×
29.02.2020
220.018.073e

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ВЗРЫВЧАТОГО НАНОСТРУКТУРИРОВАННОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в центре которой выполнено осевое сквозное отверстие, возгонку навески ВВ при температуре 80-180°С и вакууме и осаждение сублимированного ВВ на подложку при остаточном давлении (10-10) Па в виде слоя из поликристаллических частиц. По направлению движения потока возгоняемых частиц ВВ на подложку устанавливают экран в виде диска с кольцевым сквозным пазом. Подложку устанавливают на опоре с возможностью вращения ее вокруг центральной оси, а ось вращения подложки устанавливают с эксцентриситетом (Δ). Полученный слой ВВ механически отделяют от подложки и механически измельчают до заданной величины удельной поверхности частиц ВВ с получением нанокристаллического порошкообразного материала для последующего формирования заряда ВВ. Способ обеспечивает получение наноструктурированного взрывчатого материала с высокой детонационной способностью и позволяет регулировать процесс перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм. 7 ил., 1 табл.

Предлагаемое изобретение относится к области изготовления взрывчатых веществ (ВВ) и взрывчатых составов (ВС) на их основе с высокой детонационной способностью.

Актуальность решаемой проблемы основана на необходимости изготовления наполнителя с высокой реакционной способностью для заряда с улучшенными детонационными свойствами. Экспериментально было показано, что с уменьшением размера частиц ВВ возрастает детонационная способность заряда ВВ. Однако, при попытках применения данного условия при изготовлении заряда из разрозненных частиц ВВ не приводит к возрастанию детонационной способности ВВ, т.к. реакционная способность таких частиц существенно не возрастает, а формировать заряд из таких частиц технологически проблематично.

Наиболее близким по технической сущности к заявляемому является способ получения смесевого ВВ, включающего смешение компонентов смесевого ВВ и формирование заряда ВВ, в котором предварительно порошкообразный гексоген подвергают возгонке (сублимации) в вакууме при остаточном давлении (2-5)×10-3 Па и при температуре 140-160°С, затем полученный слой сублимированного гексогена механически отделяют от подложки и механически измельчают до частиц дисперсности 250-500 мкм и используют для приготовления заряда ВВ (патент РФ №2616729, МПК С06В 25/00, публ. 18.04.17 г.).

К недостаткам прототипа относится недостаточно высокая детонационная способность ВВ и отсутствие средств для управления параметрами процесса возгонки и кристаллизации, что необходимо для получения минимально достижимого размера кристаллов ВВ и величины критического диаметра смесевого ВВ.

Задачей авторов предлагаемого изобретения является разработка способа изготовления наноструктурированного взрывчатого материала для получения заряда с высокой детонационной способностью, с возможностью регулирования процесса перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм.

Технический результат, обеспечиваемый при использовании предлагаемого способа, заключается в обеспечении изготовления наноструктурированного взрывчатого вещества для получения заряда с высокой детонационной способностью, с возможностью регулирования процесса перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм.

Указанные задача и технический результат обеспечиваются тем, что в отличие от известного в предлагаемом способе изготовления наноструктурированного взрывчатого материала, включающего предварительное взятие в тигле навески порошкообразного взрывчатого вещества из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10-5 Па, возгонку навески ВВ при температурах 80-180°С вакууме и осаждение на подложку, возгонку осуществляют помещая навеску ВВ в тигель с крышкой, имеющей коническую внутреннюю полость, в центре которой выполнено осевое сквозное отверстие для фокусировки и ограничения выхода потока возгоняемых частиц ВВ, по направлению движения потока возгоняемых частиц ВВ на подложку устанавливают экран, который выполнен в виде диска с кольцевым сквозным пазом, осаждение возогнанного ВВ ведут послойно при остаточном давлении (10-3-10-2) Па на подложку, в виде слоя из поликристаллических частиц, при этом подложку устанавливают на опоре с возможностью вращения ее вокруг центральной оси, а ось вращения подложки устанавливают с эксцентриситетом (Δ) относительно оси сопла таким образом, чтобы в процессе осаждения на подложке образовался кольцевой слой, при этом меняют дискретность нарастания кольцевого слоя в заданном диапазоне значений, после чего полученный слой наноструктурированного поликристаллического ВВ механически отделяют от подложки и механически измельчают до заданной величины удельной поверхности частиц ВВ с получением нанокристаллического порошкообразного наполнителя для последующего формирования заряда ВВ.

