×
02.03.2020
220.018.07e6

Результат интеллектуальной деятельности: Способ определения концентрации свинца (II) в водных образцах

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и касается способа определения концентрации свинца (II) в водных образцах. Способ включает в себя приготовление размещенной на носителе полимерной сенсорной пленки, ее контакт с испытуемым образцом и определение концентрации свинца путем сравнения оптической плотности с градуировочной шкалой на длине волны света 580 нм. В качестве сенсорной пленки используют фотополимеризированный материал в составе мономеров триметилолпропан этоксилат (1 ЕО/ОН) метил эфир диакрилат, 2-карбоксиэтилакрилат и полимера полиэтиленгликоля, с введенными наночастицами оксида цинка размером 5-10 нм, на поверхности которых иммобилизирован краситель ксиленовый оранжевый, а также наночастицы золота и инициатор полимеризации 2,2-диметокси-2-фенилацентофенон. Технический результат заключается в повышении чувствительности сенсорной пленки и исключении влияния человеческого фактора при проведении измерений. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области специальных нанокомпозиционных материалов, в частности к материалам, предназначенным для применения в качестве чувствительного элемента спектрофотометрического датчика концентрации ионов свинца (II) в водных растворах.

Известен визуальный способ определения ионов свинца (II) в растворе (патент RU №2441232, МПК G01N 31/22, МПК G01N 21/78, дата приоритета 02.08.2010, опубликовано 27.01.2012). Способ основан на реакции ионов свинца (II) с 1-фенил-3-изопропил-5-(бензилбензимидазол-2-ил) формазаном. Определение осуществляется путем сорбции ионов свинца (II) из анализируемого раствора на тканевый бязевый носитель с последующим отделением жидкой фазы и проведением фотометрической реакции. Для оценки содержания свинца (II) визуально сравнивают интенсивность окраски тканевого носителя с имитационной цветной шкалой. Однако известный способ не обладает экспрессностью за счет сложной пробоподготовки, необходимости стандартизации подготовки бязевых дисков, обладает недостаточно широким диапазоном определяемых концентраций свинца (II) для определения свинца в реальных объектах, неприменим для анализа окрашенных объектов.

Известен сорбционно-спектрофотометрический способ определения свинца (II) (патент RU №2529660, МПК G01N 21/77, дата приоритета 12.03.2013, опубликовано 12.03.2013). Концентрирование металла из пробы проводится при фиксированном значении рН, для чего к анализируемому раствору добавляют ацетатный буфер с рН 3,5-4,5, в полученный раствор погружают индикаторную пленку на 30-60 минут, после ее извлечения измеряют оптическую плотность на спектрофотометре при длине волны 610 нм. Концентрацию свинца (II) определяют методом стандартной добавки или методом градуировочного графика. В качестве индикаторной пленки используют прозрачную полимерную подложку, на которую нанесен слой желатина толщиной до 20 мкм, иммобилизованный водным раствором бромпирогаллолового красного. Однако данный способ требует длительного (не менее 20 мин) времени анализа, невозможен для применения в окрашенных образцах, обладает коротким временем жизни сенсора из-за деградации желатиновой матрицы, не позволяет определять свинец (II) на уровне и ниже ПДК в водных и биологических объектах, а также при его значительном превышении ПДК, за счет узкого диапазона измеряемых концентраций.

Известен способ определения свинца (II) в водных и биологических образцах (патент RU №2682162, МПК G01N 31/22, G01N 33/20, G01N 33/50, G01N 21/78, дата приоритета 16.08.2018, опубликовано 15.03.2019) наиболее близкий к заявляемому изобретению по решению технической задачи и принятый в качестве прототипа. Способ включает приготовление полимерной сенсорной пленки, которую помещают в испытуемый образец и по изменению цвета полимерной сенсорной пленки определяют наличие в нем свинца (II), количество которого определяют по калиброванной цветовой шкале, предварительно полученной из не менее 5-ти испытуемых образцов с известными концентрациями свинца (II). Полимерную сенсорную пленку помещают в испытуемый образец анализируемого раствора известного объема от 0,5 мл до 10 мл вместе со смесью ацетата магния и уксусной кислоты, взятых в соотношении 2,50⋅10-3 моль/л : 1,25⋅10-4 моль/л анализируемого раствора, и выдерживают 2-18 минут. В качестве полимерной сенсорной пленки берут пластифицированную бис(этилгексиловым) эфиром себациновой кислоты (ДОС) поли(винилхлоридную) (ПВХ) пленку толщиной 2-7 мкм, содержащую индикатор нейтральный хромоионофор 9-диметиламино-5-[4-(15-бутил-1,13-диоксо-2,14-иоксанонадецил)фенилимино]-бензо[а]феноксазин (ЕТН5418), ионофор 4-трет-бутил-каликс[4]арен-тетракис (N,N-диметилтиоацетамид) (lead ionophore IV) и ионную добавку натрий тетракис-[3.5-бис(трифторметил)фенил]борат (NaTFPB) в соотношении: 16,7 мг ПВХ, 33,3 мкл ДОС, 10 ммоль/кг ДОС ЕТН5418, 11 ммоль/кг ДОС NaTFPB, 60 ммоль/кг ДОС lead ionophore IV, размещенную на носителе. Недостаток прототипа заключается в том, что определение наличия свинца (II) в испытуемом образце проводят визуально-тестовым способом путем сравнения цвета полимерной сенсорной пленки с калиброванной цветовой шкалой, что является причиной низкой точности определения концентрации.

