×
23.02.2020
220.018.0598

Результат интеллектуальной деятельности: Способ повышения интенсивности люминесценции оксидных диэлектриков

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в фотонике, лазерной технике и оптоэлектронике при изготовлении лазерных фотоприемников, оптически активных слоёв фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол. Нанопорошок ZrO подвергают холодному одноосному прессованию при давлении 900–1100 кг⋅с/см. Полученные компакты термообрабатывают в вакууме при температуре более 1100°С в присутствии графитовой стружки, полностью окружающей компакты. Затем компакты повторно обрабатывают на воздухе при температуре более 700°С в течение 1 ч. Технический результат – увеличение количества кислородных вакансий в матрице диоксида циркония, что приводит к увеличению интенсивности люминесценции диоксида циркония в полосе 480 нм. 4 ил.

Изобретение относится к люминесцентным материалам и их применению в электронике и может быть использовано в фотонике, лазерной технике, оптоэлектронике. Оно может применяться при разработке лазерных фотоприемников, оптически активных слоев фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол, легированных функциональными наночастицами (полупроводниковыми или металлическими).

Известны способы повышения интенсивности люминесценции:

- патент RU 2628781 (Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской Академии наук «Люминесцентное вещество»);

- патент RU 2108598 (Кемеровский государственный университет «Рабочее вещество для термолюминесцентного дозиметра ионизирующих излучений»).

Общим недостатком данных методов является то, что в них для повышения интенсивности люминесценции используются легирующие примеси. Известно, что в формировании полосы люминесценции ZrO2 при 480 нм принимают участие кислородные вакансии. Поэтому введение примесей в матрицу диоксида циркония, как в указанных аналогах, не приведет к увеличению интенсивности люминесценции полосы при 480 нм.

Также известно люминесцентное вещество [патент RU 2024570 (Бурятский институт естественных наук СО РАН «Люминесцентное вещество»)], в котором шихту из оксидов K2O; ВаО; Y2O3; Nd2O3; MoO3 гомогенизируют и отжигают в две стадии: при
550 – 570°С 35 – 40 ч и 720 – 750°С 70 – 80 ч.

Недостатком данного способа является низкая температура термообработки, при которой не образуются кислородные вакансии за счет термохимического окрашивания. В результате такой обработки интенсивность свечения ZrO2 не изменится.

Из литературы известен способ создания профилированного монокристалла сапфира с примесью углерода, выращенный методом Степанова [М.С. Аксельрод, В.С. Кортов, И.И. Мильман, Е.А. Горелова, А.А. Борисов, Л.М. Затуловский, Д.Я. Кравецкий, И.Е. Березина, Н.К. Лебедев «Профилированные легированные углеродом монокристаллы окиси алюминия для термолюминесцентных дозиметрических детекторов»].

Данный способ основан на выращивании кристаллов в присутствии графита. В результате такой обработки наблюдается образование карбида циркония на поверхности компактов, что вызывает почернение компактов и уменьшение интенсивности люминесценции. Указанный способ не предусматривает какой-либо повторной обработки монокристаллов с целью устранения данного почернения.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому следует считать способ повышения интенсивности люминесценции диоксида циркония на основе термообработки микрокристаллических компактов, полученных путем холодного одноосного прессования, на воздухе в муфельной печи при 400°С в течение 1 часа [S.V. Nikiforov, V.S.Kortov, M.G.Kazantseva, K.A.Petrovykh. Luminescent properties of monoclinic zirconium oxide. Journal of Luminescence 166 (2015) 111–116]. При реализации указанного способа интенсивность люминесценции возрастает только за счет увеличения размера зерна. Недостатком данного способа является отсутствие условий для формирования кислородных вакансий, что не позволяет достичь существенного повышения интенсивности люминесценции.

Проблемой, которую решает изобретение, является низкая интенсивность люминесценции диоксида циркония в полосе 480 нм.