Предлагаемый способ изготовления наноструктурированного взрывчатого материала поясняется следующим образом.

На фиг. 1 представлена схема реализации предлагаемого способа, где 1 - подложка, 2 - экран для ограничения поступления потока частиц на подложку, 3 - крышка с соплом для фокусировки потока частиц, 4 - тигель с ВВ, 5 - навеска ВВ.

ВВ (поз. 5 фиг 1) возгоняется в вакууме при остаточном давлении (10-3-10-2) Па путем его нагрева в тигле (поз. 4 фиг. 1) до температуры сублимации. С помощью крышки тигля, имеющей коническую внутреннюю полость и осевое отверстие (сопло), сублимированное ВВ фокусируется и поступает к подложке (поз. 1 фиг. 1), вращающейся вокруг оси. Сопло ограничивает выход паров из тигля. Ось вращения подложки установлена с эксцентриситетом (Δ фиг. 1) относительно оси сопла так, что в процессе конденсации на подложке формируется кольцевой слой.

ВВ осаждается на подложку дискретно, лишь во время ее прохождения над испарителем. Для предотвращения оседания паров ВВ на подложку вне зоны расположения сопла используется экран (поз. 2 фиг. 1) в виде сплошного цилиндрического диска с пазом, через который происходит осаждение сублимированного ВВ на подложку.

Количество ВВ, осаждаемого на подложку за один ее оборот (то есть дискретность нарастания слоя, а, соответственно, размер кристалла в получаемом слое и детонационную способность ВВ), наиболее эффективно можно регулировать:

скоростью вращения подложки, изменяя время нахождения подложки над соплом: увеличение скорости вращения подложки, при прочих равных условиях, уменьшает количество ВВ конденсирующего за один обороти способствует уменьшению размера кристаллов в осажденном слое ВВ, что приводит к повышению детонационной способности ВВ;

диаметром сопла, то есть изменяя количество паров ВВ, поступающих к подложке в единицу времени: увеличение диаметра сопла (испарителя), при прочих равных условиях, увеличивает количество ВВ конденсирующего за один оборот и способствует укрупнению кристаллов, в том числе за счет перегрева подложки при выделении теплоты кристаллизации, в осажденном слое ВВ, что приводит к снижению детонационной способности ВВ.

Экспериментально было подтверждено, что при использовании предлагаемого способ обеспечивается более высокий результат по сравнению с прототипом, заключающийся в обеспечении изготовления наноструктурированного взрывчатого материала для получения заряда с высокой детонационной способностью, с возможностью регулирования процесса перекристаллизации ВВ до получения частиц, размер которых находится в диапазоне менее 1 мкм.

На фиг. 2-7 представлены фотографии микроструктуры при варьировании различных режимов перекристаллизации слоя возогнанного ВВ, которые поясняются следующими примерами.

Пример 1. В лабораторных условиях на установке для сублимирования ВВ (на базе вакуумного поста ВУП-4) было проведено исследование влияния дискретности осаждения паров на кристаллическую структуру и детонационную способность ВВ.

Сублимированное ВВ тэн осаждали на вращающуюся подложку. Для сублимации использовали испаритель диаметром 20 мм, крышку с соплом не использовали.

В первом случае, испаритель и подложка были установлены соосно, экран не использовали, то есть сублимированное ВВ непрерывным образом осаждали на подложку. Это привело к формированию поликристаллического слоя тэна с кристаллами, размер которых, хотя бы по одному из направлений,составлял более 10 мкм (фиг. 2). Критическая толщина детонации такого поликристаллического слоя тэна, определенная в опытах, составила 0,20 мм.

