×
17.02.2020
220.018.02fa

Результат интеллектуальной деятельности: Способ расширения спектра сигналов

Вид РИД

Изобретение

№ охранного документа
0002714300
Дата охранного документа
14.02.2020
Аннотация: Изобретение относится к радиотехнике и может быть использовано в помехозащищенных системах связи. Технический результат - повышение повышенной разведзащищённости и устойчивости к воздействию узкополосных помех. Способ расширения спектра сигналов состоит в том, что формируют две квазиортогональные ПСП, синхронизирующую и информационную. Циклически сдвигают информационную ПСП относительно синхронизирующей последовательности на количество элементов, определяемое передаваемым символом информации, и складывают по модулю два с дополнительным битом информации. Двоичные символы последовательностей заменяют целыми противоположными числами. До и после каждого элемента преобразованной синхронизирующей ПСП вводят дополнительный элемент, вдвое меньший по значению, а в преобразованной информационной ПСП - вдвое меньший по абсолютной величине и противоположный по знаку. Формируют последовательность комплексных чисел, действительная часть которых является элементом одной из удлиненных последовательностей, а мнимая - элементом другой. Поэлементно умножают сформированную последовательность на последовательность положительных чисел, корректирующих форму спектра сигнала, дополняют в начале и конце нулевыми элементами и осуществляют её обратное дискретное преобразование Фурье. Последовательности действительных и мнимых частей полученных отсчётов преобразуют в аналоговые сигналы в ЦАП, фильтруют в ФНЧ и модулируют ими радиочастотный сигнал квадратурным методом. 1 ил.

Изобретение относится к помехозащищённым системам связи и позволяет формировать шумоподобные сигналы повышенной разведзащищённости и устойчивости к воздействию узкополосных помех.

Среди известных методов расширения спектра наибольшее распространение получили метод скачкообразной перестройки частоты (frequency hopping, FH) и метод прямой последовательности (direct sequence, DS) [1]. В отечественной литературе сигналы, формируемые методом DS, называют шумоподобными (широкополосными) фазоманипулированными сигналами (ШПС). Методы их формирования и приема достаточно хорошо исследованы. Им посвящено большое количество научных публикаций, например [2], и патентов [3]. С другой стороны, так же хорошо исследованы методы их радиотехнической разведки (РТР). Разработаны методики определения несущей частоты сигналов, тактовой частоты и структуры модулирующих последовательностей [4]. Это снижает разведзащищенность радиосистем, использующих DS-сигналы.

Задачей изобретения является создание такого способа расширения спектра, для которого методики РТР DS-сигналов непригодны. Достигаемый при использовании изобретения технический результат – повышение разведзащищенности систем связи, устойчивости к воздействию узкополосных помех и снижение уровня внеполосного излучения передающих устройств.

Наиболее близким по количеству совпадающих признаков с заявляемым способом является способ расширения спектра, описанный в [5] и принятый в качестве прототипа.

Согласно этому способу формируют сигналы несущей и тактовой частот, из сигнала тактовой частоты формируют квазиортогональные или ортогональные псевдослучайные последовательности, одна из которых предназначена для синхронизации (СП), а вторая – для передачи информации (ИП). Последовательности фазируют между собой, после чего ИП циклически сдвигают относительно СП на количество элементов, определяемое цифровыми данными, поступающими от источника информации за время, равное периоду псевдослучайных последовательностей. Циклически сдвинутую последовательность ИП складывают по модулю два с дополнительным битом информации и манипулируют по фазе сигнал несущей частоты. Формируют второй сигнал несущей частоты, сдвинутый относительно первого по фазе на 90 градусов, который манипулируют по фазе последовательностью СП и складывают с манипулированным первым сигналом несущей частоты.

Недостатком способа-прототипа является то, что формируемый сигнал принадлежит к классу шумоподобных фазоманипулированных сигналов (DS), которые, как уже говорилось ранее обладают низкой разведзащищенностью.