Сущность заявляемого способа повышения интенсивности люминесценции оксидных диэлектриков заключается в том, что нанопорошок ZrO2 путем холодного одноосного прессования при давлении 900–1100 кг⋅с/см2 формируют в компакты с последующей их термообработкой, отличающейся тем, что термообработку осуществляют в вакууме при температуре более 1100°С в присутствии графита в виде графитовой стружки, полностью окружающей компакты, с последующей повторной обработкой компактов на воздухе при температуре более 700°С в течение 1 часа.

Для реализации заявляемого способа нанопорошок диоксида циркония формируется методом холодного одноосного прессования при давлении 900-1100 кг⋅с/см2 в компакты. Выбор таких значений обусловлен тем, что при больших давлениях происходит расслаивание компактов, а при меньших они становятся хрупкими. В обоих случаях ухудшаются их прочностные характеристики, что может привести к неконтролируемому изменению интерсивности люминесценции. Далее компакты подвергаются высокотемпературной обработке в присутствии углерода в виде графитовой стружки массой 1 г, полностью окружающей компакты в алюминиевых тиглях (фиг. 1) в электровакуумной печи при температуре свыше 1100°C. Полное окружение компакта графитовой стружкой позволяет достичь лучшей воспроизводимости интенсивности люминесценции компактов, полученных как в одном, так и в разных технологических циклах термообработки по сравнению с отжигом в графитовых тиглях за счет более равномерного распределения кислородных вакансий по объему компакта. Среднее квадратичное отклонение светосуммы термолюминесценции компактов, отожженных в графитовой стружке, в 4 раза меньше, чем у компактов, отожженных в графитовых тиглях (фиг. 2). Выбор температуры свыше 1100°С объясняется тем, что при такой температуре наблюдается интенсивная диффузия атомов кислорода. За счет чрезвычайно низкого парциального давления кислорода и наличия графита в печи атомы решеточного кислорода диффундируют в окружающую атмосферу с образованием СО и созданием дефицита кислорода в анионной подрешетке диоксида циркония (кислородные вакансии).

Присутствие графита при отжиге обусловливало восстановление поверхности диоксида циркония до карбида циркония. Химическая реакция образования карбида представлена ниже в формуле (1):

ZrO2+3С → ZrC+2СО. (1)

Образование карбида циркония обуславливает потемнение компактов. Это потемнение приводит к уменьшению интенсивности люминесценции диоксида циркония (фиг. 3). Интенсивность люминесценции после термообработки в присутствии графита (кривая 2) значительно ниже интенсивности люминесценции компактов до термообработки (кривая 1).

С целью устранения карбида циркония с поверхности компактов после термообработки в вакууме ZrO2 отжигался на воздухе при температуре 900°C в муфельной печи в течение 1 часа. Соответствующая химическая реакция приведена ниже в формуле (2):

ZrC+O2 → ZrO2+C (2)

При температурах выше 700°C карбид циркония взаимодействует с кислородом с образованием ZrO2. В результате этого происходит восстановление углерода. В обработанных таким образом компактах, представляющих собой керамику, содержание карбида циркония значительно снижается. Из фиг.4 видно, что интенсивность люминесценции обработанного таким образом диоксида циркония (кривая 2) значительно увеличивается в сравнении с не обработанным ZrO2 (кривая 1).

Технический результат – увеличение количества кислородных вакансий в матрице диоксида циркония в результате термохимического окрашивания в восстановительных условиях, что приводит к увеличению интенсивности люминесценции диоксида циркония в полосе 480 нм.

