×
05.03.2020
220.018.08c0

Результат интеллектуальной деятельности: Генератор паров рабочего тела для термоэмиссионных преобразователей

Вид РИД

Изобретение

Аннотация: Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к источникам паров рабочего тела для термоэмиссионных преобразователей (ТЭП), и может быть использовано в составе цезиевых систем термоэмиссионных ядерных энергетических установок, термоэмиссионных электрогенерирующих каналов и сборок, ТЭП, установок для исследований и испытаний подобных устройств. Управление генератором паров рабочего тела для термоэмиссионных преобразователей осуществляется изменением напряжения между контактами, соединенными с газопроницаемыми электродами, с помощью электрической цепи, которая помимо генератора паров рабочего тела содержит переменное электросопротивление, переключатель, парный переключатель и источник постоянного напряжения. Техническим результатом является расширение функциональных возможностей генератора пара рабочего тела (использование для подачи паров цезия или бария), снижение его чувствительности к уровню рабочей температуры, повышение эффективности процесса термоэмиссионного преобразования, а также надежности и ресурса ТЭП. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к источникам паров рабочего тела для термоэмиссионных преобразователей, и может быть использовано в составе цезиевых систем термоэмиссионных ядерных энергетических установок (ЯЭУ), термоэмиссионных электрогенерирующих каналов (ЭГК) и сборок, термоэмиссионных преобразователей (ТЭП), а также установок для исследований и испытаний подобных устройств.

Присутствие паров цезия в межэлектродном зазоре (МЭЗ) ТЭП необходимо для снижения работы выхода электронов и компенсации их пространственного заряда. Для снижения работы выхода эмиттера перспективных высокотемпературных ТЭП в МЭЗ также предполагается использовать пары бария. Поддержание необходимого давления паров этих рабочих тел на уровне от нуля до нескольких Тор осуществляется с помощью генераторов паров рабочего тела (ГПРТ).

Для подачи в ТЭП паров рабочего тела (цезия или бария) используются ГПРТ испарительного типа, в которых рабочее тело испаряется непосредственно с поверхности жидкой фазы, либо подается в зону испарения, сообщающуюся с МЭЗ, с использованием капиллярных сил и пористых фитилей (патент RU №1786536, МПК5 H01J 45/00, опубл. 07.01.1993), подобно тому, как это делается в тепловых трубах. Недостатками данного и ему подобных устройств испарительного типа являются:

- относительно низкий уровень рабочей температуры (~550-650°К) жидкой фазы цезия по сравнению с коллекторными температурами ТЭП (~850-1000°К), определяемый необходимым давлением его насыщенных паров, затрудняет размещение ГПРТ непосредственно на ТЭП и вблизи от него;

- сильная зависимость давления в МЭЗ, а, соответственно, и выходных параметров ТЭП от температуры жидкой фазы цезия в ГПРТ.

Кроме того, при независимой подаче из двух подобных ГПРТ цезия и бария, температура их жидких фаз должна быть одинаковой, что ограничивает возможности оптимизации режима работы ТЭП по давлению паров этих рабочих тел.

Также известны генераторы паров цезия, которые образуются путем разложения соединений графита с цезием (Гвердцители И.Г. Каландаришвили А.Г., Цхакая В.К. Источники паров цезия на основе цезированного графита для ТЭП. Pros. 3rd Internat. Conf. on Thermion. Electr. Power Gener., Juelich, 1972, Vol.3, p. 1139-1146.). Недостатками таких ГПРТ являются:

- опасность проникновения соединений углерода в МЭЗ, что ведет к снижению эффективности термоэмиссионного преобразования энергии и ресурсных характеристик ТЭП;

- небольшая емкость по цезию и необходимость точного регулирования рабочей температуры цезированного графита (в пределах ~ 650-1000°К) по мере уменьшения содержания в нем цезия и для компенсации технологических отклонений параметров.