Для решения поставленной в изобретении задачи в способе расширения спектра сигналов, заключающемся в том, что формируют две квазиортогональные псевдослучайные последовательности (ПСП), сфазированные между собой, синхронизирующую и информационную, информационную ПСП циклически сдвигают относительно синхронизирующей ПСП на количество элементов, определяемое передаваемым информационным символом, и складывают по модулю два с дополнительным битом информации, а также формируют два радиочастотных сигнала, отличающихся только фазами, разность которых составляет 90 градусов, и, дополнительно, согласно изобретению двоичные символы последовательностей заменяют целыми противоположными числами, до и после каждого элемента преобразованной синхронизирующей ПСП вводят дополнительный элемент, равный по значению его половине, а до и после каждого элемента преобразованной информационной ПСП вводят дополнительный элемент, равный по значению его половине с противоположным знаком, формируют последовательность комплексных чисел, действительная часть которых является элементом одной из удлиненных последовательностей, а мнимая – элементом другой, поэлементно умножают сформированную последовательность на последовательность положительных чисел, корректирующих форму спектра сигнала, дополняют в начале и конце нулевыми элементами до получения общего количества элементов, равного целой степени числа два, и осуществляют её обратное дискретное преобразование Фурье, последовательности действительных и мнимых частей полученных отсчетов преобразуют в аналоговые сигналы в цифро-аналоговых преобразователях (ЦАП), фильтруют в фильтрах нижних частот (ФНЧ), умножают на радиочастотные сигналы и складывают.

Способ расширения спектра сигналов заключается в последовательном выполнении следующих операций.

1. Формируют две квазиортогональные ПСП, сфазированные между собой, синхронизирующую и информационную.

2. Информационную ПСП циклически сдвигают на количество элементов, определяемое передаваемым информационным символом, и складывают по модулю два с дополнительным битом информации.

3. Двоичные символы синхронизирующей ПСП и видоизмененной информационной ПСП заменяют целыми противоположными числами (в общем случае они могут быть разными для синхронизирующей ПСП и информационной ПСП, что позволяет перераспределить мощность сигнала между синхронизирующим сигналом и сигналом, передающим информацию).

4. До и после каждого элемента преобразованной синхронизирующей ПСП вводят дополнительный элемент, равный по значению его половине.

5. До и после каждого элемента преобразованной синхронизирующей ПСП вводят дополнительный элемент, равный по значению его половине с противоположным знаком.

6. Формируют последовательность комплексных чисел, действительная часть которых является элементом одной из удлиненных последовательностей, а мнимая – элементом другой.

7. Поэлементно умножают последовательность комплексных чисел на последовательность положительных чисел, корректирующих форму спектра сигнала (для выравнивания спектра сигналов после цифро-аналогового преобразования).

8. Дополняют полученную последовательность в начале и конце нулевыми элементами до получения общего количества элементов, равного целой степени числа два.

9. Осуществляют обратное дискретное преобразование Фурье полученной последовательности.

10. Последовательности действительных и мнимых частей полученных отсчетов преобразуют в аналоговые сигналы в ЦАП.

11. Выходные сигналы ЦАП фильтруют в ФНЧ (для подавления гармоник).

12. Формируют два радиочастотных сигнала, отличающиеся только фазами, разность которых составляет 90 градусов.

13. Выходные сигналы ФНЧ умножают на радиочастотные сигналы и складывают.

С математической точки зрения процессы формирования сигнала могут быть представлены следующим образом.

Элементы синхронизирующей ПСП обозначим как,

где – длина (количество элементов) ПСП.

Элементы информационной ПСП, циклически сдвинутой на элементов, обозначим как , а дополнительный бит информации – .

После преобразования символов элементы последовательностей принимают вид

,

, где , – целые числа.

После введения дополнительных элементов образуются последовательности длиной элементов

и ,

элементы которых имеют вид:

где .

Последовательность комплексных чисел имеет вид . После поэлементного умножения на последовательность положительных чисел, корректирующих форму спектра сигнала, образуется последовательность ,

где ,

Элементы последовательности после дополнения её нулевыми элементами можно представить в виде

при ,

при , .

Общее количество элементов равно

В результате обратного дискретного преобразования Фурье формируются отсчеты ,

Действительные и мнимые части отсчетов имеют вид

Если эти отсчеты следуют с частотой W, то на выходах ФНЧ формируются сигналы

где - длительность передачи одного информационного символа,

После умножения выходных сигналов ФНЧ на радиочастотные сигналы, частота которых равна а начальная фаза одного из них равна и сложения полученных произведений образуется сигнал

Последовательность выбирают таким образом, что

то есть В этом случае

Как видно, сформированный сигнал состоит из двух сигналов. Один из них, назовем его синхронизирующим, образован синхронизирующей ПСП и имеет вид:

А второй сигнал, информационный, образован циклически сдвинутой информационной ПСП и дополнительным битом информации. Он имеет вид

Эти два сигнала обладают следующими свойствами.