Во втором случае, процесс конденсации осуществляли дискретно: подложка и испаритель были установлены с эксцентриситетом 30 мм; использовали экран, позволяющий формировать на подложке кольцевой слой шириной 3 мм. В этом случае размер кристаллов тэна в поликристаллическом слое по любому из выбранных направлений не превышал 10 мкм (фиг. 3), а критическая толщина детонации такого слоя составила 0,15 мм.

Пример 2. В лабораторных условиях на установке для сублимирования ВВ (на базе вакуумного поста ВУП-4) было проведено исследование влияния диаметра сопла испарителя на кристаллическую структуру и детонационной способности ВВ.

Пары ВВ тэн осаждали на подложку через экран по схеме, показанной на фиг. 1.

В первом случае, диаметр испарителя составлял 25 мм. Размер индивидуальных кристаллов тэна в поликристаллическом слое, в этом случае, составлял от одного до десяти микрометров (фиг. 3), а критическая толщина детонации такого слоя составляла 0,15 мм.

Во втором случае диаметр испарителя составлял 5 мм. В этом случае, поликристаллический слой перекристаллизованного тэна состоял из кристаллов с размерами менее одного микрометра (фиг. 4) и имел критическую толщину детонации 0,10 мм.

Пример 3. В лабораторных условиях на установке для сублимирования ВВ (ВУ-700TDE) было проведено исследование влияния дискретности нарастания слоя на кристаллическую структуру ВВ и детонационную способность ВС на его основе.

Сублимированный гексоген осаждали на подложку, вращающуюся со скоростью 30 об/мин.

В первом случае ВВ гексоген возгоняли через крышку испарителя, имеющего прямоугольное отверстие размером 8 мм × 75 мм и непрерывным образом осаждали на подложку. В этом случае размер кристаллов в поликристаллическом слое гексогена составлял от 40 мкм до 100 мкм (фиг. 5). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого поликристаллического гексогена и содержащего кроме наполнителя около 10 процентов связующего, составляло 3,0 мм × 1,0 мм.

Во втором случае процесс перекристаллизации осуществляли дискретно: гексоген возгоняли через сопло диаметром 4,2 мм и осаждали через экран на подложку в виде кольца шириной 20 мм. В этом случае поликристаллический слой перекристаллизованного гексогена состоял из пластинчатых кристаллов толщиной около 10 мкм с сильно развитой поверхностью за счет большого числа ступеней роста (фиг. 6). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого поликристаллического гексогена и содержащего кроме наполнителя около 10 процентов связующего, составляло 1,5 мм × 1,2 мм.

Пример 4. В лабораторных условиях на установке для сублимирования ВВ (ВУ-700TDE) было проведено исследование влияния скорости вращения подложки на кристаллическую структуру ВВ и детонационную способность ВС на его основе.

ВВ гексоген перекристаллизовали предлагаемым способом, показанным на фиг. 1.

В первом случае подложка вращалась со скоростью 30 об/мин. В этом случае поликристаллический слой перекристаллизованного гексогена состоял из пластинчатых кристаллов толщиной менее 10 мкм с сильно развитой поверхностью за счет большого числа ступеней роста (фиг. 6). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого гексогена и содержащего кроме наполнителя около 10 процентов связующего, в заряде шириной 1,5 мм составило 1,2 мм.

Во втором случае подложка вращалась со скоростью 400 об/мин. В этом случае, поликристаллический слой перекристаллизованного гексогена характеризовался кристаллами, размерами которых хоть в одном направлении был менее 1 мкм (фиг. 7). Критическое сечение в канале с поворотами для заряда ВВ, изготовленного на основе такого гексогена и содержащего кроме наполнителя около 10 процентов связующего, в заряде шириной 1,5 мм составило 0,5 мм.

Результаты испытаний по примерам 1-4 сведены в таблицу 1. Как это показали примеры, реализация предлагаемого способа изготовления наноструктурированного взрывчатого материала показала достижение более высокого по сравнению с прототипом, результата, а именно - получение ВВ для изготовления заряда с высокой детонационной способностью.