Наиболее близким к заявляемому техническому решению по ряду признаков (различное давление паров рабочего тела внутри и снаружи устройства, его подпитка из резервуара и отсутствие непосредственного контакта жидкой фазы со средой МЭЗ) является ГПРТ, включающий резервуар, содержащий жидкий цезий или пропитанное им пористое тело, электронагреватель и полый цилиндр из цезированного графита. Внутренняя полость цилиндра сообщается с резервуаром, а его наружная поверхность - с полостью МЭЗ (Патент RU №2464668, МПК H01J 45/00, опубл. 20.10.2012). Благодаря разности давлений внутри и снаружи цилиндра при его нагреве цезий испаряется с наружной поверхности и одновременно поглощается из внутренней полости.

Однако и в этом случае сохраняются необходимость поддержания температуры графита, отличающейся от температуры коллектора ТЭП, а также опасность проникновения соединений углерода в МЭЗ. К тому же, это устройство не пригодно для подачи бария.

Задачей изобретения является расширение функциональных возможностей ГПРТ (использование для подачи паров цезия или бария), снижение его чувствительности к уровню рабочей температуры, повышение эффективности процесса термоэмиссионного преобразования, а также надежности и ресурса ТЭП.

Поставленная задача решается применением в качестве генератора паров рабочего тела для термоэмиссионного преобразователя известного барогальванического элемента, в котором используется твердый электролит, размещенный между двумя газопроницаемыми электродами, сообщающимися с изолированными друг от друга полостями, содержащими пары вещества, ионы которого обеспечивают проводимость данного электролита, причем давления паров в полостях отличаются друг от друга («Energy conversion device comprising a solid crystalline electrolyte and a solid reaction zone separator», патент US №3535163, заявл. 21.11.1966, опубл. 20.10.1070; по российской классификации общепринятое название: «однокомпонентный электрохимический преобразователь с разным давлением активного вещества в электродах» - Л.А. Квасников, Р.Г. Тазетдинов. Регенеративные топливные элементы. Москва, «АТОМИЗДАТ», 1978, стр. 18-21).

При использовании барогальванического элемента в качестве ГПРТ, его рабочим веществом является цезий или барий, присутствующие в жидкой фазе или в виде легко разлагающегося соединения в полости, изолированной от МЭЗ. Давление в этой полости будет равным давлению насыщенного пара этих веществ. В этом случае электродвижущая сила (э.д.с.) барогальванического элемента определяется в соответствии с формулой Нернста:

где:

Тс - температура жидкой фазы или разлагающегося соединения;

PCs - давление насыщенного пара рабочего тела при этой температуре,

РМЭЗ - давление в полости, сообщающейся с МЭЗ;

z - степень ионизации (равна 1 для цезия или 2 для бария);

R=8,3145 Дж/(моль⋅К) - универсальная газовая постоянная;

F=96485 Кл/моль - число Фарадея.

Для упрощения конструкции ТЭП температуру рабочего вещества, как и температуру твердого электролита, целесообразно поддерживать близкой к температуре коллектора ТЭП. На фиг. 1 представлен график зависимости (1) в диапазоне характерных для ТЭП значений давления цезия в МЭЗ, обозначено на фиг. 1, как РМЭЗ, и температуры коллектора, совпадающей с температурой жидкой фазы или разлагающегося соединения, обозначенной на фиг. 1, как Тс. Применение барогальванического элемента по новому назначению, а именно, в качестве в качестве генератора паров рабочего тела для термоэмиссионного преобразователя, обусловлено приведенной зависимостью э.д.с. от давления и температуры, а также возможностью регулирования ионного тока, протекающего через электролит.

Сущность заявленного технического решения поясняется схематическими изображениями барогальванического элемента, применяемого в качестве генератора паров рабочего тела, представленного в разрезе на фиг. 2, а также электрической цепи для управления этим генератором, представленной на фиг. 3.

Сведения, подтверждающие возможность осуществления изобретения.

