×
05.03.2020
220.018.0908

Результат интеллектуальной деятельности: Устройство для получения энергии фазового перехода вода-лед

Вид РИД

Изобретение

Аннотация: Изобретение относится к холодильной технике и может быть использовано в сельском хозяйстве, а именно на предприятиях агропромышленного комплекса и в системах тепловых аккумуляторов, а также для отопления промышленных и инфраструктурных объектов. Технической задачей предлагаемого изобретения является использование энергии фазового перехода вода-лед для отопления сельскохозяйственных объектов, на предприятиях агропромышленного комплекса и в системах тепловых аккумуляторов, а также для отопления промышленных и инфраструктурных объектов. В результате использования изобретения появляется возможность получать энергию фазового перехода вода-лед и использовать ее для отопления сельскохозяйственных объектов, на предприятиях агропромышленного комплекса и в системах тепловых аккумуляторов, а также для отопления промышленных и инфраструктурных объектов, за счет того, что устройство снабжено емкостью, испарителем, теплообменниками, компрессором, конденсатором, дроссельным вентилем, солнечным коллектором, устройством для перемещения льда, циркуляционными насосами, позволяющими получать энергию фазового перехода вода-лед. 1 ил.

Изобретение относится к холодильной технике и может быть использована в сельском хозяйстве, а именно на предприятиях агропромышленного комплекса и в системах тепловых аккумуляторов, а также для отопления промышленных и инфраструктурных объектов.

Известна система отопления жилого дома, содержащая расположенный в подвале дома бассейн, в котором находится система вода-лед-вода, тепловой насос, расположенный с возможностью охлаждения воздуха в воздушном слое, расположенном над верхним слоем воды, и нагревом воздуха в отапливаемом помещении (патент РФ № 2412401, МПК F 24 D 15/04, опубл. 20.02.2011. Бюл. № 5). Система содержит водяной насос, установленный с возможностью перекачивания воды из нижнего слоя в верхний слой, и вентилятор, установленный с возможностью откачивания воздуха через вытяжную трубу из указанного воздушного слоя в атмосферу вне дома, при этом указанный воздушный слой дополнительно сообщен с атмосферой.

Недостатками известной системы является высокая стоимость и сложность изготовления.

Известен генератор льда и способ генерирования льда, содержащий теплообменник, систему подвода исходной воды и средство удаления льда, замкнутый контур, который образован емкостью для размещения исходной воды и генерируемого льда, подающим трубопроводом, проточным насосом, теплообменником, клапаном и отводной трубой (патент РФ № 2454616, МПК F 25 C 1/12, F 25 C 5/18, опубл. 27.06.2012. Бюл. № 18).

Недостатками известного генератора является то, что оборудование позволяет получить лед, не используя энергию фазового перехода вода-лед, малой производительности, работает в периодическом режиме с высокими энергетическими затратами.

Наиболее близким по технической сущности к предлагаемому изобретению является устройство генерирования льда, которое содержит эластичную мембрану, насос, насадку, воду, корпус, хладагент, слой воды и чешуек льда (патент РФ № 2490567, МПК F25C 1/00, F25C 1/12, опубл. 20.08.2013. Бюл. № 23). В устройстве на внешнюю поверхность эластичной мембраны насосом через насадку подают воду, которая равномерно орошает внешнюю поверхность мембраны. Мембрану устанавливают на корпус, куда периодически подают и удаляют хладагент. В результате теплообмена через мембрану между водой и хладагентом часть воды замерзает, и на поверхности мембраны образуются чешуйки льда.

Недостатками известного устройства является то, что оно работает в периодическом режиме с высокими энергетическими затратами, не используя энергию фазового перехода вода-лед.

Технической задачей предлагаемого изобретения является использование энергии фазового перехода вода-лед для отопления сельскохозяйственных объектов, на предприятиях агропромышленного комплекса и в системах тепловых аккумуляторов, а также для отопления промышленных и инфраструктурных объектов.

В результате использования изобретения появляется возможность получать энергию фазового перехода вода-лед и использовать ее для отопления сельскохозяйственных объектов, на предприятиях агропромышленного комплекса и в системах тепловых аккумуляторов, а также для отопления промышленных и инфраструктурных объектов, за счет того, устройство снабжено емкостью, испарителем, теплообменниками, компрессором, конденсатором, дроссельным вентилем, солнечным коллектором, устройством для перемещения льда, циркуляционными насосами, позволяющими получать энергию фазового перехода вода-лед.

