектированием в зону распыления проволок термопластичных полимерных порошковых материалов или их суспензий. Толщина данного слоя при этом составляет 20-600 мкм, данный слой обеспечивает переход от металлического слоя к полимерному слою.

Полимерный слой (поверхностный финишный слой Top Coat) - данный слой выполняется без участия металлизационной струи и формируется только за счет полимерной составляющей и дополнительного подогрева поверхности и при необходимости оплавлением на поверхности термопластичного полимерного материала пропановым или пропан-бутановым, или пропан-воздушным пламенем, подаваемым из кольцевого контура, смонтированного на сопле пистолета металлизатора. Также для дополнительного подогрева термопластичного полимерного материала в центральный воздушный канал для транспортирующего газа на пистолете металлизатора выполняется подача пропана или пропан-бутана, или пропан-воздушной смеси с последующим поджигом на выходе из сопла. При этом термопластичнй полимерный материал, присутствующий в предыдущем композиционном слое, обеспечивает прочное соединение с поверхностным полимерным слоем. Толщина данного слоя при этом составляет 20-600 мкм, данный слой обеспечивает поверхностную антикоррозионную защиту от агрессивной среды эксплуатации. В качестве термпопластичных полимерных материалов могут использоваться полиэтилен, полипропилен, полиамид, полиимид, поливинилиденфторид, политетрафторэтилен, полиэфирэфиркетон с фракционным составом 20-600 мкм.

Также для активации и дополнительного подогрева металлизационной струи и напыляемой поверхности используется пропановое или пропан-бутановое, или пропан-воздушное пламя, подаваемое из кольцевого контура, смонтированного на корпусе пистолета металлизатора.

В основу технологического процесса нанесения металлополимерного покрытия положен процесс электродуговой металлизации, в котором традиционно осуществляется подача двух проволочных материалов (электродов), при соприкосновении которых возбуждается электрическая дуга, за счет чего происходит их расплавление и последующее распыление расплавленного металла струей сжатого воздуха. Расплавленные частицы металла, попадая на покрываемую поверхность, сцепляются с ней и образуют сплошное покрытие, при этом толщина слоя регулируется числом проходов и скоростью перемещения пистолета металлизатора относительно поверхности.

Отличием технологии нанесения металлополимерного покрытия от стандартной технологии электродуговой металлизации является инжектирование в зону распыления проволок термопластичных полимерных порошковых материалов или их суспензии. Также для активации и дополнительного подогрева напыляемой поверхности и металлизационной струи используется пропановое или пропан-бутановое, или пропан-воздушное пламя, подаваемое из кольцевого контура, смонтированного на корпусе пистолета.

В качестве оборудования в технологии нанесения металлополимерного покрытия используется устройство для нанесения металлополимерного покрытия, которое представляет собой пистолет-металлизатор с насадкой, используемый для нанесения покрытий в составе оборудования для процесса электродуговой металлизации, который обеспечивает инжектирование в зону распыления термопластичных полимерных порошковых материалов. Также для активации и дополнительного подогрева напыляемой поверхности и металлизационной струи используется пропановое или пропан-бутановое, или пропан-воздушное пламя, подаваемое из кольцевого контура, смонтированного на корпусе пистолета.

Технологический процесс нанесения металлополимерных покрытий (МПП) объединяет и совмещает в себе технологию нанесения металлизационных и полимерных покрытий. Технология позволяет наносить металлополимерные покрытия в «один прием» без разделения технологических операций на нанесение металлического и полимерного слоев.

Таким образом, технология нанесения МПП позволяет получить покрытия нового типа объединяющие свойства химически стойких сплавов и полимерных материалов.

Получаемая структура покрытий является композитной и содержит как металлические, так и полимерные составляющие практически по всей толщине покрытия.

Адгезия металлополимерных покрытий при этом будет соответствовать адгезии металлических покрытий, наносимых методами газотермического напыления (5-20 МПа) или быть выше.

Повышение характеристик обеспечивается за счет разработанной технологии нанесения материалов, позволяющих формировать защитные функциональные покрытия, химически коррозионно-эрозионно-стойкие, на поверхностях, подвергаемых воздействию агрессивных сред - высокосернистых соединений, меркаптанов, хлоридов, снижающих эксплуатационную надежность оборудования и аппаратов в процессе добычи, транспортировки и переработки природного газа и других углеводородов.

