×
23.02.2020
220.018.0516

Результат интеллектуальной деятельности: Способ определения параметров многоэлементных двухполюсников

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике, в частности к способам определения параметров двухполюсников. Сущность способа заключается в проведении трех этапов измерений. На перовом и втором этапах измерений на исследуемые двухполюсники подают скачок постоянного напряжения Е, величина которого известна, и после завершения переходного процесса, определяют значения напряжений U и U на основе образцовых элементов - резистора R и конденсатора C, которые поочередно подключают к измерительной цепи. Третий этап измерений проводится на основе образцового конденсатора С и измерительной цепи, выполненной на базе операционного усилителя. В цепь инвертирующего входа усилителя включают образцовый конденсатор, а в цепь отрицательной обратной связи - измеряемый двухполюсник, на который подают скачок постоянного напряжения Е и определяют мгновенные значения напряжений u(t), в фиксированные моменты времени t, и t, не превышающие длительности переходного процесса в измерительной цепи. По результатам четырех измерений напряжений определяются параметры двухполюсника. Технический результат: сокращение времени и количества измерений, проводимых в течение переходного процесса за счет выполнения части измерений после завершения переходного процесса. 5 ил., 1 табл.

Изобретение относится к контрольно-измерительной технике, в частности к способу определения параметров многоэлементных двухполюсников, и может быть использовано при измерении различных физических величин с помощью емкостных датчиков, имеющих схему замещения в виде многоэлементных двухполюсников.

Уровень техники

Известен способ определения параметров многоэлементных двухполюсных цепей, который заключается в использовании воздействия на исследуемую двухполюсную R-C или L-R цепь сигналом ступенчатой формы и применении операции интегрирования при определении параметров R и С двухполюсника R-C или параметров L и R двухполюсника L-R. В процессе интегрирования свободной составляющей переходного процесса измеряют первое значение интеграла H1 от указанного напряжения на участке [0…t1]. Далее измеряют второе значение интеграла Н2 от указанного напряжения на участке [t1…2t1], далее вычисляют значения показателя p и амплитуды А переходного процесса на выходе. Данные параметры определяют значения R, L и С (патент RU №2310872).

Недостатками данного способа являются:

1. ограниченные функциональные возможности, связанные с измерением параметров небольшого количества двухполюсников, включающих в себя не более трех элементов;

2. необходимость изменения точек подключения измеряемого двухполюсника в цепях операционного усилителя, в зависимости от конфигурации объекта исследования.

Известен способ определения параметров двухполюсников, основанный на анализе переходного процесса в измерительном преобразователе, выполненном на базе операционного усилителя. В зависимости от конфигурации схемы замещения двухполюсника его включают либо в цепь отрицательной обратной связи, либо в цепь инвертирующего входа, при этом образцовый резистор включается во входную или отрицательную цепь соответственно. При подаче на вход измерительного преобразователя входного сигнала (постоянного напряжения) в измерительной цепи возникает переходный процесс в течение которого выполняют три дискретных измерения выходного напряжения через образцовый интервал времени Δt. После чего вычисляют параметры многоэлементного двухполюсника путем решения системы из трех уравнений с соответствующим количеством неизвестных, при этом микропроцессорный контроллер получает значения постоянной составляющей, крутизны линейно изменяющейся составляющей, значения постоянной времени и амплитуды экспоненциальной составляющей переходного процесса (патент RU №2180966).

Недостатками этого способа являются:

1. необходимость проведения трех измерений в короткий промежуток времени, ограниченный длительностью переходного процесса, и как следствие увеличение длительности измерения в целом;

2. потребность в изменении точек подключения двухполюсника в операционном усилителе, обусловленная конфигурацией схемы исследуемого объекта.

Наиболее близким по технической сущности и достигаемому положительному эффекту и принятый авторами за прототип является известный способ определения параметров переходного процесса, основанный на том, что в момент времени t1 после начала переходного процесса измеряют первое мгновенное значение переходного процесса, в момент времени 2t1 измеряют второе мгновенное значение переходного процесса, в момент времени 3t1 измеряют третье мгновенное значение переходного процесса, в момент 4t1 измеряют четвертое мгновенное значение переходного процесса и вычисляют постоянную составляющую А0, крутизну линейно изменяющейся составляющей A1, установившееся значение А2 и постоянную времени возрастающей экспоненциальной составляющей переходного процесса (патент RU №2187822).

Недостатками этого способа являются:

1. необходимость проведения четырех измерений в короткий промежуток времени, ограниченный длительностью переходного процесса;

2. к моменту измерения третьего и четвертого мгновенных значений переходного процесса экспоненциальный переходный процесс считается установившемся, в результате чего возникают дополнительные погрешности измерений.