1. На интервале времени сигналы ортогональны.

Доказательство.

2. Энергия синхронизирующего сигнала на интервале времени равна

3.  Энергия информационного сигнала на интервале времени равна

Доказательство аналогично предыдущему.

4. Полная энергия сигнала на интервале равна

Доказательство следует из свойства ортогональности двух сигналов.

5. Информационные сигналы, соответствующие различным циклическим сдвигам информационной ПСП, на интервале времени квазиортогональны.

Доказательство.

Поскольку дополнительный бит информации изменяет только знак сигналов, будем считать его одинаковым для всех сигналов. Взаимная корреляция двух информационных сигналов, соответствующих циклическим сдвигам и информационной ПСП, на интервале времени определяется как

где – автокорреляционная функция информационной ПСП.

Используемые ПСП обладают хорошими автокорреляционными свойствами, то есть при поэтому

при

Это соотношение является определяющим для условия квазиортогональности сигналов.

Оптимальный прием информации включает в себя вычисление взаимной корреляции принимаемого сигнала с синхронизированными копиями всех возможных информационных сигналов без учета дополнительного бита информации и определение циклического сдвига копии с максимальным по абсолютной величине значением взаимной корреляции с принимаемым сигналом [1].

По величине определяют передаваемый символ информации, а по знаку соответствующего значения взаимной корреляции определяют значение дополнительного бита информации.

6. Ширина спектра сигналов

База сигналов

7. Средняя спектральная плотность мощности информационного сигнала в полосе рабочих частот

а спектральная плотность мощности синхронизирующего сигнала

где – дельта функция Дирака.

8. Уровень внеполосного излучения определяется информационным сигналом. Отношение спектральной плотности мощности информационного сигнала к его средней спектральной плотности мощности в полосе рабочих частот при отстройке от крайних рабочих частот на величину составляет

Отсюда следует, что, например, при базе сигнала и отстройке частоты на 1 % полосы спектральная плотность мощности уменьшается на 56 дБ.

Для сравнения, ослабление спектральной плотности мощности фазоманипулированного ШПС составляет всего 13 дБ при отстройке на 25% полосы рабочих частот, измеренной по первым нулям спектра сигнала.

9. Формируемые сигналы можно классифицировать как сигналы с расширенным спектром, так как выполняются следующие условия [1], распространённые на случай недвоичных ансамблей сигналов:

– для передачи информации используется ансамбль сигналов с большой базой;

– прием информации осуществляется путем сопоставления полученного сигнала с синхронизированными копиями сигналов ансамбля.

10. Существующие методы РТР, применимые к фазоманипулированным ШПС, для заявляемых сигналов непригодны. Более того, для них не существуют понятия тактовой частоты ПСП и несущей частоты сигнала. Можно говорить о центральной частоте спектра сигнала, но определить её простыми нелинейными преобразованиями сигнала и фильтрацией невозможно. Любой метод точной оценки параметров сигналов потребует сложного анализа спектра сигналов, причем при очень высоком отношении сигнал/шум.

Таким образом, сигналы, формируемые согласно заявляемому способу, обладают более высокой разведзащищенностью, чем DS - сигналы.

Отдельно рассмотрим назначение синхронизирующего сигнала. Он необходим для решения в приемном устройстве следующих задач:

– установление факта наличия сигнала;

– определение его временной задержки;

– слежение за изменением временной задержки;

– слежение за изменением фазы сигнала (фазовая автоподстройка частоты).

В системах связи с фазоманипулированными ШПС в качестве синхронизирующего сигнала используется сигнал несущей частоты, манипулированный по фазе периодической ПСП. Функция автокорреляции такого сигнала имеет ярко выраженный пик шириной, равной удвоенной длительности элемента ПСП, что позволяет с высокой помехозащищенностью решать перечисленные выше задачи.

Для того чтобы оценить возможности заявляемого синхронизирующего сигнала, рассмотрим его автокорреляционную функцию (АКФ)

Как видно, огибающая АКФ имеет ярко выраженный пик шириной уровень которого на 13 дБ превышает уровень соседних пиков, что позволяет обнаруживать сигнал с высокой помехозащищенностью, а также определять его задержку, отслеживать её изменение и изменение фазы .

