×
23.02.2020
220.018.0598

Результат интеллектуальной деятельности: Способ повышения интенсивности люминесценции оксидных диэлектриков

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в фотонике, лазерной технике и оптоэлектронике при изготовлении лазерных фотоприемников, оптически активных слоёв фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол. Нанопорошок ZrO подвергают холодному одноосному прессованию при давлении 900–1100 кг⋅с/см. Полученные компакты термообрабатывают в вакууме при температуре более 1100°С в присутствии графитовой стружки, полностью окружающей компакты. Затем компакты повторно обрабатывают на воздухе при температуре более 700°С в течение 1 ч. Технический результат – увеличение количества кислородных вакансий в матрице диоксида циркония, что приводит к увеличению интенсивности люминесценции диоксида циркония в полосе 480 нм. 4 ил.

Изобретение относится к люминесцентным материалам и их применению в электронике и может быть использовано в фотонике, лазерной технике, оптоэлектронике. Оно может применяться при разработке лазерных фотоприемников, оптически активных слоев фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол, легированных функциональными наночастицами (полупроводниковыми или металлическими).

Известны способы повышения интенсивности люминесценции:

- патент RU 2628781 (Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской Академии наук «Люминесцентное вещество»);

- патент RU 2108598 (Кемеровский государственный университет «Рабочее вещество для термолюминесцентного дозиметра ионизирующих излучений»).

Общим недостатком данных методов является то, что в них для повышения интенсивности люминесценции используются легирующие примеси. Известно, что в формировании полосы люминесценции ZrO2 при 480 нм принимают участие кислородные вакансии. Поэтому введение примесей в матрицу диоксида циркония, как в указанных аналогах, не приведет к увеличению интенсивности люминесценции полосы при 480 нм.

Также известно люминесцентное вещество [патент RU 2024570 (Бурятский институт естественных наук СО РАН «Люминесцентное вещество»)], в котором шихту из оксидов K2O; ВаО; Y2O3; Nd2O3; MoO3 гомогенизируют и отжигают в две стадии: при
550 – 570°С 35 – 40 ч и 720 – 750°С 70 – 80 ч.

Недостатком данного способа является низкая температура термообработки, при которой не образуются кислородные вакансии за счет термохимического окрашивания. В результате такой обработки интенсивность свечения ZrO2 не изменится.

Из литературы известен способ создания профилированного монокристалла сапфира с примесью углерода, выращенный методом Степанова [М.С. Аксельрод, В.С. Кортов, И.И. Мильман, Е.А. Горелова, А.А. Борисов, Л.М. Затуловский, Д.Я. Кравецкий, И.Е. Березина, Н.К. Лебедев «Профилированные легированные углеродом монокристаллы окиси алюминия для термолюминесцентных дозиметрических детекторов»].

Данный способ основан на выращивании кристаллов в присутствии графита. В результате такой обработки наблюдается образование карбида циркония на поверхности компактов, что вызывает почернение компактов и уменьшение интенсивности люминесценции. Указанный способ не предусматривает какой-либо повторной обработки монокристаллов с целью устранения данного почернения.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому следует считать способ повышения интенсивности люминесценции диоксида циркония на основе термообработки микрокристаллических компактов, полученных путем холодного одноосного прессования, на воздухе в муфельной печи при 400°С в течение 1 часа [S.V. Nikiforov, V.S.Kortov, M.G.Kazantseva, K.A.Petrovykh. Luminescent properties of monoclinic zirconium oxide. Journal of Luminescence 166 (2015) 111–116]. При реализации указанного способа интенсивность люминесценции возрастает только за счет увеличения размера зерна. Недостатком данного способа является отсутствие условий для формирования кислородных вакансий, что не позволяет достичь существенного повышения интенсивности люминесценции.

Проблемой, которую решает изобретение, является низкая интенсивность люминесценции диоксида циркония в полосе 480 нм.