Основные характеристики технологии:

- Производительность нанесения покрытия 1-5 м2/ч и более (зависит от характеристик оборудования).

- Возможность применения внутри резервуаров и аппаратов.

- Возможность использования в составе роботизированных комплексов по нанесению покрытия и вручную.

Типовые характеристики металлополимерных покрытий:

- Адгезия - 5-20 МПа.

- Толщина - 250-1000 мкм.

- Стойкость в средах: сырая нефть и нефтепродукты, кислые и другие агрессивные компоненты, содержащиеся в нефти и нефтепродуктах.

- Температура эксплуатации - до 200-340°C.

Пример 1

Металлополимерное покрытие (МПП) напыляют с использованием электродугового металлизатора М-2 на образцы из стали 09Г2С. Поверхность под нанесение покрытия готовят абразивно-струйной обработкой. В качестве материалов при нанесении МПП для металлизационного слоя используют антикоррозионную проволоку НМЖМц 28-2,5-1,5 (аналог монель) диаметром 1,6 мм, для полимерного покрытия используют полимерный термопластичный порошок политетрафторэтилен (фторопласт Ф-4), фракционный состав 50-100 мкм. Давление воздуха на входе в металлизатор 0,5 МПа, дистанция напыления 200-250 мм, ток дуги 250-270 А, напряжение 25-30 В. Металлополимерное покрытие наносят толщиной 500-600 мкм. Прочность сцепления покрытия с подложкой определяют по штифтовой методике. Коррозионную стойкость определяют по результатам испытания образцов в камере соляного тумана в растворе NaCl при концентрации 5% и температуре 35°C в течение 240 ч.

Таким образом, изобретение позволяет получать металлополимерные покрытия прочно сцепленные с подложкой и обеспечивающие надежную защиту от коррозии. Это позволяет рекомендовать использование изобретения для антикоррозионной защиты оборудования нефтегазового сектора.

Пример 2

Металлополимерное покрытие (МПП) напыляют с использованием электродугового металлизатора М-2 на образцы из стали 3. Поверхность под нанесение покрытия готовят абразивно-струйной обработкой. В качестве материалов при нанесении МПП для металлизационного слоя используют антикоррозионную проволоку AlMg5 диаметром 2,5 мм, для полимерного покрытия полимерный термопластичный порошок - полиэтилен (фракционный состав 200-300 мкм). Давление воздуха на входе в металлизатор 0,5 МПа, дистанция напыления 150-180 мм, ток дуги 200-250 А, напряжение 20-25 В. Металлополимерное покрытие наносят толщиной 800-1000 мкм. Прочность сцепления покрытия с подложкой определяют по штифтовой методике. Коррозионную стойкость определяют по результатам испытания образцов в камере соляного тумана в растворе NaCl при концентрации 5% и температуре 35°C в течение 240 ч.

Таким образом, изобретение позволяет получать металлополимерные покрытия прочно сцепленные с подложкой и обеспечивающие надежную защиту от коррозии. Это позволяет рекомендовать использование изобретения для антикоррозионной защиты оборудования судостроительной отрасли.

Способ электродугового напыления покрытия, включающий нанесение покрытия с помощью металлизационной струи и инжектирование в металлизационную струю полимерных термопластичных материалов, отличающийся тем, что сначала c помощью металлизационной струи наносят металлический слой толщиной 20-600 мкм, затем наносят композитный слой толщиной 20-600 мкм, для чего инжектируют в металлизационную струю полимерные термопластичные материалы, отключают металлизационную струю и наносят полимерный слой толщиной 20-600 мкм без участия металлизационной струи, при этом при выполнении слоев с участием полимерных термопластичных материалов дополнительно вводят пропан или пропан-бутан, или пропан-воздушную смесь.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
20.01.2018
№218.016.1594

Порошковый материал для газотермического напыления покрытий

Изобретение относится к области порошковой металлургии, в частности к порошковым материалам для газотермического напыления покрытий, и может быть использовано для защиты деталей горячего тракта авиационных газотурбинных двигателей (ГТД), наземных газотурбинных установок (ГТУ) и ракетных...
Тип: Изобретение
Номер охранного документа: 0002634864
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.18ef