Задачей, на решение которой направлен предлагаемый способ является повышение точности определения концентрации свинца (II) в водных образцах.

Поставленная задача решается за счет достижения технического результата, заключающемся в повышении чувствительности сенсорной пленки и исключение влияния человеческого фактора.

Достигается технический результат тем, что способ определения концентрации свинца (II) в водных образцах, включает приготовление размещенной на носителе полимерной сенсорной пленки, контакт которой с испытуемым образцом выдерживают около 10 мин и по изменению оптической плотности полимерной сенсорной пленки определяют концентрацию в нем свинца (II), величину которой определяют сравнением с предварительно полученной градуировочной шкалой, при чем концентрацию свинца (II) определяют сравнением оптической плотности полимерной сенсорной пленки с градуировочной шкалой на длине волны света 580 нм, в качестве полимерной сенсорной пленки берут фотополимеризированный под действием ультрафиолетового излучения с длиной волны 340-370 нм материал в составе мономеров триметилол пропан этоксилат метил эфир диакрилат, 2-карбоксиэтилакрилат и полимера полиэтиленгликоля (PEG), с введенными наночастицами окиси цинка размером 5-10 нм, на поверхности которых иммобилизирован краситель ксиленовый оранжевый, а также наночастицы золота и инициатор полимеризации 2,2-диметокси-2-фенилацентофенон, причем индикаторный краситель ксиленовый оранжевый иммобилизирован на поверхности наночастиц окиси цинка с адсорбированными наночастицами золота. Контакт размещенной на носителе полимерной сенсорной пленки с испытуемым образцом обеспечивают погружением в водный образец или обеспечивают подачу водного образца в сформированные в полимерной сенсорной пленке каналы.

Разработанный композиционный прозрачный материал с наночастицами золота и окиси цинка, а также индикаторного красителя, введенных в гидрофильную фотополимерную матрицу, пригодную для использования в качестве чувствительного элемента для количественного определения свинца (II) в воде, не требует проведение ручных операций анализа и содержит в гидрофильной нанокомпозиционной пленке все необходимые компоненты. Погружение его в воду, приводит чувствительный элемент в рабочее состояние без участия оператора.

Сущность изобретения заключается в том, что для достижения технического результата предлагается чувствительный элемент, состоящий из гидрофильного фотополимеризуемого нанокомпозита, имеющего коэффициент набухания до 3,0 и нанесенного на стеклянную или полимерную подложку в виде тонкого слоя, толщиной 300 мкм, либо в виде системы каналов для пропускания воды, подлежащей измерению. Фотополимеризуемый материал состоит из смеси мономеров и полимера Trimethylolpropane ethoxylate (1 ЕО/ОН) methyl ether diacrylate (TMP), methyl ether diacrylate (TMP), 2-Carboxyethyl acrylate (Car) и полиэтиленгликоля (PEG), состав Car - TMP - PEG с введенными наночастицами ZnO на поверхности которых иммобилизирован краситель ксиленовый оранжевый, а также наночастиц золота AuNP, повышающих чувствительность за счет плазмонного резонанса. При погружении сенсора в воду, подлежащую измерению, полимерная, гидрофильная матрица, имеющая в своем составе карбоновую кислоту Car, частично нейтрализованную полимером PEG, выполняет роль буфера, поддерживающего фиксированную рН=4,54, а краситель, иммобилизированный на наночастицах и не вымывающийся с них, является сенсором. Оптическая плотность измеряется при длине волны 580 нм. Концентрацию тяжелого металла определяют методом градуировочного графика, введенного в память фотометра.

На фиг. изображен спектр поглощения чувствительного элемента сенсора в присутствии свинца (II), характеризующийся двумя максимумами поглощения, при этом максимум при длине волны 580 нм соответствует образцам со свинцом (II). Спектр поглощения нанокомпозита после выдержки 10 мин.