Вышеуказанный технический результат достигается тем, что предлагаемое устройство для получения энергии фазового перехода вода-лед, содержащее емкость, циркуляционные насосы, согласно изобретению снабжено испарителем, теплообменниками, компрессором, конденсатором, дроссельным вентилем, солнечным коллектором, устройством для перемещения льда, при этом емкость устройства разделена перегородками с теплоизоляционным материалом на три емкости, емкость для воды с теплообменником с антифризом, емкость для антифриза с испарителем с фреоном и теплообменником с антифризом, и емкость для сбора и растапливания льда, которые соединены трубками с циркуляционными насосами для циркуляции антифриза из емкости для антифриза в силиконовую трубку емкости для воды, для циркуляции водоледяной смеси из емкости для сбора и растапливания льда в емкость для воды, для циркуляции холодной водопроводной воды в емкость для сбора и растапливания льда, причем в емкости для антифриза установлен блок для электрофизического воздействия, понижающий температуру замерзания антифриза, увеличивая количество получаемой энергии фазового перехода вода-лед, а испаритель и теплообменник емкости для антифриза выполнены в виде трубок змеевикового типа, а теплообменник емкости для воды выполнен в виде гибкой гофрированной силиконовой трубки змеевикового типа с металлической вставкой, на поверхности которой образуется лед, кольца которой прикреплены друг к другу металлической рейкой, соединенной с кулачковым механизмом, совершающей возвратно-поступательное движение, для отделения льда от поверхности трубки, а внутри нее циркулирует антифриз для переноса энергии фазового перехода вода-лед к теплообменнику потребителя, а лед при помощи устройства для перемещения льда перемещается в емкость для сбора и растапливания льда, в котором установлен нагреватель, соединенный с солнечным коллектором.

Для получения и использования энергии фазового перехода вода-лед в предлагаемом устройстве теплообменник выполнен в виде гибкой гофрированной силиконовой трубки с металлической вставкой, в которой циркулирует антифриз, на поверхности которой образуется лед, который легко отделяется с поверхности силиконовой трубки при совершении возвратно-поступательного движения рейки с кулачковым механизмом. В качестве теплового источника для растапливания льда применяется нагреватель, связанный с солнечным коллектором.

Сущность предлагаемого изобретения поясняется чертежом, на котором представлена общая схема устройства для получения энергии фазового перехода вода-лед.

Устройство для получения энергии фазового перехода вода-лед состоит из емкости 1, покрытой теплоизоляционным материалом для уменьшения теплообмена с окружающей средой. Емкость 1 разделена перегородками 2 и 3, также покрытыми теплоизоляционным материалом, на три емкости. Емкость для воды 4 с теплообменником 5 с антифризом. Емкость 6 для антифриза содержит испаритель 21 с фреоном, и теплообменник 7 с антифризом. Емкость 8 является емкостью для сбора и растапливания образовавшегося льда и получения водоледяной смеси. Причем высота перегородки 2 не доходит до верхнего края емкости, высота перегородки 3 доходит до верхнего края емкости. Используемый антифриз может быть солевым раствором NaCl концентрацией 20 %, но не ограничивается им.

При этом емкости 4 и 8 соединены трубкой с циркуляционным насосом 9 для перекачки водоледяной смеси из емкости 8 в емкость 4, которая образовалась при растапливании льда с помощью нагревателя 10, который соединен с солнечным коллектором 11.

В емкости 4 расположен теплообменник 5 змеевикового типа, в котором циркулирует антифриз. Теплообменник 5 выполнен из гибкой гофрированной силиконовой трубки с металлической вставкой, которая расположена в виде змеевика. Теплообменник может быть изготовлен, в частности, из силиконовых каучуков, бутадиен-стирольных каучуков, поливинилхлорида, полиэтиленгликольацетата. Приведенные примеры не ограничивают перечень материалов, которые могут быть использованы в качестве теплообменника.

В емкость 8 для сбора и растапливания льда непрерывно подается холодная водопроводная вода из емкости 12 при помощи циркуляционного насоса 13. Причем температура холодной воды в водопроводной сети в отопительный период равна 5 °C; в неотопительный период – 15 °C (Постановление Правительства РФ № 306 от 23.05.2006 (редакция от 16.04.2013) «Об утверждении Правил установления и определения нормативов потребления коммунальных услуг»).