Сущность заявляемого способа повышения интенсивности люминесценции оксидных диэлектриков заключается в том, что нанопорошок ZrO2 путем холодного одноосного прессования при давлении 900–1100 кг⋅с/см2 формируют в компакты с последующей их термообработкой, отличающейся тем, что термообработку осуществляют в вакууме при температуре более 1100°С в присутствии графита в виде графитовой стружки, полностью окружающей компакты, с последующей повторной обработкой компактов на воздухе при температуре более 700°С в течение 1 часа.

Для реализации заявляемого способа нанопорошок диоксида циркония формируется методом холодного одноосного прессования при давлении 900-1100 кг⋅с/см2 в компакты. Выбор таких значений обусловлен тем, что при больших давлениях происходит расслаивание компактов, а при меньших они становятся хрупкими. В обоих случаях ухудшаются их прочностные характеристики, что может привести к неконтролируемому изменению интерсивности люминесценции. Далее компакты подвергаются высокотемпературной обработке в присутствии углерода в виде графитовой стружки массой 1 г, полностью окружающей компакты в алюминиевых тиглях (фиг. 1) в электровакуумной печи при температуре свыше 1100°C. Полное окружение компакта графитовой стружкой позволяет достичь лучшей воспроизводимости интенсивности люминесценции компактов, полученных как в одном, так и в разных технологических циклах термообработки по сравнению с отжигом в графитовых тиглях за счет более равномерного распределения кислородных вакансий по объему компакта. Среднее квадратичное отклонение светосуммы термолюминесценции компактов, отожженных в графитовой стружке, в 4 раза меньше, чем у компактов, отожженных в графитовых тиглях (фиг. 2). Выбор температуры свыше 1100°С объясняется тем, что при такой температуре наблюдается интенсивная диффузия атомов кислорода. За счет чрезвычайно низкого парциального давления кислорода и наличия графита в печи атомы решеточного кислорода диффундируют в окружающую атмосферу с образованием СО и созданием дефицита кислорода в анионной подрешетке диоксида циркония (кислородные вакансии).

Присутствие графита при отжиге обусловливало восстановление поверхности диоксида циркония до карбида циркония. Химическая реакция образования карбида представлена ниже в формуле (1):

ZrO2+3С → ZrC+2СО. (1)

Образование карбида циркония обуславливает потемнение компактов. Это потемнение приводит к уменьшению интенсивности люминесценции диоксида циркония (фиг. 3). Интенсивность люминесценции после термообработки в присутствии графита (кривая 2) значительно ниже интенсивности люминесценции компактов до термообработки (кривая 1).

С целью устранения карбида циркония с поверхности компактов после термообработки в вакууме ZrO2 отжигался на воздухе при температуре 900°C в муфельной печи в течение 1 часа. Соответствующая химическая реакция приведена ниже в формуле (2):

ZrC+O2 → ZrO2+C (2)

При температурах выше 700°C карбид циркония взаимодействует с кислородом с образованием ZrO2. В результате этого происходит восстановление углерода. В обработанных таким образом компактах, представляющих собой керамику, содержание карбида циркония значительно снижается. Из фиг.4 видно, что интенсивность люминесценции обработанного таким образом диоксида циркония (кривая 2) значительно увеличивается в сравнении с не обработанным ZrO2 (кривая 1).

Технический результат – увеличение количества кислородных вакансий в матрице диоксида циркония в результате термохимического окрашивания в восстановительных условиях, что приводит к увеличению интенсивности люминесценции диоксида циркония в полосе 480 нм.

Способ повышения интенсивности люминесценции оксидных диэлектриков, включающий холодное одноосное прессование нанопорошка ZrO при давлении 900–1100 кгс/см с получением компактов с последующей их термообработкой, отличающийся тем, что термообработку осуществляют в вакууме при температуре более 1100°С в присутствии графита в виде графитовой стружки, полностью окружающей компакты, с последующей повторной обработкой компактов на воздухе при температуре более 700°С в течение 1 часа.
Способ повышения интенсивности люминесценции оксидных диэлектриков
Способ повышения интенсивности люминесценции оксидных диэлектриков
Источник поступления информации: Роспатент

Показаны записи 151-160 из 207.
05.02.2020
№220.017.fe51

Способ и состав для получения нанопокрытий на парогенерирующих поверхностях в тепловых трубах