Способ повышения интенсивности люминесценции оксидных диэлектриков, включающий холодное одноосное прессование нанопорошка ZrO при давлении 900–1100 кгс/см с получением компактов с последующей их термообработкой, отличающийся тем, что термообработку осуществляют в вакууме при температуре более 1100°С в присутствии графита в виде графитовой стружки, полностью окружающей компакты, с последующей повторной обработкой компактов на воздухе при температуре более 700°С в течение 1 часа.
Способ повышения интенсивности люминесценции оксидных диэлектриков
Способ повышения интенсивности люминесценции оксидных диэлектриков
Источник поступления информации: Роспатент

Показаны записи 121-130 из 207.
23.08.2019
№219.017.c2db

Способ монтажа сборной части ригеля и монтажное приспособление для его осуществления

Изобретение к области строительства, в частности к способу монтажа ригеля и приспособлению для его монтажа. Технический результат заключается в повышении технологической надежности процесса монтажа. Способ монтажа сборной части ригеля включает установку ригеля на монтажные столики, закрепление...
Тип: Изобретение
Номер охранного документа: 0002697985
Дата охранного документа: 21.08.2019
27.08.2019
№219.017.c3de

Способ прокатки в валках с волнообразным профилем бочки

Изобретение относится к обработке металлов давлением и может быть использовано при прокатке литых слябов в черновых клетях листопрокатного стана горячей прокатки. Способ включает прокатку в два прохода, в первом проходе осуществляется обжатие заготовки высотой h в валках с волнообразным...
Тип: Изобретение
Номер охранного документа: 0002698241
Дата охранного документа: 23.08.2019
02.09.2019
№219.017.c5ed

Способ извлечения хрома (vi) из растворов с получением железо-хромового осадка

Изобретение может быть использовано в гальванотехнике при утилизации хромсодержащих стоков. Способ извлечения хрома (VI) из хромсодержащих растворов гальванических производств с получением малообводненного железо-хромсодержащего осадка включает введение в хромсодержащий раствор...
Тип: Изобретение
Номер охранного документа: 0002698810
Дата охранного документа: 30.08.2019
05.09.2019
№219.017.c78b

Способ получения высокоглинозёмистого цемента

Изобретение относится к области производства высокоглиноземистого цемента, в частности к его производству при комплексном использовании продуктов комбинированного безотходного обогащения низкокачественных бокситов. Технический результат изобретения - обеспечение возможности использования...
Тип: Изобретение
Номер охранного документа: 0002699090
Дата охранного документа: 03.09.2019
07.09.2019
№219.017.c867

Способ ковки раскатных колец

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении кованых раскатных колец из труднодеформируемой стали. Осуществляют обжатие стенки кольца по периметру посредством бойка и оправки с поворотом кольца. За первый оборот кольца обжатие его...
Тип: Изобретение
Номер охранного документа: 0002699428
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.cd9d

Способ синтеза слоистых гидроксинитратов гадолиния

Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных...
Тип: Изобретение
Номер охранного документа: 0002700509
Дата охранного документа: 17.09.2019
04.10.2019
№219.017.d1ea

Конструкция антенной решетки свч с частотным сканированием

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть применено в составе бортовых радиолокационных систем с частотным сканированием. Технической задачей изобретения является существенное увеличение сектора сканирования антенны с высоким быстродействием, оптимизация...
Тип: Изобретение
Номер охранного документа: 0002701877
Дата охранного документа: 02.10.2019
13.12.2019
№219.017.ecf7

Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора

Изобретение относится к инфракрасной волоконно-оптической системе, предназначенной для контроля температуры и диагностики комплектующих узлов ветрогенератора (подшипников и обмоток электродвигателей), которые работают в температурном интервале от +300 до -20°С. Инфракрасная волоконно-оптическая...
Тип: Изобретение
Номер охранного документа: 0002708814
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed04

Способ термической обработки износостойких втулок буровых насосов нефтегазового оборудования из инструментальных хромистых сталей

Изобретение относится к области производства деталей бурового нефтегазового оборудования, в частности цилиндровых втулок бурового насоса из стали Х12МФЛ, работающих в условиях абразивного износа, коррозионного воздействия и высоких переменных давлениях. Для увеличения ресурса работы цилиндровых...
Тип: Изобретение
Номер охранного документа: 0002708722
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed4e