Состав коррозионно-стойкого покрытия для защиты технологического нефтехимического оборудования

Изобретение относится к химическому, нефтехимическому, нефтеперерабатывающему машиностроению, а именно к составам для защиты основного и вспомогательного оборудования указанных производств от воздействия агрессивных коррозионно-активных сред. Коррозионно-стойкое покрытие для защиты внутренней...
Тип: Изобретение
Номер охранного документа: 0002636210
Дата охранного документа: 21.11.2017
04.04.2018
№218.016.30f5

Способ обработки ниппельной части резьбового соединения насосно-компрессорной трубы

Изобретение относится к трубному производству, в частности к способу обработки ниппельной части резьбового соединения насосно-компрессорной трубы, и может быть использовано при строительстве нефтяных, газовых и газоконденсатных скважин. Способ включает нанесение на трубу покрытия. Покрытие...
Тип: Изобретение
Номер охранного документа: 0002644836
Дата охранного документа: 14.02.2018
23.02.2019
№219.016.c6cf

Смесь порошковых материалов для газотермического напыления покрытий

Изобретение относится к порошковой смеси для газотермического напыления уплотнительного покрытия лопаток турбин. Смесь содержит порошок на основе диоксида циркония, стабилизированного оксидом иттрия, в качестве основного компонента и порообразователь - порошок фторопласта марки Ф-4Д или порошок...
Тип: Изобретение
Номер охранного документа: 0002680561
Дата охранного документа: 22.02.2019
04.07.2020
№220.018.2e7b

Способ восстановления и упрочнения антивибрационных полок титановых лопаток компрессора гтд

Изобретение относится к способу восстановления и упрочнения антивибрационных полок титановых лопаток компрессора ГТД и может быть использовано в отрасли авиастроения для ремонта и упрочения как бывших в эксплуатации, так и новых титановых лопаток компрессора ГТД. Методом лазерной наплавки...
Тип: Изобретение
Номер охранного документа: 0002725469
Дата охранного документа: 02.07.2020
07.07.2020
№220.018.306f

Устройство для нанесения металлополимерного покрытия

Изобретение относится к устройствам для нанесения металлополимерных покрытий и может быть использовано для изготовления, ремонта и упрочнения поверхностей в различных отраслях промышленности. Устройство для нанесения металлополимерного покрытия содержит пистолет-металлизатор, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002725785
Дата охранного документа: 06.07.2020
15.05.2023
№223.018.58e6

Способ получения покрытия с низкой поверхностной энергией против биообрастания

Изобретение относится к способам получения покрытий для защиты от биообрастания корпусов судов и гидротехнических сооружений, устройств, конструкций, эксплуатирующихся в морской среде. Предложен способ получения покрытия с низкой поверхностной энергией против биообрастания на металлических...
Тип: Изобретение
Номер охранного документа: 0002760600
Дата охранного документа: 29.11.2021
15.05.2023
№223.018.5c09

Способ получения нескользящего покрытия

Изобретение может быть использовано при нанесении покрытий на металлические поверхности трапов, лестниц, мостиков, пешеходных дорожек, автомобильных пандусов, вертолетных площадок, палуб судов. Способ получения нескользящего покрытия включает подготовку поверхности и нанесение полимерного...
Тип: Изобретение
Номер охранного документа: 0002753273
Дата охранного документа: 12.08.2021
15.05.2023
№223.018.5c0a

Способ получения нескользящего покрытия

Изобретение может быть использовано при нанесении покрытий на металлические поверхности трапов, лестниц, мостиков, пешеходных дорожек, автомобильных пандусов, вертолетных площадок, палуб судов. Способ получения нескользящего покрытия включает подготовку поверхности и нанесение полимерного...
Тип: Изобретение
Номер охранного документа: 0002753273
Дата охранного документа: 12.08.2021
16.05.2023
№223.018.61ae

Деталь и сборочная единица соплового аппарата турбины высокого давления

Изобретение относится к области авиадвигателестроения, в частности к конструкции деталей и сборочных единиц (ДСЕ) соплового аппарата турбины высокого давления (СА ТВД) газотурбинного двигателя, преимущественно для высокоманевренных самолетов. Деталь сборочной единицы соплового аппарата турбины...
Тип: Изобретение
Номер охранного документа: 0002746196
Дата охранного документа: 08.04.2021
Показаны записи 1-10 из 42.
10.04.2013
№216.012.335c