Использование: для формирования нанопокрытий на парогенерирующей поверхности испарителя изделия. Сущность изобретения заключается в том, что способ формирования нанопокрытий на парогенерирующей поверхности испарителя тепловых труб путем осуществления на ней кипения наножидкости, для...
Тип: Изобретение
Номер охранного документа: 0002713052
Дата охранного документа: 03.02.2020
15.03.2020
№220.018.0c30

Приспособление для монтажа надколонной плиты перекрытия

Предлагаемое приспособление относится к области строительства и может быть использовано для монтажа надколонных плит перекрытия при устройстве безригельных сборно-монолитных перекрытий, выполненных по конструктивной системе КУБ (каркас универсальный безригельный) или ее аналогов. Технический...
Тип: Изобретение
Номер охранного документа: 0002716626
Дата охранного документа: 13.03.2020
18.03.2020
№220.018.0c9c

Способ извлечения алмазов из матрицы инструмента

Изобретение относится к технологии извлечения алмазов из алмазоносной матрицы инструмента. Способ включает растворение металла-связки электролитом с образованием шлама, содержащего частицы алмазов, отделение электролита от шлама и выделение алмазов, при этом растворение металла-связки...
Тип: Изобретение
Номер охранного документа: 0002716692
Дата охранного документа: 13.03.2020
18.03.2020
№220.018.0c9f

Способ переработки гидролизной кислоты

Изобретение относится к переработке отходов производства диоксида титана - гидролизной серной кислоты сульфатным способом с получением продуктов, используемых в химической, металлургической, электронной промышленности. Способ переработки гидролизной кислоты включает последовательное извлечение...
Тип: Изобретение
Номер охранного документа: 0002716693
Дата охранного документа: 13.03.2020
18.03.2020
№220.018.0ca0

Устройство и способ определения фильтрующих свойств металлических фильтров по расплавленной смеси галогенидов щелочных металлов

Заявлена группа изобретений, предназначенная для определения фильтрующих свойств, а именно: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата), пористых металлических материалов (фильтров) по расплавленной смеси галогенидов щелочных...
Тип: Изобретение
Номер охранного документа: 0002716793
Дата охранного документа: 16.03.2020
18.03.2020
№220.018.0d07

2-(5-нитронилфуран-2-ил)-5-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7(4н)-он и его соли

Изобретение относится к 2-(5-нитронилфуран-2-ил)-метил-6-нитро-1,2,4-триазоло[1,5-а]пиримидин-7-онам (2а-з). Технический результат – получены новые соединения, проявляющие антигликирующую и ингибирующую в отношении α-глюкозидазы активности, которые могут найти применение в медицине для лечения...
Тип: Изобретение
Номер охранного документа: 0002716715
Дата охранного документа: 16.03.2020
21.03.2020
№220.018.0e2a

Способ прокатки рельсов

Изобретение относится к области прокатки рельсов. Способ включает получение в реверсивных черновых клетях промежуточного рельсового раската с использованием закрытых рельсовых калибров и дальнейшую его прокатку в непрерывно-реверсивной группе клетей с использованием двухвалковых калибров...
Тип: Изобретение
Номер охранного документа: 0002717251
Дата охранного документа: 19.03.2020
21.03.2020
№220.018.0e40

Способ получения гранулированных частиц гидроксиапатита

Изобретение относится к способам получения гранулированных частиц гидроксиапатита. Способ получения гранулированных частиц гидроксиапатита включает приготовление прекурсоров в виде растворов, содержащих ионы кальция, ионы аммония и фосфат-ионы, формирование осадка гидроксиапатита из растворов...
Тип: Изобретение
Номер охранного документа: 0002717275
Дата охранного документа: 19.03.2020
25.03.2020
№220.018.0fe8

Автоматическая приливная гэс с водохранилищем

Изобретение относится к конструкциям автономных приливных бесплотинных электростанций небольшой мощности и может быть использовано для преобразования энергии морских течений (приливов-отливов) в электрическую энергию. Предлагаемая гидроэлектростанция (ГЭС) предназначается для массового...
Тип: Изобретение
Номер охранного документа: 0002717424
Дата охранного документа: 23.03.2020
09.04.2020
№220.018.1381