Одним из преимуществ формируемых сигналов является повышенная устойчивость к узкополосным помехам. В приемных устройствах шумоподобных фазоманипулированных сигналов используются специальные блоки защиты от узкополосных помех, размещаемые перед устройствами поиска, синхронизации и демодуляции сигналов, и функционирующие независимо от них. Они представляют собой адаптивные фильтры, АЧХ которых подстраивается под спектр входного сигнала с целью режекции участков пораженных помехами. Обладая инерцией, такие блоки защиты не обеспечивают эффективное подавление узкополосных помех в условиях быстро изменяющейся помеховой обстановки.

В приемных устройствах сигналов, формируемых в соответствии с заявляемым способом, процесс подавления узкополосных помех и оценки передаваемого символа может быть совмещен. Это связано с тем, что информационный сигнал имеет вид

Оптимальный прием таких сигналов включает вычисление взаимной корреляции принимаемого сигнала с синхронизированными копиями всех возможных информационных сигналов без учета дополнительного бита информации.

Таким образом, вычисляется множество чисел вида

где – входной сигнал приемника.

Отсюда видно, что входной сигнал предварительно умножается на весовую функцию , после чего вычисляются амплитуды спектральных составляющих с частотами , которые складываются со знаками, определяемыми циклически сдвинутой информационной ПСП. Благодаря умножению входного сигнала на весовую функцию не происходит значительного расширения спектра принимаемых узкополосных помех и появляется возможность их подавления без существенных потерь энергии сигнала. Для этого перед окончательным вычислением множества необходимо преобразовать множество амплитуд .

Алгоритмы преобразования могут быть разными, но цель одна – обеспечение максимального отношения сигнал/шум в множестве Например, возможен такой алгоритм.

1. Определяют некоторое количество минимальных значений и их усредняют.

2. Формируют порог равный произведению усредненного значения на постоянный коэффициент.

3. Каждый элемент множества , для которого , умножают на

Совмещение процесса подавления узкополосных помех с оценкой принимаемого информационного символа повышает помехозащищенность приема информации в условиях быстро меняющейся помеховой обстановки.

Пример технической реализации устройства формирования сигнала согласно заявляемому способу приведен на фиг.1. Устройство содержит:

1 – последовательно-параллельный преобразователь;

2 – генератор информационной ПСП;

3 – генератор синхронизирующей ПСП;

4 – сумматор по модулю два;

5, 6 – преобразователи кода;

7, 8 – умножители;

9, 10 – коммутаторы;

11 – счетчик по модулю три;

12, 13 – умножители;

14 – постоянное запоминающее устройство коэффициентов коррекции спектра (ПЗУ);

15, 16 – коммутаторы;

17 – счетчик-распределитель;

18 – блок обратного дискретного преобразования Фурье (блок ОДПФ);

19, 20 – цифро-аналоговые преобразователи (ЦАП);

21 – синтезатор частот;

22, 23 – фильтры нижних частот (ФНЧ);

24 – фазовращатель;

25, 26 – перемножители;

27 – сумматор.

Устройство работает следующим образом. Передаваемая двоичная информация поступает на последовательно-параллельный преобразователь 1, в котором разделяется на двоичные символы, поступающие на входы начальной установки генератора информационной ПСП 2. Генератор информационной ПСП 2, так же как и генератор синхронизирующей ПСП 3, выполнен на основе универсального регистра с сумматором по модулю два в цепи обратной связи выхода со входом. Входами начальной установки генераторов являются входы параллельной записи регистров. Тактовый вход каждого генератора является тактовым входом регистра, а вход разрешения начальной установки – входом выбора режима параллельной записи регистра.

Синтезатор частот 21 вырабатывает гармонический сигнал частотой , а также тактовые импульсы частотой , которые поступают на тактовые входы ЦАП 19, 20, счетчика-распределителя 17, блока ОДПФ 18, ПЗУ 14 и счетчика по модулю три 11. Счетчик-распределитель 17 осуществляет счет импульсов, следующих с частотой , по модулю числа и вырабатывает импульс синхронизации в момент своего последнего го состояния, который поступает на блок ОДПФ 18. Кроме того, он вырабатывает импульс управления коммутаторами 15, 16 длительностью от го состояния счетчика до го состояния, поступающий на ходы управления коммутаторов 15, 16, ПЗУ 14, последовательно – параллельного преобразователя 1 и входы разрешения начальной установки генераторов ПСП 2, 3.