Лед, образовавшийся на поверхности силиконовой трубки теплообменника 5, легко отделяется при помощи возвратно-поступательного движения рейки кулачкового механизма 14, и отрывается от поверхности силиконовой трубки теплообменника 5. Так как плотность льда меньше плотности воды, менее 1 г/см3, он всплывает в верхнюю часть емкости 4, и при помощи устройства для перемещения льда 15 лед перемещается и вываливается в емкость 8. Устройство для перемещения льда 15 может быть представлено в виде вращающегося шнека, или другого устройства. Также для перемещения льда перегородка 2 может перемещаться в вертикальной плоскости.

Полученная энергия фазового перехода вода-лед накапливается внутри силиконовой трубки теплообменника 5 и в виде горячего антифриза температурой 65 °С в виде жидкости направляется в теплообменник потребителя 16. Отработавший антифриз возвращается в емкость 6.

В емкости 6 расположен испаритель 21 змеевикового типа, в котором циркулирует хладагент. Используемый хладагент может быть фреон R410a, но не ограничивается им.

В емкости 6 также расположен теплообменник 7 змеевикового типа, в котором циркулирует антифриз.

Емкость 6 для антифриза и емкость 4 для воды соединены трубкой с циркуляционным насосом 17 для перекачки антифриза из теплообменника 7 емкости 6 в силиконовую трубку теплообменника 5 емкости 4 для антифриза.

Охлажденный отработавший антифриз поступает из теплообменника потребителя 16 в теплообменник 7 емкости 6.

С наружной стороны емкости 1 со стороны емкости для антифриза 6 расположены компрессор 18, конденсатор 19, дроссельный вентиль 20.

В конденсаторе 19 тепло забирается и поступает к потребителю (на чертеже позиция не показана). В качестве потребителя может выступать, например, отопительная система помещения сельскохозяйственного объекта, а также промышленных и инфраструктурных объектов.

В емкости 6 установлен блок для электрофизического воздействия 22, который понижает температуру замерзания солевого раствора (антифриза), который затем поступает в силиконовую трубку теплообменника 5, для увеличения количества намораживаемого льда на ее поверхности и, тем самым, увеличивая количество получаемой энергии фазового перехода вода-лед.

Работает устройство для получения энергии фазового перехода вода-лед следующим образом.

При поступлении фреона в испаритель 21 емкости 6 происходит его испарение, в результате чего выделившееся тепло поглощается антифризом емкости 6.

Компрессор 18 откачивает пары фреона из испарителя 21 емкости 6 и нагнетает их в конденсатор 19. В конденсаторе 19 пары фреона охлаждаются, конденсируются и переходят в жидкое состояние, при этом выделившееся тепло забирается и поступает к потребителю (позиция на чертеже не показана). В качестве потребителя может выступать, например, отопительная система помещения сельскохозяйственного объекта, а также промышленных и инфраструктурных объектов.

Далее жидкий фреон через дроссельный вентиль 20 подается в испаритель 21 емкости 6. На входе фреона в испаритель 21 емкости 6 его давление падает с давления конденсации до давления кипения фреона, происходит вскипание фреона, поступая в трубку испарителя 21 фреон кипит, энергия, необходимая для кипения, в виде тепловой энергии, забирается от поверхности испарителя 21, охлаждая змеевиковую трубку испарителя 21. Цикл циркуляции фреона замыкается.

Охлажденный антифриз поступает в теплообменник 7 емкости 6 перекачивается в силиконовую трубку 5 емкости 4 циркуляционным насосом 17, которая заполнена водой. Емкости 6 и 4 полностью перекрыты перегородкой 3.

В емкости 4 с водой расположен теплообменник 5 змеевикового типа из силиконовой трубки, в которой циркулирует антифриз. При поступлении охлажденного антифриза в теплообменник 5 емкости 4 на поверхности силиконовой трубки в результате понижения температуры происходит образование льда. При этом за счет образования энергии фазового перехода вода-лед одновременно происходит выделение теплоты, которая поглощается антифризом теплообменника 5 емкости 4, жидкий антифриз нагревается до температуры 65 °С и переносится к теплообменнику потребителя 16. Отработавший антифриз в виде жидкости подается в теплообменник 6 емкости 6. Цикл циркуляции антифриза замыкается.

В качестве потребителя 16 может выступать отопительная система помещения сельскохозяйственного объекта, а также промышленных и инфраструктурных объектов.