Способ очистки оборотных цинковых растворов выщелачивания от лигносульфонатов

Изобретение относится к гидрометаллургии цинка, также предлагаемый способ может быть использован для очистки сточных вод. Способ очистки сульфатного цинкового раствора от примесей цементацией цинковой пылью заключается в предварительном контактировании раствора с твердым веществом,...
Тип: Изобретение
Номер охранного документа: 0002718440
Дата охранного документа: 06.04.2020
Показаны записи 1-10 из 10.
20.11.2013
№216.012.826d

Способ рафинирования сплавов на основе тантала

Изобретение относится к металлургии, в частности к рафинированию тантала. Способ рафинирования сплавов на основе тантала включает вакуумный электронно-лучевой переплав в горизонтальном кристаллизаторе помещенной в него шихты с выделением возгонов ее металлических примесей на конденсирующей их...
Тип: Изобретение
Номер охранного документа: 0002499065
Дата охранного документа: 20.11.2013
27.12.2013
№216.012.9256

Нагревательный блок и способ его изготовления

Изобретение относится к области электротехники, а именно к производству монолитных металлокерамических нагревательных элементов электрического, в частности резистивного, нагрева. Нагревательный блок содержит трубу из огнеупорного материала, резистивный металлокерамический нагреватель,...
Тип: Изобретение
Номер охранного документа: 0002503155
Дата охранного документа: 27.12.2013
20.08.2014
№216.012.ec0b

Способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия

Изобретение относится к измерению высоких доз поглощенного излучения. Сущность изобретения заключается в том, что способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия включает термообработку, при этом после считывания высокодозной...
Тип: Изобретение
Номер охранного документа: 0002526235
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.07c2

Способ изготовления коррозионностойкого электрода

Изобретение относится к способу изготовления коррозионностойкого электрода, включающему изготовление биметаллической основы электрода, содержащей титановый корпус с медным сердечником внутри. Далее подготовку наружной поверхности титанового корпуса и нанесение на нее активирующего покрытия....
Тип: Изобретение
Номер охранного документа: 0002533387
Дата охранного документа: 20.11.2014
27.12.2014
№216.013.13f8

Способ получения пористого проницаемого керамического изделия

Способ включает плазменное напыление частиц однородного по крупности керамического материала на основе оксида алюминия на удаляемую оправку. Напыление ведут путем формирования монослоев за счет соударения напыляемых частиц керамического материала с поверхностью оправки под углом менее 45°,...
Тип: Изобретение
Номер охранного документа: 0002536536
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1b54

Грави-магнито-сейсмический комплекс (варианты)

Группа изобретений относится к области геофизики и может быть использована при разноцелевых полевых исследованиях. Сущность: каждый из комплексов включает датчики (1-1 - 1-3) ускорения свободного падения по трем компонентам, датчики (2-1 - 2-3) магнитного поля по трем компонентам, датчики...
Тип: Изобретение
Номер охранного документа: 0002538424
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b98

Способ изготовления катодной обкладки танталового объемно-пористого конденсатора

Изобретение относится к способу изготовления катодной обкладки, представляющей собой танталовую плоскую пластину или танталовый корпус конденсатора, с оксидированным рутениевым покрытием для танталового объемно-пористого конденсатора. Способ включает в себя подготовку поверхности катодной...
Тип: Изобретение
Номер охранного документа: 0002538492
Дата охранного документа: 10.01.2015
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
19.04.2019
№219.017.3207

Способ изготовления многофункционального коррозионно-стойкого электрода

Изобретение относится к изготовлению коррозионно-стойких электродов, применяемых для выделения металлов из промышленных растворов методом электроэкстракции, при нанесении гальванических покрытий драгоценными и цветными металлами, электрохимическом производстве хлора и кислорода, при...
Тип: Изобретение
Номер охранного документа: 0002456379
Дата охранного документа: 20.07.2012
+ добавить свой РИД