Пока этот импульс отсутствует, ПЗУ 14 находится в исходном состоянии, в генератор информационной ПСП 2 записывается код начальной установки с выходов последовательно-параллельного преобразователя 1, а в генератор синхронизирующей ПСП 3 записывается фиксированный код. После появления импульса управления коммутаторами 15, 16 генераторы ПСП 2, 3 начинают формировать ПСП с длительностью элементов, равной периоду следования выходных импульсов счетчика по модулю три 11. Тактовыми импульсами счетчика по модулю три 11 являются импульсы частоты , поэтому длительность одного элемента ПСП равна трем периодам импульсов частоты .

Синхронизирующая ПСП поступает в преобразователь кода 6, где преобразуется в последовательность чисел и минус . Информационная ПСП складывается в сумматоре по модулю два  4 с дополнительным битом информации, поступающим с одного из выходов последовательно-параллельного преобразователя 1, и в преобразователе кода 5 преобразуется в последовательность чисел и минус . Выходной сигнал преобразователя кода 5 поступает на вход коммутатора 9, а также вход умножителя 7, где умножается на число минус 0,5 и подается на второй вход коммутатора 9.

Выходной сигнал преобразователя кода 6 поступает на вход коммутатора 10, а также вход умножителя 8, где умножается на число 0,5 и подается на второй вход коммутатора 10.

Управление коммутаторами 9, 10 осуществляется сигналом со второго выхода счетчика по модулю три 11. При этом коммутаторы 9, 10 пропускают на выходы сигналы преобразователей кодов 5, 6 в средней трети интервала времени следования каждого элемента ПСП.

Выходные сигналы коммутаторов 9, 10 подаются на входы умножителей 12 и 13, где умножаются на последовательность коэффициентов коррекции спектра , считываемой из ПЗУ 14 с частотой .

Выходные сигналы умножителей 12 и 13 подаются на входы коммутаторов 15 и 16. При отсутствии импульса управления коммутаторами 15, 16 на их выходах устанавливаются коды, соответствующие нулевым числам, поэтому в это время в блок ОДПФ 18 записываются нулевые данные с частотой . После прихода импульса управления коммутаторами 15, 16 в блок ОДПФ 18 начинают записываться данные с выходов умножителей 12 и 13, объединяемые в комплексные числа.

После пропадания импульса управления коммутаторами 15, 16 в блок ОДПФ 18 продолжают записываться нулевые данные до появления импульса синхронизации с выхода счетчика-распределителя 17.

По приходу этого импульса записывается последнее нулевое данное, и блок ОДПФ 18 переключается на запись нового массива данных и обработку записанного массива. Преобразованные данные выдаются на выход блока ОДПФ 18 с той же частотой , что и записываются, но с некоторой задержкой. Последовательность действительных частей выходных данных блока ОДПФ 18 поступает на ЦАП 19, а мнимых частей - на ЦАП 20. Выходные сигналы ЦАП 19 и ЦАП 20 фильтруются в ФНЧ 22 и ФНЧ 23 соответственно. Фильтры нижних частот 22 и 23 имеют полосу пропускания не менее, чем , и частоту задерживания не более .

Выходные сигналы фильтров поступают на перемножители 25 и 26, где умножаются на гармонические сигналы частоты , разность фаз которых составляет 90 градусов. На перемножитель 26 гармонический сигнал поступает непосредственно с выхода синтезатора частот 21, а на перемножитель 25 -  с выхода фазовращателя 24, в котором выходной сигнал синтезатора частот 21 сдвигается по фазе на 90 градусов. Выходные сигналы перемножителей 25, 26 складываются в сумматоре 27, выход которого является выходом формирователя.

Последовательно-параллельный преобразователь 1 устанавливает на своих выходах очередные передаваемые данные по окончании каждого импульса управления коммутаторами 15, 16. Для синхронизации работы ПЗУ 14 и генераторов ПСП 2, 3 счетчик-распределитель 17 в своем -м состоянии вырабатывает импульс, поступающий на вход обнуления счетчика по модулю три  11.

ИСТОЧНИКИ ИНФОМАЦИИ

1. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. Изд. 2-е, испр.: Пер. с англ. – М.: Издательский дом «Вильямс», 2004. – 1104с., с.733-819.

