×
23.02.2020
220.018.05ba

Результат интеллектуальной деятельности: СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. В способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h - размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которая располагается в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью, формирующую оптику выполняют из двух компонентов. Первый из компонентов представляет собой аксиально-симметричную линзу, формирующую мнимое изображение излучающей площадки, причем линзу располагают на минимальном расстоянии L от излучающей площадки, определяют ее фокусное расстояние как где θ - полная расходимость излучения на выходе из оптических волокон. Второй компонент устанавливают в задней фокальной плоскости первой линзы и определяют его фокусное расстояние как где D - размер поля накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации, при этом на расстоянии от задней фокальной плоскости второго компонента формирующей оптики строится действительное изображение излучающей площадки, где - расстояние от излучающей площадки до ее мнимого изображения. Технический результат заключается в уменьшении габаритов формирующей оптики при создании высокой интенсивности накачки в среде лазера. 3 з.п. ф-лы, 1 ил.

Изобретение относится к лазерной технике и может быть использовано для оптической поперечной накачки рабочей среды в лазерной кювете.

При поперечной накачке рабочей среды лазера вектора направленности излучения накачки и генерации находятся во взаимно ортогональных плоскостях, что позволяет увеличивать мощность генерации путем увеличения габаритных размеров накачиваемой рабочей среды за счет наращивания мощности накачки. Благодаря эффективному преобразованию электрической энергии в световую и узкой ширине спектра излучения для накачки рабочей среды лазера широко используются диодные источники накачки. Для достижения высоких энергетических характеристик лазера требуется решить задачу суммирования излучения от диодных источников, его передачу и формирование в рабочей среде лазера с сохранением компактности лазера.

Известен способ поперечной накачки рабочей среды лазера по патенту US 4713822 «Laser device» опублик. 15.12.1987 г., включающий передачу излучения от диодных источников накачки с помощью оптических волокон к формирующей оптике, создающей поле накачки лазера на пересечении пучка накачки и излучения генерации в рабочей среде лазера, при этом торцы волокон плотно упакованы на концевом участке в ряд и расположены в одной плоскости с образованием излучающей площадки. Излучающую площадку располагают в фокальной плоскости формирующей оптики, состоящей из одной цилиндрической линзы.

Недостатками указанного способа является использование цилиндрической линзы, приводящее к формированию поля накачки лишь по одной оси, что приводит к уменьшению интенсивности пучка накачки в активной среде лазера и не позволяет сохранить размер формируемой области накачки постоянным вдоль оси распространения излучения генерации, образуя в активной среде лазера зоны с отсутствием излучения накачки, что приводит к снижению выходных энергетических характеристик лазера. Кроме того, увеличение мощности накачки путем добавления новых рядов волокон нарушает коллимацию пучка накачки в активной среде, что приводит к уменьшению длины области накачки и не позволяет достичь высоких выходных энергетических характеристик лазера. Использование только одного типа формы излучающей площадки уменьшает экспериментальные возможности применения данного способа, а необходимость расположения активной среды вблизи формирующей оптики усложняет доступ к элементам лазера и сокращает варианты модернизации центральной части лазера.

Совокупность признаков, наиболее близкая к совокупности существенных признаков заявляемого изобретения, присуща известному способу поперечной накачки рабочей среды лазера по патенту RU №2657125 «Способ поперечной накачки рабочей среды лазера» опублик. 08.06.2018 г., включающему передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h - размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которую располагают в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью.

Недостатками указанного способа, принятого за прототип, является рост габаритов формирующей оптики при увеличении мощности накачки за счет увеличения размеров излучающей площадки, поскольку излучающую площадку располагают на расстоянии от передней главной плоскости формирующей оптики, где D - размер области накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации. Так, при квадратной излучающей площадке со стороной h и размере рабочей среды D=h, минимальный диаметр формирующей оптики составит около 4h. Крупногабаритная оптика сложна в изготовлении, имеет высокую стоимость, а также приводит к увеличению габаритов самого лазера. Кроме того, соответствующее увеличение толщины формирующей оптики приводит к уменьшению ее заднего рабочего отрезка, что усложняет внедрение конструкторских решений, направленных на модернизацию центральной части лазерной кюветы, а также уменьшает экспериментальные возможности применения данного способа.