Генератор пара рабочего тела, приведенный на фиг. 2, содержит колбу 1 из твердого электролита с проводимостью по ионам рабочего тела ТЭП, разделяющую металлический резервуар для рабочего тела 2 и патрубок 3, соединенный с полостью МЭЗ ТЭП. Металлокерамический гермоввод 4 обеспечивает герметичное соединение указанных элементов конструкции и их электрическую изоляцию друг от друга. Для токосъема с внутренней и внешней поверхностей колбы 1 используются газопроницаемые электроды 5 и 6 в виде электропроводных фитилей, а также электрический контакт 7 на резервуаре рабочего тела 2 и электрический контакт 8, находящийся под общим электрическим потенциалом с патрубком 3.

В качестве твердого электролита в предлагаемом ГПРТ могут использоваться колбы из смешанных оксидов алюминия и рабочего тела, изготовленную путем электрохимического замещения натрия атомами цезия или бария в бета-глиноземе, который сформирован по технологии, применяемой для изготовления электролита для серно-натриевых аккумуляторов (Дж. Садуорс, А. Тилли. Сернонатриевые аккумуляторы. Москва, «Мир», 1988). Газопроницаемые электроды могут представлять собой металлические сетки, или фитили из проволоки, стружки и фольги, находящиеся в электрическом контакте с твердым электролитом, причем электрод 6, не имеющий непосредственного контакта со средой МЭЗ, также может быть выполнен из углеволокна.

Управление генератором осуществляется изменением напряжения между контактами с помощью электрической цепи, представленной на фиг. 3, которая помимо ГПРТ содержит переменное электросопротивление R1, переключатель Пр1, парный переключатель Пр2 и источник постоянного напряжения U.

Предлагаемый ГПРТ работает следующим образом. В положении переключателя Пр1, противоположном показанному на фиг. 3, источник постоянного напряжения отключен от ГПРТ. В этом случае, при высокой величине сопротивлении R1 ионный ток в электролите отсутствует, а рабочее тело не поступает в полость МЭЗ. Уменьшение величины этого переменного сопротивления позволяет пропускать ионный ток через колбу из твердого электролита под действием э.д.с, возникающей вследствие разности давления паров рабочего тела в резервуаре и в полости МЭЗ. При этом рабочее тело поглощается электролитом на газопроницаемом электроде 6 и испаряется с газопроницаемого электрода 5 до тех пор, пока давления паров в резервуаре и в МЗЗ не сравняются. Скорость подачи паров рабочего тела регулируется переменным сопротивлением, а максимальная величина этой скорости ограничивается величиной э.д.с. (1) и внутренним электрическим сопротивлением ГПРТ. Дальнейшее увеличение величины ионного тока и скорости подачи рабочего тела достигается созданием дополнительной разности потенциала между электрическими контактами 7 и 8 с помощью внешнего источника постоянного напряжения U путем установки переключателя Пр1 в показанное на фиг. 3 положение. При этом переменным сопротивлением R1 также может осуществляться регулирование подачи рабочего тела. Перевод парного переключателя Пр2 в противоположное положение меняет полярность подключения источника напряжение на обратное. При этом ток через электролит и скорость подачи рабочего тела вновь уменьшаются. Если обратное напряжение превышает величину э.д.с. (1), направление тока в электролите меняется на противоположное и рабочее тело начинает удаляться из полости МЭЗ обратно в резервуар, а давление паров рабочего тела в МЭЗ снижается. Скорость этого процесса также может регулироваться переменным сопротивлением R1. В дальнейшем, так как согласно формуле (1) при уменьшении давления паров рабочего тела в МЭЗ величина э.д.с. увеличивается, суммарное напряжение между газопроницаемыми электродами становится нулевым, ток ионов через электролит прекращается и давление и стабилизируется на уровне, определяемом величиной U. Так как рабочее напряжение ТЭП соизмеримо с расчетными значениями э.д.с, представленными на приведенном графике (см. фиг. 1), этот преобразователь может использоваться и в качестве источника постоянного напряжения U для ГПРТ.

Таким образом, предлагаемое техническое решение позволяет расширить функциональные возможности ГПРТ (использовать в качестве рабочего тела цезий или барий), снизить его чувствительность к уровню рабочей температуры, повысить эффективность процесса термоэмиссионного преобразования энергии, а также надежность и ресурс ТЭП.