2. Борисов В. И. и др. Помехозащищенность систем радиосвязи с расширением спектра сигналов модуляцией несущей псевдослучайной последовательностью – М.: Радио и связь, 2003. – 641с.

3. Патент RU 2265962 С1. Устройство для формирования сложного фазоманипулированного сигнала. Опубликован 10.12.2005.

4. Смирнов Ю. А. Радиотехническая разведка. – М: Воениздат, 2001. – 452с.

5. Патент RU 2279183 С2. Способ передачи информации в системе связи с широкополосными сигналами. Опубликован 27.06.2006. Бюл. №18.

Способ расширения спектра сигналов, заключающийся в том, что формируют две квазиортогональные псевдослучайные последовательности (ПСП), сфазированные между собой, синхронизирующую и информационную, циклически сдвигают информационную ПСП относительно синхронизирующей ПСП на количество элементов, определяемое передаваемым информационным символом, и складывают по модулю два с дополнительным битом информации, а также формируют два подобных радиочастотных сигнала, разность фаз которых составляет девяносто градусов, отличающийся тем, что двоичные символы последовательностей заменяют целыми противоположными числами, до и после каждого элемента преобразованной синхронизирующей ПСП вводят дополнительный элемент, равный по значению его половине, а до и после каждого элемента преобразованной информационной ПСП вводят дополнительный элемент, равный по значению его половине с противоположным знаком, формируют последовательность комплексных чисел, действительная часть которых является элементом одной из удлиненных последовательностей, а мнимая - элементом другой, поэлементно умножают сформированную последовательность на последовательность положительных чисел, корректирующих форму спектра сигнала, дополняют в начале и конце нулевыми элементами для получения общего количества элементов, равного целой степени числа два, и осуществляют её обратное дискретное преобразование Фурье, формируют последовательности действительных и мнимых частей полученных отсчетов, которые преобразуют цифро-аналоговыми преобразователями, фильтруют фильтрами нижних частот и умножают на радиочастотные сигналы, а результаты умножения складывают.
Способ расширения спектра сигналов
Источник поступления информации: Роспатент

Показаны записи 11-20 из 105.
19.01.2018
№218.016.0932

Устройство для измерения разности фаз радиосигналов

Изобретение относится к радиотехнике и может быть использовано в радиопеленгаторах, средствах радиомониторинга, системах фазовой автоподстройки частоты, системах синхронизации различного назначения и аналогичных средствах и системах, в которых осуществляются измерения разности фаз радиосигналов...
Тип: Изобретение
Номер охранного документа: 0002631668
Дата охранного документа: 26.09.2017
04.04.2018
№218.016.2f6d

Способ организации защищенной системы связи

Изобретение относится к области телекоммуникаций. Технический результат заключается в сокращении времени организации сети связи с одновременным обеспечением гарантированной защиты от несанкционированного доступа передаваемых по радиоэфиру настроечных данных. В способе осуществляют обмен...
Тип: Изобретение
Номер охранного документа: 0002644523
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.33ff

Радиоприемное устройство с цифровой коррекцией самопораженных частот

Изобретение относится к технике приема и обработки радиосигналов и может быть использовано для создания радиосредств с программируемой архитектурой с цифровой обработкой сигналов в условиях воздействия внутренних излучений, вызываемых источниками питания радиосредства, для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002645738
Дата охранного документа: 28.02.2018
09.06.2018
№218.016.5ee0

Генератор широкополосных сигналов

Изобретение относится к радиотехнике и может быть использовано в качестве формирователей сигналов в передатчиках устройств связи различного назначения. Технический результат заключается в обеспечении формирования широкополосного сигнала с синфазными частотными составляющими с равномерной АЧХ за...
Тип: Изобретение
Номер охранного документа: 0002656840
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.60c6

Способ получения твердотельных регулярно расположенных нитевидных кристаллов

Изобретение относится к технологии формирования упорядоченных структур на поверхности твердого тела и может быть использовано для получения нитевидных кристаллов из различных материалов, пригодных для термического испарения. На подложку, имеющую морфологию в виде упорядоченных пор и/или других...
Тип: Изобретение
Номер охранного документа: 0002657094
Дата охранного документа: 08.06.2018
28.06.2018
№218.016.683e

Многоканальное радиоприёмное устройство с расширенным частотным диапазоном приема