в водном растворе с содержанием ионов свинца (II):

1 - исходный спектр композитной пленки в дистиллированной воде,

2 - содержание Pb в растворе - 0,002%,

3 - содержание Pb в растворе - 0,006%.

Параметры чувствительности сенсора:

Чувствительность к свинцу Pb2+ составляет 1 мГ/л (1 мГ свинца на 1 л образца воды). Динамический диапазон по измеряемой концентрации свинца pb2+ составляет 30 раз.

Предложенное техническое решение иллюстрируется примерами.

Пример 1

Исходные компоненты чувствительного элемента и их соотношение:

Trimethylolpropane ethoxylate (1 ЕО/ОН) methyl ether diacrylate (Aldrich №415871), TMP-6,98%;

Poly(ethylene glycol) (Aldrich №94646), PEG - 29,92%;

Carboxyethyl acrylate (Aldrich №552348) Car - 56,85%;

ZnO наночастицы, 6 нм - 5,99%;

2,2-Dimethoxy-2-phenylacetophenone(Aldrich 19,611-8), инициатор - 0,2%;

Наночастицы золота, диаметр 10 нм - 0,05%.

Для получения полимерной матрицы гранулы PEG растворяют (при интенсивном перемешивании ультразвуком) в мономерной композиции Car+ТМР, наночастицы ZnO прокаливают на воздухе при 400 С в течении 20 мин для активации поверхности. Горячие наночастицы высыпают в водный раствор красителя ксиленовый оранжевый и интенсивно перемешивают, после чего раствор выливают в изопропиловый спирт при его интенсивном перемешивании. После осаждения наночастиц с адсорбированным на их поверхности красителем проводят центрифугирование для отделения наночастиц от маточного раствора. Полученные наночастицы не высушивая, вводят в заранее приготовленный мономерно - полимерный состав. В полученный состав вводят наночастицы золота и далее диспергируют ультразвуком плотностью мощности 70 Вт/кВ см до достижения прозрачности коллоидного раствора, после чего в него вводят инициатор полимеризации в жидком виде. Для получения пленки каплю раствора наносят на стеклянную подложку, закрывают лавсановой пленкой и проводят полимеризацию состава ультрафиолетовым облучением с длиной волны в диапазоне 340-370 нм. После полимеризации лавсановая пленка удаляется и чувствительный элемент (полимерная пленка толщиной порядка 300 мкм на стеклянной подложке) готов к использованию. Для проведения анализа необходимо поместить чувствительный элемент в исследуемую пробу воды на 10 мин, после чего провести измерение спектра поглощения в видимой области. Амплитуда максимума поглощения на длине волны 580 нм пропорциональна концентрации ионов свинца (II) в пробе.

Пример 2.

Исходная композиция подготавливается аналогично примеру 1, Для проведения полимеризации жидкую композицию наносят на подложку и накрывают фотошаблоном, через который проводят полимеризацию состава ультрафиолетовым облучением с длиной волны в диапазоне 340-370 нм. Фотошаблон представляет собой систему каналов толщиной 500 мкм. После засветки, шаблон удаляют, и проводят промывание в изопропиловом спирте для формирования заданной структуры каналов. Полученную систему закрывают стеклянной подложкой. Для проведения измерения по каналам пропускают исследуемую жидкость, поскольку состав прозрачен для воды, с одной стороны, а введенный краситель способен образовывать комплекс с ионами свинца (II), происходит накопление соответствующих ионов. Проведя измерение спектра поглощения элемента, по амплитуде максимума на длине волны 580 нм можно определить концентрацию свинца (II) в исследуемой пробе.


Способ определения концентрации свинца (II) в водных образцах
Способ определения концентрации свинца (II) в водных образцах
Источник поступления информации: Роспатент

Показаны записи 11-17 из 17.
20.04.2020
№220.018.1618

Способ изготовления неорганических хлорсодержащих перовскитных тонких пленок

Изобретение относится к области синтеза неорганических материалов, в частности к получению перовскитных тонких пленок, которые могут применяться в качестве активного слоя для светодиодов и солнечных элементов. Способ изготовления неорганических хлорсодержащих перовскитных тонких пленок методом...
Тип: Изобретение
Номер охранного документа: 0002719167
Дата охранного документа: 17.04.2020
24.04.2020
№220.018.18a1

Способ измерения фазового сигнала двухлучевого волоконно-оптического интерферометра