На поверхности силиконовой трубки теплообменника 5 емкости 4 образуется лед, толщина которого не должна превышать 3,5 см, который легко отделяется при помощи возвратно-поступательного движения рейки кулачкового механизма 14. В результате того, что силиконовая трубка теплообменника 5 емкости 4 является эластичной, образовавшийся лед отрывается от поверхности силиконовой трубки. Так как плотность льда меньше плотности воды, лед поднимается вверх в емкости 4, при помощи устройства для перемещения льда 15 лед перемещается, и через перегородку 2 вываливается в емкость 8. Уровень воды в емкости 4 поддерживается поступлением растопленной воды (водоледяной смеси) из емкости 8 циркуляционным насосом 9 и подачей холодной водопроводной воды в емкость 8 из емкости 12 при помощи циркуляционного насоса 13.

В емкости 8 установлен нагревательный элемент 10, который соединен с солнечным коллектором 11. В результате нагревания лед растапливается, переходит в жидкое состояние (температурой 0-1 °С), и перекачивается из емкости 8 в емкость 4 при помощи циркуляционного насоса 9. В емкость 8 непрерывно подается холодная водопроводная вода из емкости 12 циркуляционным насосом 13. Цикл циркуляции воды замыкается.

Излишки водоледяной смеси из емкости 8 могут быть также использованы для охлаждения, например, молока, или для охлаждения помещений сельскохозяйственных объектов (на чертеже не указано).

В емкости 6 установлен блок для электрофизического воздействия 21, который понижает температуру замерзания солевого раствора (антифриза), который затем поступает в силиконовую трубку теплообменника 5, для увеличения количества намораживаемого льда на ее поверхности и, тем самым, увеличивая количество получаемой энергии фазового перехода вода-лед.

В качество блока для электрофизического воздействия 21 может применяться сверхвысокочастотный генератор (частота магнетрона 2450 МГц, номинальная мощность – 800 Вт, продолжительность 120 с., объем раствора 50 мл), который понижает температуру замерзания эвтектического раствора концентрацией 23,1 % с -21,2 до -25 °С, а раствора концентрацией 20 % – с -16,6 до -18,5 °С. Также в качество блока для электрофизического воздействия 21 может применяться электрогидравлическая установка (напряженность 35 кВ, электрическая емкость 0,2 мкФ, расстояние воздушного зазора 10 мм, между электродами 10 мм, форма электродов «острие-плоскость», 1000 разрядов, объем 2,5 л), при электрогидравлическом воздействии на 20 % раствор наблюдается понижение температуры замерзания с -16,6 до -19 °С.

Удельное тепловыделение при фазовом переходе вода-лед: λ=306 кДж/л = 0,085 кВт∙ч/л. Для отопления дома 100 м2 требуется мощность 12,76 кВт. В сутки: 12,76∙24= 306,24 кВт∙ч. Для этого в одном цикле замерзания необходимо: 306,24 (кВт∙ч)/ 0,085 (кВт∙ч/л) = 3602,8 л льда. Объем выработки льда устройства для получения энергии фазового перехода вода-лед составит 150,1 л льда / ч.

При замораживании 10,75 кг воды выделяется 1 кВт·ч энергии. В одном цикле замерзания в сутки необходимо 10,75·306,24=3292,08 кг воды.

Устройство для получения энергии фазового перехода вода-лед, содержащее емкость, циркуляционный насос, отличающееся тем, что снабжено испарителем, теплообменниками, компрессором, конденсатором, дроссельным вентилем, солнечным коллектором, устройством для перемещения льда, при этом емкость устройства разделена перегородками с теплоизоляционным материалом на три емкости, емкость для воды с теплообменником с антифризом, емкость для антифриза с испарителем с фреоном и теплообменником с антифризом и емкость для сбора и растапливания льда, которые соединены трубками с циркуляционными насосами для циркуляции антифриза из емкости для антифриза в силиконовую трубку емкости для воды, для циркуляции водоледяной смеси из емкости для сбора и растапливания льда в емкость для воды, для циркуляции холодной водопроводной воды в емкость для сбора и растапливания льда, причем в емкости для антифриза установлен блок для электрофизического воздействия, понижающий температуру замерзания антифриза, увеличивая количество получаемой энергии фазового перехода вода-лед, а испаритель и теплообменник емкости для антифриза выполнены в виде трубок змеевикового типа, а теплообменник емкости для воды выполнен в виде гибкой гофрированной силиконовой трубки змеевикового типа с металлической вставкой, на поверхности которой образуется лед, кольца которой прикреплены друг к другу металлической рейкой, соединенной с кулачковым механизмом, совершающей возвратно-поступательное движение, для отделения льда от поверхности трубки, а внутри нее циркулирует антифриз для переноса энергии фазового перехода вода-лед к теплообменнику потребителя, а лед при помощи устройства для перемещения льда перемещается в емкость для сбора и растапливания льда, в которой установлен нагреватель, соединенный с солнечным коллектором.
Устройство для получения энергии фазового перехода вода-лед
Источник поступления информации: Роспатент