Способ изготовления наноструктурированного взрывчатого материала, включающий предварительное взятие в тигле навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, возгонку навески ВВ при температуре 80-180°С и вакууме и осаждение на подложку, отличающийся тем, что возгонку осуществляют помещая навеску ВВ в тигель с крышкой, имеющей коническую внутреннюю полость, в центре которой выполнено осевое сквозное отверстие для фокусировки и ограничения выхода потока возгоняемых частиц ВВ, по направлению движения потока возгоняемых частиц ВВ на подложку устанавливают экран, который выполнен в виде диска с кольцевым сквозным пазом, осаждение возогнанного сублимированного ВВ ведут послойно при остаточном давлении (10-10) Па на подложку в виде слоя из поликристаллических частиц, при этом подложку устанавливают на опоре с возможностью вращения ее вокруг центральной оси, а ось вращения подложки устанавливают с эксцентриситетом (Δ) относительно оси сопла таким образом, чтобы в процессе осаждения на подложке образовался кольцевой слой, при этом меняют дискретность нарастания кольцевого слоя в заданном диапазоне значений, после чего полученный слой поликристаллического ВВ механически отделяют от подложки и механически измельчают до заданной величины удельной поверхности частиц ВВ с получением нанокристаллического порошкообразного наполнителя для последующего формирования заряда ВВ.
СПОСОБ ИЗГОТОВЛЕНИЯ ВЗРЫВЧАТОГО НАНОСТРУКТУРИРОВАННОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 171-180 из 796.
25.08.2017
№217.015.c1e8

Способ определения излучательной способности твердых материалов и устройство для его осуществления

Изобретение относится к теплофизике и может быть использовано для определения радиационных характеристик поверхностей и покрытий твердых тел. В отличие от известного способа определения излучательной способности твердых материалов, заключающегося в том, что воздействуют на исследуемый образец...
Тип: Изобретение
Номер охранного документа: 0002617725
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c21a

Исполнительное коммутирующее устройство

Изобретение относится к области приборостроения, в частности для использования в системах автоматики взрывоопасных технических объектов, которые могут подвергаться аварийным воздействиям. Исполнительное коммутирующее устройство содержит корпус, в котором расположены пороговый датчик разности...
Тип: Изобретение
Номер охранного документа: 0002617708
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c23e

Способ регистрации фазового перехода в материале

Изобретение относится к области металловедения и физико-химическому анализу веществ, в частности, к способу определения протекания фазовых переходов в металлах и сплавах. Заявлен способ регистрации фазового перехода в материале при воздействии на него давления и температуры, в котором давление...
Тип: Изобретение
Номер охранного документа: 0002617729
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c240

Логарифмический контроллер защиты многопролетных волоконно-оптических линий

Изобретение относится к контроллерам защиты многопролетных волоконно-оптических линий передачи (ВОЛП) от попыток отвода оптического сигнала и может быть использовано в качестве технического средства защиты информации (ТСЗИ) ограниченного доступа в многопролетных волоконно-оптических линиях...
Тип: Изобретение
Номер охранного документа: 0002617726
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c282

Способ анализа вещества термоаналитическим методом

Изобретение относится к области контрольно-измерительной техники, касающейся исследования, измерений и контроля термических характеристик веществ и материалов, и может быть использовано для идентификации вещества при принятии мер по обеспечению пожарной и промышленной безопасности. Способ...
Тип: Изобретение
Номер охранного документа: 0002617730
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c2a1

Стенд для испытания средств инициирования, взрывных и пиротехнических устройств в условиях действия импульсов ударного ускорения

Изобретение относится к области специального оборудования, предназначенного для испытаний на работоспособность средств инициирования (СИ), взрывных и пиротехнических устройств (ВУ и ПУ), а также систем взрывной автоматики (СВА), в частности электродетонаторов (ЭД) в условиях действия ударных...
Тип: Изобретение
Номер охранного документа: 0002617728
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c62f

Способ взрывной резки металлических конструкций

Изобретение относится к взрывным работам и может быть использовано для резки корпусных конструкций сложной конфигурации. Способ включает резку в два этапа. Первый этап - выполнение на разрезаемой конструкции ослабленного сечения в виде надреза, глубина которого составляет не менее 1/6 толщины...
Тип: Изобретение
Номер охранного документа: 0002618676
Дата охранного документа: 10.05.2017
25.08.2017
№217.015.c63c