Анод для электролитических ванн

Изобретение относится к области гальванотехники и может быть использовано в гальванических процессах для растворения отходов медных сплавов. Предложенный анод представляет собой перфорированный контейнер из неэлектропроводного материала, устойчивого к воздействию электролита, с насыпной...
Тип: Изобретение
Номер охранного документа: 0002708725
Дата охранного документа: 11.12.2019
Показаны записи 1-10 из 10.
20.11.2013
№216.012.826d

Способ рафинирования сплавов на основе тантала

Изобретение относится к металлургии, в частности к рафинированию тантала. Способ рафинирования сплавов на основе тантала включает вакуумный электронно-лучевой переплав в горизонтальном кристаллизаторе помещенной в него шихты с выделением возгонов ее металлических примесей на конденсирующей их...
Тип: Изобретение
Номер охранного документа: 0002499065
Дата охранного документа: 20.11.2013
27.12.2013
№216.012.9256

Нагревательный блок и способ его изготовления

Изобретение относится к области электротехники, а именно к производству монолитных металлокерамических нагревательных элементов электрического, в частности резистивного, нагрева. Нагревательный блок содержит трубу из огнеупорного материала, резистивный металлокерамический нагреватель,...
Тип: Изобретение
Номер охранного документа: 0002503155
Дата охранного документа: 27.12.2013
20.08.2014
№216.012.ec0b

Способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия

Изобретение относится к измерению высоких доз поглощенного излучения. Сущность изобретения заключается в том, что способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия включает термообработку, при этом после считывания высокодозной...
Тип: Изобретение
Номер охранного документа: 0002526235
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.07c2

Способ изготовления коррозионностойкого электрода

Изобретение относится к способу изготовления коррозионностойкого электрода, включающему изготовление биметаллической основы электрода, содержащей титановый корпус с медным сердечником внутри. Далее подготовку наружной поверхности титанового корпуса и нанесение на нее активирующего покрытия....
Тип: Изобретение
Номер охранного документа: 0002533387
Дата охранного документа: 20.11.2014
27.12.2014
№216.013.13f8

Способ получения пористого проницаемого керамического изделия

Способ включает плазменное напыление частиц однородного по крупности керамического материала на основе оксида алюминия на удаляемую оправку. Напыление ведут путем формирования монослоев за счет соударения напыляемых частиц керамического материала с поверхностью оправки под углом менее 45°,...
Тип: Изобретение
Номер охранного документа: 0002536536
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1b54

Грави-магнито-сейсмический комплекс (варианты)

Группа изобретений относится к области геофизики и может быть использована при разноцелевых полевых исследованиях. Сущность: каждый из комплексов включает датчики (1-1 - 1-3) ускорения свободного падения по трем компонентам, датчики (2-1 - 2-3) магнитного поля по трем компонентам, датчики...
Тип: Изобретение
Номер охранного документа: 0002538424
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b98

Способ изготовления катодной обкладки танталового объемно-пористого конденсатора

Изобретение относится к способу изготовления катодной обкладки, представляющей собой танталовую плоскую пластину или танталовый корпус конденсатора, с оксидированным рутениевым покрытием для танталового объемно-пористого конденсатора. Способ включает в себя подготовку поверхности катодной...
Тип: Изобретение
Номер охранного документа: 0002538492
Дата охранного документа: 10.01.2015
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
19.04.2019
№219.017.3207

Способ изготовления многофункционального коррозионно-стойкого электрода

Изобретение относится к изготовлению коррозионно-стойких электродов, применяемых для выделения металлов из промышленных растворов методом электроэкстракции, при нанесении гальванических покрытий драгоценными и цветными металлами, электрохимическом производстве хлора и кислорода, при...
Тип: Изобретение
Номер охранного документа: 0002456379
Дата охранного документа: 20.07.2012
+ добавить свой РИД