Генератор паров рабочего тела для термоэмиссионных преобразователей
Генератор паров рабочего тела для термоэмиссионных преобразователей
Генератор паров рабочего тела для термоэмиссионных преобразователей
Генератор паров рабочего тела для термоэмиссионных преобразователей
Источник поступления информации: Роспатент

Показаны записи 1-10 из 174.
13.01.2017
№217.015.88dc

Одномодовый плазмонный волновод

Изобретение относится к плазмонной интегральной оптике и может быть использовано при конструировании компонентов плазмонных устройств различного назначения. Одномодовый плазмонный волновод, выполненный в виде заполненного диэлектриком протяженного V-образного канала в пленке металла на...
Тип: Изобретение
Номер охранного документа: 0002602737
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b204

Квантовый генератор случайных чисел

Изобретение относится к квантовым генераторам случайных чисел и может быть использовано в криптографии. Техническим результатом является повышение качества, степени надежности и скорости генерации. Устройство содержит источник фотонов, однофотонный детектор, измеритель времени, задающий...
Тип: Изобретение
Номер охранного документа: 0002613027
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b401

Генератор плазмонных импульсов терагерцовой частоты

Изобретение относится к технике генерации импульсов терагерцовой частоты. Генератор плазмонных импульсов терагерцовой частоты включает спазер в режиме пассивной модуляции добротности на основе активной среды, помещенной в резонансную структуру, образованную в тонкой пленке металла, размещенной...
Тип: Изобретение
Номер охранного документа: 0002613808
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c0b4

Устройство для изготовления интегральной оптической волноводной структуры

Изобретение относится к области изготовления трехмерных интегральных оптических волноводных структур. Устройство для изготовления интегральной оптической волноводной структуры в оптически прозрачном образце с показателем преломления n, включающее в себя трехмерную систему перемещения...
Тип: Изобретение
Номер охранного документа: 0002617455
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.d079

Устройство для сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для проведения подводной многомерной сейсмической разведки на акваториях, покрытых льдом. Устройство для сейсмической разведки снабжено буксируемой капсулой. Капсула состоит из правого и левого бортов, в которых на специальных...
Тип: Изобретение
Номер охранного документа: 0002621272
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d304

Способ подводной сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для поиска и уточнения строения месторождений углеводородов и других полезных ископаемых на акваториях, покрытых льдом круглогодично или большую часть года, и повышения эффективности процесса их освоения. При реализации...
Тип: Изобретение
Номер охранного документа: 0002621638
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d32a

Сеть квантового распределения ключей

Изобретение относится к области сетевой волоконно-оптической квантовой криптографии - к защищенным информационным сетям с квантовым распределением криптографических ключей. Технический результат - создание сети с возможностью реконфигурации, а также обладающей большей выживаемостью при потере...
Тип: Изобретение
Номер охранного документа: 0002621605
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.de15

Подводный буровой модуль для бурения нефтяных и газовых скважин

Изобретение относится к горной промышленности, в частности к буровым модулям, предназначенным для бурения нефтяных и газовых скважин на шельфах морей. Подводный буровой модуль, имеющий открытую рамную конструкцию, включает буровую вышку с вертикальными направляющими для бурильной машины,...
Тип: Изобретение
Номер охранного документа: 0002624841
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e62e

Система детектирования одиночных фотонов

Изобретение относится к области оптического приборостроения и касается системы детектирования одиночных фотонов. Система включает в себя приемный модуль с приемной зоной, блок ориентации, оптический модуль и световод, который имеет оболочку с первым и вторым окончаниями и сердцевину с первым и...
Тип: Изобретение
Номер охранного документа: 0002627025
Дата охранного документа: 02.08.2017
29.12.2017
№217.015.f0bd