Способ нанесения покрытия

Изобретение относится к области химии. На внутреннюю поверхность корпуса аппарата установок очистки природного газа от кислых компонентов, выполненного из стали, в местах длительного контакта с жидкой фазой насыщенного раствора абсорбента наносят покрытие. Покрытие наносят высокоскоростным...
Тип: Изобретение
Номер охранного документа: 0002478691
Дата охранного документа: 10.04.2013
20.10.2014
№216.012.fe5e

Состав уплотнительного покрытия для модификации элемента статора турбины

Изобретение относится к порошковой металлургии, в частности для получения уплотнительного покрытия методом газотермического напыления. Может использоваться при производстве паровых или газовых турбин для обеспечения стабильности зазоров в сопряженных элементах проточной части турбины....
Тип: Изобретение
Номер охранного документа: 0002530974
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe5f

Покрытие для нанесения на приводные элементы запорной и регулирующей арматуры

Изобретение относится к машиностроению, в частности к покрытиям для восстановления и упрочнения запорной и регулирующей арматуры. Покрытие для нанесения на приводные элементы запорной и регулирующей арматуры представляет собой двухслойную систему, состоящую из подслоя и основного слоя. Подслой...
Тип: Изобретение
Номер охранного документа: 0002530975
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe62

Состав присадочного материала

Изобретение относится к области машиностроения и может быть использовано при ремонте деталей паровых турбин. Состав присадочного материала в виде порошка для восстановления жаропрочных сталей характеризуется тем, что он содержит следующие компоненты при их соотношении, мас.%: Cr - 8-15, Si -...
Тип: Изобретение
Номер охранного документа: 0002530978
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.04e0

Многослойное теплозащитное покрытие

Изобретение относится к многослойному теплозащитному покрытию на детали горячего тракта энергетических газотурбинных установок большой мощности. Многослойное теплозащитное покрытие включает основной металлический подслой, выполненный из сплава на основе никеля, верхний керамический...
Тип: Изобретение
Номер охранного документа: 0002532646
Дата охранного документа: 10.11.2014
27.02.2015
№216.013.2d81

Способ получения защитного упрочняющего покрытия на деталях запорной арматуры

Изобретение относится к способу получения защитного упрочняющего покрытия на деталях запорной арматуры. Напыление производят высокоскоростным газопламенным методом со скоростью перемещения горелки относительно обрабатываемой поверхности 0,5÷1,0 м/с. Наносимый порошковый материал содержит...
Тип: Изобретение
Номер охранного документа: 0002543117
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3835

Способ ремонтной наплавки лопаток энергетических установок

Изобретение относится к способу ремонта лопаток энергетических установок. Способ включает подготовку поверхности лопатки. Нанесение покрытия с применением лазерного излучения и одновременной подачей порошкообразного присадочного материала в ванну расплава. В процессе наплавки осуществляют...
Тип: Изобретение
Номер охранного документа: 0002545877
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3836

Способ защиты лопаток паровых турбин от парокапельной эрозии

Изобретение относится к защите лопаток паровых турбин от парокапельной эрозии. Способ включает нанесение на лопатку защитного покрытия. Покрытие наносят методом лазерной наплавки. Лазерную головку перемещают со скоростью линейной интерполяции V не более 0,05 м/с. Мощность лазерного излучения...
Тип: Изобретение
Номер охранного документа: 0002545878
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3837

Способ модификации элемента статора энергетической турбины

Изобретение относится к способу получения покрытия на поверхности элемента статора энергетических турбин. Способ включает нанесение покрытия методом плазменного напыления. Порошок покрытия напыляют под углом 55-70 градусов по отношению к поверхности напыления. Скорость перемещения горелки...
Тип: Изобретение
Номер охранного документа: 0002545879
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3838

Способ нанесения газотермического покрытия на поверхность изделия

Изобретение относится к области газотермического нанесения покрытий, а именно к технологии подготовки поверхности изделия перед нанесением газотермических покрытий. Способ нанесения газотермического покрытия на поверхность изделия включает совместное воздействие на поверхность потока абразивных...
Тип: Изобретение
Номер охранного документа: 0002545880
Дата охранного документа: 10.04.2015
+ добавить свой РИД