Показаны записи 121-130 из 272.
17.08.2019
№219.017.c16f

Взрывобезопасный газогенератор обращённого процесса газификации

Изобретение относится к энерготехнологическому оборудованию, а именно к устройствам термической переработки твердого топлива в горючий газ, и может быть использовано для производства генераторного газа из древесных чурок. Взрывобезопасный газогенератор обращенного процесса газификации содержит...
Тип: Изобретение
Номер охранного документа: 0002697599
Дата охранного документа: 15.08.2019
27.08.2019
№219.017.c3d7

Способ механизации и автоматизации сбора урожая на базе индивидуальных мобильных экзоскелетов

Изобретение относится к области сельского хозяйства. Способ состоит в отборе плодов по визуально различимым критериям, таким как цвет, размер и качество, сборе урожая в мешки, выгрузке плодов из мешков по мере заполнения в корзины для последующей транспортировки в упаковочный или обрабатывающий...
Тип: Изобретение
Номер охранного документа: 0002698260
Дата охранного документа: 23.08.2019
27.08.2019
№219.017.c41f

Теплохолодильная гибридная установка для охлаждения сельскохозяйственной продукции

Изобретение относится к области охлаждения и хранения сельскохозяйственных продуктов, в том числе молока, йогуртов, соков и т.п., и может быть использовано в сельскохозяйственном производстве, пищевой промышленности и в быту. В устройстве герметизированный резервуар выполнен теплоизолированным...
Тип: Изобретение
Номер охранного документа: 0002698262
Дата охранного документа: 23.08.2019
02.09.2019
№219.017.c654

Способ определения эксергии теплоты среды как возобновляемого источника энергии

Определение предельного значения энергии, которое может быть полезным образом использовано в термодинамическом процессе, и оптимальных значений термического и энергетического КПД монотермических установок при одновременной работе теплового насоса и теплового двигателя осуществляют на стадии...
Тип: Изобретение
Номер охранного документа: 0002698900
Дата охранного документа: 30.08.2019
05.09.2019
№219.017.c722

Установка для получения электрической энергии из сине-зеленых водорослей

Изобретение относится к биоэнергетике и может быть использовано для извлечения электрической энергии из сине-зеленых водорослей. Установка для получения электрической энергии из сине-зеленых водорослей включает трубопровод 3, биовегетарий, источник света 23, гидротаранный механизм 1 и...
Тип: Изобретение
Номер охранного документа: 0002699123
Дата охранного документа: 03.09.2019
12.09.2019
№219.017.ca02

Устройство подачи воды в газодизельный двигатель

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложенное устройство подачи воды в газодизель содержит емкость с водой 1, трубопроводы подачи воды 2 и распылители 3 воды инжекторного типа. Устройство снабжено охладителем-смесителем 4, в который установлены распылители...
Тип: Изобретение
Номер охранного документа: 0002699871
Дата охранного документа: 11.09.2019
02.10.2019
№219.017.caee

Роботизированный гусеничный опрыскиватель для обработки сельскохозяйственных культур

Изобретение относится к сельскохозяйственному машиностроению, а именно к транспортно-технологическим средствам с оборудованием для химической обработки сельскохозяйственных культур. Роботизированный гусеничный опрыскиватель включает систему опрыскивания с емкостью для рабочего раствора,...
Тип: Изобретение
Номер охранного документа: 0002701663
Дата охранного документа: 30.09.2019
02.10.2019
№219.017.caf5