Изобретение относится к области волоконно-оптических измерительных приборов и может быть использовано для повышения точности измерения фазового сигнала в двухлучевых интерферометрах Майкельсона или Маха-Цендера и массивах волоконно-оптических датчиков на их основе. Способ измерения фазового...
Тип: Изобретение
Номер охранного документа: 0002719635
Дата охранного документа: 21.04.2020
21.07.2020
№220.018.34f8

Способ неинвазивной ранней диагностики эндометриоза

Изобретение относится к области медицины, а именно к гинекологии, и предназначено для неинвазивной ранней диагностики эндометриоза. Для диагностики эндометриоза проводят химический анализ шести аминокислот в сыворотке крови - глицина, аланина, валина, пролина, серина и триптофана в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002726971
Дата охранного документа: 17.07.2020
31.07.2020
№220.018.3922

Устройство фотовольтаики

Изобретение относится к составам покрытий полупроводниковых материалов и решает задачу увеличения эффективности захвата излучения солнечной батареей на длинах волн 440±10 нм и в диапазоне от 900 до 1700 нм. Устройство фотовольтаики содержит кремниевый слой р-типа проводимости с подключенным...
Тип: Изобретение
Номер охранного документа: 0002728247
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3966

Способ изготовления многосекторной спиральной фазовой пластины с варьируемым задерживанием по фазе (svr)

Изобретение относится к области изготовления оптических элементов, обеспечивающих преобразование гауссовых пучков в кольцевые пучки с радиальной поляризацией. Способ изготовления многосекторной спиральной фазовой пластины с варьируемым задерживанием по фазе (SVR) с числом секторов, равным N, на...
Тип: Изобретение
Номер охранного документа: 0002728214
Дата охранного документа: 28.07.2020
08.08.2020
№220.018.3e0b

Способ производства мучного кондитерского изделия функционального назначения

Изобретение относится к пищевой промышленности. Способ производства мучного кондитерского изделия функционального назначения включает приготовление мучного слоеного полуфабриката и заварного крема. Производство полуфабриката включает следующие стадии: замес теста, деление теста, раскатка на...
Тип: Изобретение
Номер охранного документа: 0002729462
Дата охранного документа: 06.08.2020
23.05.2023
№223.018.6bce

Испытательный стенд для силовых преобразователей электроэнергии распределенных микроэнергосистем с альтернативными источниками энергии

Изобретение относится к области электроэнергетики и может быть использовано для исследовательских испытаний экспериментальных образцов преобразователей электроэнергии мощностью до 15 кВт. Испытательный стенд содержит первичный сетевой преобразователь, гибридный инвертор, внешние разъемы для...
Тип: Изобретение
Номер охранного документа: 0002781673
Дата охранного документа: 17.10.2022
Показаны записи 11-14 из 14.
20.05.2019
№219.017.5cee

Способ определения антибиотических свойств материалов

Изобретение относится к биоизмерительным технологиям. Предложен способ определения антибиотических свойств материалов. Способ включает инкубирование тестового штамма Rhodotorula sp. VКM Y-2993D в количестве от 5×10 до 5×10 жизнеспособных клеток на мл в жидкой питательной среде рН 6,6-7,4 в...
Тип: Изобретение
Номер охранного документа: 0002688119
Дата охранного документа: 17.05.2019
29.05.2019
№219.017.621e

Способ определения бактерицидных свойств материалов

Изобретение относится к биоизмерительным технологиям. Предложен способ определения бактерицидных свойств материалов. Способ включает инкубирование тестовых микроорганизмов Lactobacillus sp. в количестве от 5×10 до 5×10 жизнеспособных клеток на мл в жидкой питательной среде рН 6,6-7,4 в течение...
Тип: Изобретение
Номер охранного документа: 0002689359
Дата охранного документа: 27.05.2019
29.05.2019
№219.017.6297

Способ определения бактерицидных свойств веществ

Изобретение относится к биотехнологии и микробиологии. Предложен способ определения бактерицидных свойств веществ. Способ включает инкубирование тестовых микроорганизмов Escherichia coli в количестве от 5×10 до 5×10 жизнеспособных клеток на мл в жидкой питательной среде в течение 4-8 ч при...
Тип: Изобретение
Номер охранного документа: 0002688328
Дата охранного документа: 21.05.2019
08.12.2019
№219.017.eabe

Способ определения токсичности материалов

Изобретение относится к биотехнологии и может быть использовано для оценки токсичности различных материалов. Способ определения токсичности материалов предусматривает выращивание Chlorella vulgaris в водном растворе, содержащем NHNO, KHPO, NaHPO, (NH)SO, (NH)CO, Mg(NO), FeCl и CaClв заданном...
Тип: Изобретение
Номер охранного документа: 0002708164
Дата охранного документа: 04.12.2019
+ добавить свой РИД