Задачей, на решение которой направлено заявляемое изобретение, является формирование поля накачки в рабочей среде лазера с сохранением постоянного размера вдоль оси генерации на всем протяжении рабочей среды по оси накачки и с созданием высокой интенсивности излучения, при удержании габаритов формирующей оптики, близкими к размерам излучающей площадки.

Техническим результатом настоящего изобретения является значительное уменьшение габаритов формирующей оптики при создании высокой интенсивности накачки в среде лазера, что увеличивает экспериментальные возможности применения данного способа.

Технический результат достигается тем, что в способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h -размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которая располагается в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью, новым является то, что формирующую оптику выполняют из двух компонентов, первый из которых представляет собой аксиально-симметричную линзу, формирующую мнимое изображение излучающей площадки, причем линзу располагают на минимальном расстоянии L от излучающей площадки, определяют ее фокусное расстояние как , где θ - полная расходимость излучения на выходе из оптических волокон, а второй компонент устанавливают в задней фокальной плоскости первой линзы и определяют его фокусное расстояние как где D - размер поля накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации, при этом на расстоянии от задней фокальной плоскости второго компонента формирующей оптики строится действительное изображение излучающей площадки, где - расстояние от излучающей площадки до ее мнимого изображения.

Расположение первой линзы формирующей оптики вблизи от излучающей площадки позволяет удержать ее размер, сопоставимым с размером излучающей площадки, а расчет ее фокусного расстояния направлен на коллимацию крайних лучей от большей стороны излучающей площадки, что приводит к сохранению размера пучка излучения накачки на расстоянии, равном фокусному расстоянию этой линзы.

Установка второго компонента формирующей оптики, состоящего из одной или нескольких линз, в фокусе первой, также сохраняет его габариты, сопоставимыми с размером излучающей площадки, а использование двух линз во втором компоненте формирующей оптики уменьшает сферическую аберрацию и увеличивает задний фокальный отрезок данной линзовой системы. Уменьшение сферической аберрации формирующей оптики увеличивает интенсивность в формируемом поле накачки и делает его границы более резкими, что позволяет наиболее точно согласовать размеры рабочей среды с размерами поля накачки. Небольшие габариты формирующей оптики и увеличение заднего фокального отрезка данной линзовой системы увеличивает экспериментальные возможности применения данного способа.

На фиг. 1, схематически изображена реализация заявленного способа, где 1 - диодные источники накачки, 2 - оптические волокна, 3 - излучающая площадка, 4 - мнимое изображение излучающей площадки, 5, 6 - первый и второй компоненты формирующей оптики, соответственно, 7 - рабочая среда лазера. Показан ход лучей из торцов крайних волокон, поясняющий формирование поля накачки с поперечным размером D, совпадающим с размером рабочей среды лазера по оси генераций.

В заявленном способе поперечной накачки активной среды лазера излучение от диодных источников накачки 1 с помощью оптических волокон 2 передается к предварительно рассчитанной и выбранной формирующей оптике. Волокна плотно упакованы на концевом участке с расположением всех торцов волокон в одной плоскости, образующей излучающую площадку 3 размером h×d и расходимостью излучения на выходе θ. Формирующая оптика состоит из двух компонентов 5 и 6 и создает требуемое поле накачки в рабочей среде 7 лазера. Реализация заявленного способа позволяет удержать габариты формирующей оптики близкими к размеру излучающей площадки, что имеет существенное значение при увеличении мощности накачки.