Раскрытие изобретения

Технический результат, который может быть достигнут с помощью предлагаемого способа определения параметров многоэлементных двухполюсников, сводится к сокращению времени, количества измерений, проводимых в течение переходного процесса, и повышению их точности.

Технический результат достигается с помощью способа определения параметров многоэлементных двухполюсников, содержащих в составе схемы замещения три параллельные ветви: с чисто активной проводимостью, с чисто емкостной проводимостью и ветвью, состоящей из последовательно соединенных RC-элементов, таким образом, на исследуемый двухполюсник через последовательно соединенный с ним образцовый резистор R0, сопротивление которого выбирается в пределах от 100 до 500 кОм ±1%, подают скачок постоянного напряжения Е0, величина которого составляет от 5 до 12 В, измеряют напряжение U1 на средней точке измерительной цепи относительно общего проводника после завершения переходного процесса, затем измерительную цепь разряжают, заменяют в измерительной цепи образцовый резистор R0 на образцовый конденсатор C01, емкость которого принимается в пределах от 50 до 1000 пФ ±0,25%, измеряют напряжение U2 на средней точке измерительной цепи относительно общего проводника после завершения переходного процесса, затем измерительную цепь разряжают, далее производят измерения напряжения на выходе измерительной цепи, выполненной на базе операционного усиления (ОУ), в цепи отрицательной обратной связи которого включен образцовый конденсатор С02, величина которого выбирается в диапазоне от 50 до 1000 пФ ±0,25%, а в цепи инвертирующего входа ОУ - измеряемый двухполюсник, при подаче на вход измерительной цепи скачка постоянного напряжения Е0, величина которого составляет от 5 до 12 В, u3(t1), u4(t2) в фиксированные моменты времени t1, и t2, не превышающие длительности переходного процесса в измерительной цепи, и, окончательно, по результатам четырех измерений напряжений, величинам опорных элементов, величине опорного напряжения, величинам фиксированных моментов времени, определяют параметры двухполюсника по формулам:

Δt=t2-t1,

где R1 - сквозное активное сопротивление, Ом;

C1 - емкость мгновенной поляризации, Ф;

C2 - емкость релаксационной поляризации, Ф;

R2 - активное релаксационное сопротивление, Ом.

Краткое описание чертежей

На фиг. 1 изображена схема замещения измерительной цепи первого этапа измерений.

На фиг. 2 - схема замещения измерительной цепи второго этапа измерений.

На фиг. 3-измерительная цепь для третьего этапа измерения.

На фиг. 4 - график переходного процесса третьего этапа измерения.

На фиг. 5. - схема установки для осуществления экспериментальной проверки работоспособности предлагаемого способа определения параметров многоэлементных двухполюсников.

Осуществление изобретения

Сущность способа определения параметров многоэлементных двухполюсников заключается в следующем. На первом этапе измерений (фиг. 1) к двухполюснику последовательно подключают образцовый резистор R0, параметры которого известны, и подают скачок напряжения Е0 заранее определенной величины. После завершения переходного процесса в средней точке измерительной цепи относительно общего проводника измеряют величину напряжения U1, которая описывается соотношением:

или

тогда

Из чего следует, что величина R1 может быть определена по следующему выражению:

Измерив значение напряжения U1, по известным значениям Е0 и R0 можно получить значение элемента схемы замещения двухполюсника R1 - сквозного активного сопротивления. После завершения первого этапа измерений измерительную цепь разряжают.

На втором этапе измерений (фиг. 2) образцовый резистор R0 заменяют на образцовый конденсатор C01 известной емкости и, как и в предыдущем этапе, измеряют величину напряжения U2. При этом емкости конденсаторов и напряжение на них связаны соотношением:

Откуда

Измерив напряжение U2, по известным значениям Е0 и C01 можно получить суммарное значение емкости элементов схемы замещения - конденсаторов C1 и С2. После завершения второго этапа измерений измерительную цепь разряжают.

Третий этап измерений (фиг. 3) выполняют на основе измерительной цепи, состоящей из операционного усилителя ОУ, в цепь отрицательной обратной связи которого включают образцовый конденсатор С02, величина которого известна, а в цепь инвертирующего входа операционного усилителя включают измеряемый многоэлементный двухполюсник. С помощью ключа S на вход измерительной цепи подают скачок известного значения постоянного напряжения Е0, после чего в течение длительности развивающегося переходного процесса в фиксированные моменты времени t1 и t2 измеряют выходные напряжения u3 и u4 соответственно (фиг. 4). При этом выходное напряжение на операционном усилителе ОУ будет изменяться по закону переходного процесса:

Исходя из этого выходное напряжение операционного усилителя для фиксированных моментов времени t1 и t2 можно записать в виде:

Представим указанные выражения в виде разности:

Преобразуем приведенное выше выражение с учетом того, что разность между отсчетами времени t1 и t2 может быть записана, как Δt:

Поскольку значения R1 и С12 известны из первого и второго этапа измерений, выражение (11) можно преобразовать следующим образом:

Разделив правые части уравнений (11) и (12) друг на друга, получим:

Постоянную времени т можно определить из следующего выражения:

Из уравнения (12) следует:

Окончательно, определим величину R2:

Причем очередность выполнения первого и второго этапов измерений не является обязательной, поскольку указанные этапы полностью независимы, однако, необходимо иметь ввиду, что расчет величин по третьему этапу измерений строится на величинах, которые должны быть известны из первых двух этапов измерений.

Значение образцового резистора Ro рекомендуется выбирать в пределах от 100 до 1000 кОм ±1%.

Так же для упрощения измерительной цепи, образцовые конденсаторы C01 и С02 могут быть заменены одним конденсатором соответствующей емкости, удовлетворяющей заданному диапазону значений - от 50 до 1000 пФ ±0,25%.

В качестве операционного усилителя рекомендуется применять измерительные (инструментальные) усилители, например, INA128P, производства Texas Instruments, поскольку они обладают улучшенными параметрами и пригодны для использования в измерительном и тестирующем оборудовании, где требуется большая точность и высокая стабильность схемы, как кратковременно, так и долговременно.

Заранее принятое значение постоянного напряжения Е0 может быть выбрано в диапазоне от 5 до 12 В, что регламентировано номинальным напряжением аккумуляторных батарей, используемых в портативных измерительных устройствах. Рекомендуемое значение - 9 В, выдаваемое батарей типа «Крона» 625 мА⋅ч.

Проверка работоспособности предлагаемого способа проводилась методом сравнения точности результатов измерений с известным способом измерения параметров многоэлементных двухполюсников на установке (фиг. 5), выполненной на базе AVR-микроконтроллера 1 типа ATmega 8-16PI, выпускаемого в настоящее время компанией Microchip Technology Inc. В качестве операционного усилителя установлен измерительный (инструментальный) усилитель 2 типа INA128P производства Texas Instruments. Отображение результатов измерений реализовано с помощью LCD-дисплея 3 типа WH 1602В YHI ЕМ производства компании Winstar Display Co. Ltd. В качестве коммутационного устройства цепей измерения установлен коммутатор 5.

При работе выхода РА0, т.е. при подаче скачка напряжения Е0, выходы РА1 и РА2 находятся в высокоимпендансном состоянии и влияние на измерительную цепь не оказывают. При работе выхода РА1, цепи РА0 и РА2 переводятся в высокоимпендансное состояние и влияние на процесс измерения не оказывают. Аналогично при работе выхода РА2, выходы РА0, РА1 и ADC0 переводятся в высокоимпендансное состояние.

Преимущество точности результатов измерения предлагаемого способа определения параметров многоэлементных двухполюсников для заданных характеристик исследуемого объекта 4 подтверждается результатами проведенных измерений в соответствии с приведенной таблицей.

Таким образом, по сравнению с прототипом и известными способами исследования двухполюсников, предлагаемый способ определения параметров многоэлементных двухполюсников обладает следующими преимуществами:

1. позволяет вдвое сократить время и количество измерений, проводимых в течение переходного процесса, что особенно важно для портативных измерительных устройств, имеющих малые размеры первичных преобразователей, а, следовательно, и значительно меньшее время протекания переходного процесса при равных диапазонах измеряемых емкостей и габаритах измерительных преобразователей прототипа и аналога;

2. позволяет повысить точность измерений, поскольку в течение развивающегося переходного процесса требуется только два измерения;

3. доступность практической реализации на базе современной микроконтроллерной техники, которая позволит дополнительно уменьшить время выполнения измерений за счет автоматического выполнения всех необходимых операций.


Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Способ определения параметров многоэлементных двухполюсников
Источник поступления информации: Роспатент

Показаны записи 111-120 из 125.
10.05.2023
№223.018.5397

Электронный стабилизатор постоянного напряжения

Изобретение относится к области электротехники и может быть использовано в источниках вторичного электропитания радиоэлектронной аппаратуры. Техническим результатом является повышение надежности. Электронный стабилизатор постоянного напряжения содержит балластный резистор, нагрузку,...
Тип: Изобретение
Номер охранного документа: 0002795282
Дата охранного документа: 02.05.2023
16.05.2023
№223.018.5e92

Способ определения изоантигенной нагрузки в функциональной системе "мать-плод-новорожденный"

Изобретение относится к области к ветеринарной иммунологии. Предложен способ определения изоантигенной нагрузки в функциональной системе «мать-плод-новорожденный». Способ включает забор крови из яремной вены после родов свиноматки и из пуповинной крови от новорожденного поросенка, получение...
Тип: Изобретение
Номер охранного документа: 0002750787
Дата охранного документа: 02.07.2021
16.05.2023
№223.018.6225

Линия для обогащения комбикорма белково-витаминно-минеральным концентратом

Изобретение относится к технологическим линиям для обогащения комбикорма белково-витаминно-минеральным концентратом и может быть использовано в комбикормовой промышленности. Линия имеет установленные в технологической последовательности загрузочный бункер с управляемой заслонкой, транспортную...
Тип: Изобретение
Номер охранного документа: 0002786230
Дата охранного документа: 19.12.2022
16.05.2023
№223.018.62a2

Гистологический способ исследования морфологии иксодовых клещей рода dermacentor

Изобретение относится к области биотехнологии, в частности к способу подготовки биологических материалов и изучению микроанатомии и морфологии иксодовых клещей, при помощи гистологических методов исследований, без нарушения анатомической целостности. Изобретение представляет собой способ...
Тип: Изобретение
Номер охранного документа: 0002787040
Дата охранного документа: 28.12.2022
16.05.2023
№223.018.62a4

Органоминеральный препарат для некорневой подкормки подсолнечника

Изобретение относится к сельскому хозяйству. Органоминеральный препарат для некорневой подкормки подсолнечника содержит ортофосфорную кислоту, борную кислоту, сульфат железа, сульфат марганца, сульфат цинка, сульфат магния и лигногумат. Все компоненты взяты при определенном соотношении....
Тип: Изобретение
Номер охранного документа: 0002787041
Дата охранного документа: 28.12.2022
16.05.2023
№223.018.62aa

Электромолоток

Изобретение относится к электромолоткам. Электромолоток содержит корпус и защитный кожух, закрепленный в корпусе, в котором установлена пружина и ограничитель удара по гвоздю. В корпусе расположены аккумуляторная батарея, кнопка включения, устройство управления, линейный электродвигатель....
Тип: Изобретение
Номер охранного документа: 0002787297
Дата охранного документа: 09.01.2023
20.05.2023
№223.018.67bb

Импульсный стабилизатор напряжения

Изобретение относится к области электротехники, в частности преобразовательной техники, и может быть использовано при проектировании вторичных источников электропитания различного назначения. Технический результат, который может быть достигнут с помощью предлагаемого изобретения, сводится к...
Тип: Изобретение
Номер охранного документа: 0002794751
Дата охранного документа: 24.04.2023
20.05.2023
№223.018.67dc

Способ получения озонированной фармацевтической субстанции на основе оливкового масла и устройство для его осуществления

Изобретение относится к масложировой промышленности и ветеринарии. Устройство для получения озонированного оливкового масла, характеризующееся тем, что оно состоит из портативного устройства для генерирования озона, соединённого с силиконовой трубкой для подачи озона, следующей до стеклянной...
Тип: Изобретение
Номер охранного документа: 0002794469
Дата охранного документа: 19.04.2023
20.05.2023
№223.018.67eb

Способ борьбы против септориоза в посевах озимой пшеницы

Изобретение относится к биотехнологии. Предложен способ борьбы против септориоза в посевах озимой пшеницы, включающий приготовление смеси фунгицидных препаратов крезоксим-метил, дифеноконазол, эпоксиконазол путем простого смешивания в соотношении, мас.%: крезоксим-метил - 37; дифеноконазол –...
Тип: Изобретение
Номер охранного документа: 0002794788
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.6910

Механический тренажер для проведения электролиза воды

Изобретение относится к области получения альтернативной энергии и физико-химической технологии для электролиза воды. Механический тренажер включает велотренажер, выполняющий функции механического воздействия на генератор, вырабатывающий энергию в 6-12 Вт, подключенный к маховику. На маховик...
Тип: Изобретение
Номер охранного документа: 0002794825
Дата охранного документа: 25.04.2023
Показаны записи 11-11 из 11.
27.05.2023
№223.018.71e9

Информационно-измерительная система мониторинга почвенной эмиссии со в атмосферу

Изобретение относится к области измерительной техники и может быть использовано для определения интенсивности почвенного дыхания. Сущность изобретения состоит в следующем. Информационно-измерительная система мониторинга почвенной эмиссии СО в атмосферу содержит герметичную камеру в форме...
Тип: Изобретение
Номер охранного документа: 0002796117
Дата охранного документа: 17.05.2023
+ добавить свой РИД