Способ производства искусственного снега для нужд сельского хозяйства

Изобретение относится к сельскому хозяйству, а именно к способу получения искусственного снега. Способ включает обработку СВЧ-энергией турбулентного потока воздуха, поляризацию химических элементов воздуха и капель воды из его влаги, смешивание воздуха, воды и двуокиси углерода и струйный...
Тип: Изобретение
Номер охранного документа: 0002701666
Дата охранного документа: 30.09.2019
02.10.2019
№219.017.cb70

Линия производства искусственного снега для нужд сельского хозяйства

Изобретение относится к сельскохозяйственному производству, а именно к оборудованию получения искусственного снега. Линия содержит осевой канал, сообщающий последовательно средства подачи воздуха под давлением, сопло Лаваля, СВЧ-камеру с генератором СВЧ-энергии, средство подачи воды и жидкой...
Тип: Изобретение
Номер охранного документа: 0002701303
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.cb98

Способ прогнозирования уровня сохранности азота при утилизации отходов животноводства на всем технологическом цикле

Изобретение относится к области сельского хозяйства (агроинженерная экология) и предназначено для прогнозирования уровня сохранности азота при утилизации отходов животноводства, что необходимо для оценивания уровня экологической безопасности функционирования животноводческих предприятий, оценки...
Тип: Изобретение
Номер охранного документа: 0002701501
Дата охранного документа: 26.09.2019
Показаны записи 111-116 из 116.
15.05.2023
№223.018.5bc3

Двухмодульная свч установка непрерывно-поточного действия для размораживания и разогрева коровьего молозива

Изобретение относится к сельскому хозяйству, в частности к агропромышленному комплексу и может быть использовано для размораживания и разогрева коровьего молозива. Установка содержит усеченный конический резонатор 1 над тороидальным резонатором 6, 9 с общим перфорированным неферромагнитным...
Тип: Изобретение
Номер охранного документа: 0002752938
Дата охранного документа: 11.08.2021
15.05.2023
№223.018.5bc4

Радиогерметичная многорезонаторная установка для размораживания и разогрева молозива животных

Изобретение относится к сельскому хозяйству, в частности к агропромышленному комплексу, и может быть использовано для размораживания и разогрева молозива животных в непрерывном режиме. Установка содержит вертикально расположенные основной 2 и дополнительные конические резонаторы 5. Основной...
Тип: Изобретение
Номер охранного документа: 0002752941
Дата охранного документа: 11.08.2021
23.05.2023
№223.018.6d87

Свч установка непрерывно-поточного действия с кольцевым и коническим резонаторами для дефростации и подогрева молозива животных

Предлагаемое изобретение относится к агропромышленному комплексу и может быть использовано в фермах, где содержится крупный рогатый скот, для дефростации и подогрева молозива животных. СВЧ установка содержит вертикально расположенный кольцевой резонатор 1 прямоугольного сечения без нижнего...
Тип: Изобретение
Номер охранного документа: 0002761810
Дата охранного документа: 13.12.2021
30.05.2023
№223.018.7370

Установка для сушки, обеззараживания зерна и предпосевной обработки семян

Изобретение относится к технике послеуборочной и предпосевной обработки, обеззараживанию зерна и продуктов его переработки, в частности к сушке и обеззараживанию, и может использоваться в сельском хозяйстве, на элеваторах, на крупяных заводах и мельницах, при приготовлении кормов. Установка для...
Тип: Изобретение
Номер охранного документа: 0002764168
Дата охранного документа: 13.01.2022
16.06.2023
№223.018.7b4d

Свч установка непрерывно-поточного действия с квазистационарными тороидальными резонаторами для размораживания и разогрева молозива животных

Изобретение относится к сельскому хозяйству, в частности к агропромышленному комплексу и может быть использовано для размораживания и разогрева молозива животных. Установка СВЧ содержит два вертикально расположенных квазистационарных тороидальных резонатора 4, 5. У них общее основание 11, оно...
Тип: Изобретение
Номер охранного документа: 0002753424
Дата охранного документа: 16.08.2021
17.06.2023
№223.018.7f45

Способ получения стимулятора зерновых культур

Изобретение относится к сельскому хозяйству. Для получения стимулятора растений, содержащего пиперидиний 2-(1-пипер-идинил)-3-[(1-пиперидинил)-карбамоил]пропаноат, осуществляют взаимодействие малеинового ангидрида с пиперидином, взятых в мольном соотношении 1:3, в 1,4-диоксане при температуре...
Тип: Изобретение
Номер охранного документа: 0002766287
Дата охранного документа: 11.03.2022
+ добавить свой РИД