На макете лабораторного газового лазера была экспериментально показана осуществимость заявленного способа. В данных экспериментах излучение от диодных источников накачки передавалось посредством кварцевых оптических волокон с диаметром светопроводящей сердцевины 400 мкм и расходимостью на выходе из волокна θ=0,4 рад. Посредством компоновки торцов волокон собрана излучающая площадка размером h=130 мм по оси распространения излучения генерации. Данный способ реализовывал поперечную накачку газовой рабочей среды размером вдоль оси генерации D=132 мм. Формирующая оптика состояла из двух компонентов. Первый компонент представлял собой кварцевую плосковыпуклую линзу, которая была установлена на расстоянии L=120 мм от излучающей площадки. Фокусное расстояние линзы рассчитано по формуле мм. Второй компонент формирующей оптики устанавливалась на расстоянии 445 мм от первой линзы и состояла из двух кварцевых плоско-выпуклых линз, состыкованных выпуклыми поверхностями друг с другом, эффективное фокусное расстояние которых было рассчитано по формуле мм. При этом на расстоянии мм от задней фокальной плоскости второго компонента формирующей оптики построилось действительное изображение излучающей площадки, размером по оси генерации D=132 мм. Рабочая среда лазера была расположена между формирующей оптикой и плоскостью действительного изображения, причем дальняя граница рабочей среды была совмещена с этой плоскостью.

Формирующая оптика создавала интенсивность излучения накачки в рабочей среде лазера равную интенсивности излучения на выходе из излучающей площадки и состояла из трех линз диаметром 200 мм, что лишь в 1,5 раза больше размера излучающей площадки. В аналоге, взятого за прототип, диаметр линз составил бы около 400 мм. При возможности более близкого расположения первой линзы формирующей оптики к излучающей площадке диаметр линз можно уменьшить до 150 мм. Таким образом, заявленный технический результат был достигнут.

Кроме того, пространство между последней линзой и рабочей средой лазера позволило установить конструкцию уплотнения окон лазерной кюветы предотвращающую разгерметизацию при давлении внутри лазерной кюветы от 10-6 атм до 10 атм, а также установить конструкцию защиты окон кюветы от их загрязнения продуктами рабочей среды лазера.

С использованием заявленного способа поперечной накачки лазера получена генерация газового лазера с КПД около 30%, что подтверждает осуществимость заявленного способа.


СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
СПОСОБ ПОПЕРЕЧНОЙ НАКАЧКИ РАБОЧЕЙ СРЕДЫ ЛАЗЕРА
Источник поступления информации: Роспатент

Показаны записи 111-120 из 796.
13.01.2017
№217.015.808d

Устройство для охранной сигнализации

Изобретение относится к сигнальным устройствам и может быть использовано для охраны помещений и объектов различного назначения. Устройство для охранной сигнализации содержит корпус, подпружиненный относительно корпуса подвижный элемент, магнитоэлектрический генератор, вал которого во взведенном...
Тип: Изобретение
Номер охранного документа: 0002602227
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.81ec

Источник металлической плазмы (варианты)

Изобретение относится к источникам металлической плазмы (варианты) и может быть использовано для нанесения защитных, упрочняющих и декоративных покрытий методом катодного распыления на внутренние поверхности изделий, в частности на внутренние поверхности тел вращения, как открытых, так и...
Тип: Изобретение
Номер охранного документа: 0002601725
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8237

Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя

Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях. Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного...
Тип: Изобретение
Номер охранного документа: 0002601772
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8298

Зарядное устройство емкостного накопителя энергии

Изобретение относится к зарядным устройствам емкостных накопителей энергии и может быть использовано в высоковольтных электрофизических установках большой мощности с высоким уровнем накапливаемой энергии. В зарядное устройство емкостного накопителя энергии, содержащее входной трехфазный...
Тип: Изобретение
Номер охранного документа: 0002601437
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82ae