Штамп для равноканального углового прессования (варианты)

Группа изобретений относится к обработке металлов давлением с использованием пластической деформации и может быть использована при получении нанокристаллических материалов с увеличенным уровнем механических свойств. Штамп для равноканального углового прессования содержит бандаж и размещенные в...
Тип: Изобретение
Номер охранного документа: 0002618677
Дата охранного документа: 10.05.2017
25.08.2017
№217.015.c9d3

Способ эксплуатации ядерного реактора в уран-ториевом топливном цикле с наработкой изотопа u

Изобретение относится к способу эксплуатации ядерного реактора в уран-ториевом топливном цикле с наработкой изотопа U и предназначено для проведения первоначальной загрузки активной зоны реактора оксидным уран-ториевым топливом. В качестве указанного топлива используют (UUTh)O топливо с высоким...
Тип: Изобретение
Номер охранного документа: 0002619599
Дата охранного документа: 17.05.2017
25.08.2017
№217.015.cd04

Импульсная ускорительная трубка

Изобретение относится к импульсной ускорительной трубке и может использоваться для генерации электронных и рентгеновских пучков наносекундной и субнаносекундной длительности и может быть использовано в ускорителях на напряжения до 1 MB и выше. В заявленном устройстве изолятор выполнен...
Тип: Изобретение
Номер охранного документа: 0002619774
Дата охранного документа: 18.05.2017
Показаны записи 11-15 из 15.
18.05.2019
№219.017.5907

Смесевое взрывчатое вещество и способ его изготовления

Изобретение относится к области разработки смесевых взрывчатых веществ (ВВ), а именно мощных бризантных ВВ с повышенными удельными характеристиками кумулятивных зарядов различного назначения, например используемых в газонефтедобыче. Предложенный состав смесевого высокобризантного ВВ включает...
Тип: Изобретение
Номер охранного документа: 0002417971
Дата охранного документа: 10.05.2011
31.07.2019
№219.017.ba52

Способ спектрометрического анализа газообразных продуктов разложения взрывчатых веществ

Данное изобретение относится к области методов анализа механизмов поведения взрывчатых веществ (ВВ) при термических воздействиях и может быть использовано для исследования продуктов терморазложения ВВ. Сущность изобретения заключается в том, что в отличие от известного способа анализа...
Тип: Изобретение
Номер охранного документа: 0002695954
Дата охранного документа: 29.07.2019
31.07.2020
№220.018.3ace

Детонационная разводка, инициируемая лазерным излучением, и состав светочувствительного взрывчатого вещества для инициирования детонационной разводки

Использование: область взрывных работ, в частности конструкции взрывных устройств. Задача: разработка безопасной и простой детонационной разводки (ДР), в которой минимизированы факторы, снижающие ее безопасность и надежность срабатывания ДР. Сущность изобретения: в отличие от конструкции...
Тип: Изобретение
Номер охранного документа: 0002728085
Дата охранного документа: 28.07.2020
22.04.2023
№223.018.5117

Способ изготовления смесевого взрывчатого вещества

Изобретение относится к области технологии изготовления смесевых взрывчатых веществ. Для изготовления смесевого взрывчатого вещества осуществляют подготовку и смешение исходных компонентов, производят введение технологических добавок. Смешению подвергают сначала порошкообразный тэн и...
Тип: Изобретение
Номер охранного документа: 0002794210
Дата охранного документа: 12.04.2023
16.06.2023
№223.018.7bdb

Термопластичный взрывчатый состав и способ его изготовления

Группа изобретений относится к области технологий получения смесевых термопластичных взрывчатых материалов. Термопластичный взрывчатый состав в качестве взрывчатых компонентов содержит диаминодинитроэтилен, 3,4-бис-(4-нитрофуразан-3-ил)-фуразан, а в качестве инертной добавки -...
Тип: Изобретение
Номер охранного документа: 0002756081
Дата охранного документа: 27.09.2021
+ добавить свой РИД