Композиция для получения полупроницаемой пористой мембраны

Изобретение относится к составу формовочного раствора для получения нетканого материала методом электроформования и может использоваться для получения водоупорной, воздухо-, паропроницаемой мембраны, а также регулирования комплекса эксплуатационных свойств мембранного материала. Композиция...
Тип: Изобретение
Номер охранного документа: 0002638981
Дата охранного документа: 19.12.2017
Показаны записи 1-10 из 13.
20.12.2014
№216.013.1319

Способ извлечения урана из фосфорнокислых растворов

Изобретение относится к области гидрометаллургии, в частности к способу извлечения урана из отработанных фосфорнокислых растворов. Способ заключается в том, что в исходный раствор предварительно вводят окислитель, который выбирают из ряда: KMnO, KCrO, HNO, HO, KClO. Затем проводят осаждение...
Тип: Изобретение
Номер охранного документа: 0002536312
Дата охранного документа: 20.12.2014
10.03.2016
№216.014.c110

Способ переработки кремнийсодержащих отходов уранового производства

Изобретение относится к области гидрометаллургии урана и его соединений и может быть использовано в технологии переработки урансодержащих материалов, а именно отходов уранового производства с низким (менее 3 мас.%) содержанием урана и с высоким (до 15 мас.%) содержанием кремния. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002576819
Дата охранного документа: 10.03.2016
10.05.2016
№216.015.3b63

Способ определения внутренних параметров и выходных характеристик цилиндрического термоэмиссионного преобразователя

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при проектировании и испытаниях термоэмиссионных преобразователей (ТЭП) преимущественно для космических ядерных энергетических установок (ЯЭУ). Способ определения...
Тип: Изобретение
Номер охранного документа: 0002583891
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.b04f

Способ переработки уран-циркониевых отходов

Изобретение относится к области гидрометаллургии урана и может быть использовано при его регенерации в результате химической переработки отработанных, бракованных или невостребованных твэлов. Способ переработки уран-циркониевых отходов в виде твэлов заключается в том, что исходные твэлы...
Тип: Изобретение
Номер охранного документа: 0002613352
Дата охранного документа: 16.03.2017
19.01.2018
№218.016.048c

Способ переработки гексафторида урана

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз...
Тип: Изобретение
Номер охранного документа: 0002630801
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0965

Гибкий бетавольтаический элемент

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги,...
Тип: Изобретение
Номер охранного документа: 0002631861
Дата охранного документа: 27.09.2017
26.10.2018
№218.016.962b

Радиоизотопный элемент электрического питания с полупроводниковым преобразователем, совмещенным с источником излучения

Использование: для питания микроэлектронной аппаратуры. Сущность изобретения заключается в том, что радиоизотопный элемент электрического питания включает источник излучения, выполненный в виде содержащей радиоактивный изотоп фольги, и по крайней мере один полупроводниковый преобразователь, при...
Тип: Изобретение
Номер охранного документа: 0002670710
Дата охранного документа: 24.10.2018
08.03.2019
№219.016.d35f

Способ получения металлического урана

Изобретение относится к получению металлического урана. Способ включает смешивание тетрафторида урана с металлическим кальцием, взятым с избытком от стехиометрического количества, загрузку смеси в реактор и инициирование плавки с помощью нижнего электрозапала. Загрузку смеси осуществляют...
Тип: Изобретение
Номер охранного документа: 0002681331
Дата охранного документа: 06.03.2019
18.10.2019
№219.017.d767

Термоэмиссионный преобразователь с пассивным охлаждением для бортового источника электроэнергии высокоскоростного летательного аппарата с прямоточным воздушно-реактивным двигателем

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе бортовых источников электрической энергии для высокоскоростных летательных аппаратов (ВЛА) с прямоточными...
Тип: Изобретение
Номер охранного документа: 0002703272
Дата охранного документа: 16.10.2019
26.10.2019
№219.017.dad7

Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к использованию термоэмиссионных преобразователей (ТЭП) в составе систем тепловой защиты высокоскоростных летательных аппаратов (ВЛА). Согласно изобретению в термоэмиссионном...
Тип: Изобретение
Номер охранного документа: 0002704106
Дата охранного документа: 24.10.2019
+ добавить свой РИД