Резонансный генератор импульсов

Использование: для питания импульсных источников света, искровых камер, лазеров и ускорителей. Сущность изобретения заключается в том, что первая ступень умножения состоит из первого накопительного конденсатора, первого дросселя, общего коммутатора и внешнего накопительного конденсатора,...
Тип: Изобретение
Номер охранного документа: 0002601510
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82f2

Способ наведения излучения многоканального лазера в заданные точки мишени и комплекс для его осуществления

Способ наведения излучения многоканального лазера в заданные точки мишени и комплекс для его осуществления основаны на использовании одних и тех же шести датчиков, установленных вокруг мишенной камеры попарно напротив друг друга. При этом четыре датчика размещены в экваториальной плоскости МК,...
Тип: Изобретение
Номер охранного документа: 0002601505
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.866c

Способ гиперскоростного метания металлического элемента и кумулятивное метающее устройство для его осуществления

Группа изобретений относится к области экспериментальном физики. Способ гиперскоростного метания металлического элемента, закрепленного со стороны свободного торца осесимметричного трубчатого заряда взрывчатого вещества (ВВ), противоположного устройству инициирования заряда, включает...
Тип: Изобретение
Номер охранного документа: 0002603660
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.866e

Гольмиевый лазер для накачки параметрического генератора света

В гольмиевом лазере для накачки параметрического генератора света, включающем источник накачки и размещенные в двухпроходном оптическом резонаторе активный элемент, модулятор добротности, выполненный из материала с кристаллической структурой, новым является то, что модулятор добротности...
Тип: Изобретение
Номер охранного документа: 0002603336
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8675

Система термостабилизации приборного отсека космического аппарата

Изобретение относится к космической технике и может использоваться в системах терморегулирования приборных отсеков. Система термостабилизации приборного отсека космического аппарата включает радиатор-излучатель и тепловые трубы. Радиатор-излучатель выполнен в виде цилиндрического экрана с...
Тип: Изобретение
Номер охранного документа: 0002603690
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8678

Способ формирования гиперскоростного металлического компактного элемента и кумулятивное метающее устройство для его осуществления (варианты)

Изобретения относятся к области экспериментальной физики и могут быть использованы при исследовании высокоскоростного взаимодействия тел. Способ включает инициирование осесимметричного трубчатого заряда взрывчатого вещества (ВВ), формирование под воздействием маховской ударной волны...
Тип: Изобретение
Номер охранного документа: 0002603684
Дата охранного документа: 27.11.2016
Показаны записи 21-23 из 23.
07.06.2020
№220.018.24c7

Система для циркуляции рабочей среды газового лазера

Изобретение относится к лазерной технике. Система для циркуляции рабочей среды газового лазера содержит лазерную камеру и два газовых контура с нагнетателями, проходящих через внутренний объем камеры с образованием каналов так, что внутри камеры первый канал отделен от второго канала стенками с...
Тип: Изобретение
Номер охранного документа: 0002722864
Дата охранного документа: 04.06.2020
20.04.2023
№223.018.4d6a

Способ отработки технологии лазерной космической связи и стенд для его реализации

Изобретение относится к технике лазерной космической связи и предназначено для подтверждения технических характеристик терминала космической связи на испытательном стенде. Технический результат состоит в обеспечении возможности в наземных условиях на испытательном стенде моделировать как...
Тип: Изобретение
Номер охранного документа: 0002793099
Дата охранного документа: 29.03.2023
17.06.2023
№223.018.819c

Устройство для выравнивания профиля скоростей потока жидкости или газа

Изобретение относится к энергетическому и химическому машиностроению и может быть использовано в теплообменном, массообменном оборудовании атомных и тепловых электростанций, химических производств. В устройстве для выравнивания профиля скоростей потока жидкости или газа, состоящем из участка...
Тип: Изобретение
Номер охранного документа: 0002756397
Дата охранного документа: 30.09.2021
+ добавить свой РИД