Изобретение относится к области техники приема и обработки радиосигналов и может быть использовано для создания перспективных радиосредств с программируемой архитектурой и цифровой обработкой сигналов непосредственно на радиочастоте для обеспечения эффективной по стоимости и мощности...
Тип: Изобретение
Номер охранного документа: 0002658861
Дата охранного документа: 25.06.2018
10.07.2018
№218.016.6f26

Радиоприёмное устройство с ключевым управлением амплитудой размывающего сигнала

Изобретение относится к области радиотехники и может быть использовано для создания перспективных радиосредств с программируемой архитектурой с цифровой обработкой сигналов непосредственно на радиочастоте в условиях воздействия блокирующих сигналов для обеспечения устойчивой радиосвязи в...
Тип: Изобретение
Номер охранного документа: 0002660660
Дата охранного документа: 09.07.2018
28.07.2018
№218.016.760e

Способ формирования диаграммы направленности приёмной кольцевой цифровой фазированной антенной решетки

Изобретение относится к антенной технике, а именно к антенным системам с аппаратно-формируемой диаграммой направленности и электронным управлением лучом, и может быть использовано в мобильных и стационарных средствах связи. Амплитудные А и фазовые ϕ коэффициенты формируемой диаграммы...
Тип: Изобретение
Номер охранного документа: 0002662509
Дата охранного документа: 26.07.2018
09.08.2018
№218.016.788e

Передающее устройство фазоманипулированных сигналов

Изобретение относится к области радиотехники и может использоваться как для создания приемо-передающей аппаратуры, так и для измерения электрофизических характеристик среды распространения сигнала. Технический результат - повышение КПД излучения сигнала и стойкости к внешним электромагнитным...
Тип: Изобретение
Номер охранного документа: 0002663191
Дата охранного документа: 02.08.2018
09.09.2018
№218.016.8572

Способ и устройство формирования физического спектра сигнала

Изобретение относится к области радиотехники, в частности к способам и устройствам анализа и цифровой обработки широкополосных сигналов. Технический результат заключается в уменьшении времени формирования физического спектра исследуемого сигнала и возможности удобного выполнения его анализа. В...
Тип: Изобретение
Номер охранного документа: 0002666321
Дата охранного документа: 06.09.2018
Показаны записи 11-16 из 16.
12.09.2019
№219.017.ca83

Способ расширения спектра сигналов

Изобретение относится к помехозащищённым системам связи и может быть использовано для формирования сигналов с расширенным спектром. Технический результат – повышение скорости передачи информации и разведзащищенности, понижение уровня внеполосного излучения. Способ формирования состоит в том,...
Тип: Изобретение
Номер охранного документа: 0002699816
Дата охранного документа: 11.09.2019
17.10.2019
№219.017.d6b2

Способ цифрового квадратурного формирования фазоманипулированного радиосигнала с расширенным спектром

Изобретение относится к радиотехнике и может найти применение в радиосистемах, использующих широкополосные фазоманипулированные радиосигналы. Способ цифрового квадратурного формирования фазоманипулированного радиосигнала с расширенным спектром состоит в том, что символы из поступающей...
Тип: Изобретение
Номер охранного документа: 0002702899
Дата охранного документа: 14.10.2019
18.10.2019
№219.017.d779

Способ цифрового формирования фазоманипулированного радиосигнала с расширенным спектром

Изобретение относится к радиотехнике и может найти применение в радиосистемах, в частности в блоках встроенного контроля приемников, использующих широкополосные фазоманипулированные сигналы. При осуществлении способа цифрового формирования фазоманипулированного радиосигнала с расширенным...
Тип: Изобретение
Номер охранного документа: 0002703283
Дата охранного документа: 16.10.2019
26.11.2019
№219.017.e6d1

Устройство адаптивного управления

Устройство адаптивного управления содержит коммутационные матрицы входов (КМвх) и выходов (КМвых), решающее устройство, пропорциональный блок, контроллер функциональной логики (КФЛ), интегрирующе-дифференцирующий блок (ИДБ), сигнальную шину. ИДБ содержит K интегрирующе-дифференцирующих...
Тип: Изобретение
Номер охранного документа: 0002707159
Дата охранного документа: 22.11.2019
04.03.2020
№220.018.08a5

Устройство крепления съемного оборудования в подвижных комплексах

Изобретение относится к области транспортного машиностроения. Устройство крепления съемного оборудования в подвижных комплексах содержит монтажное основание, два кронштейна в виде металлических уголков с несущими и монтажными сторонами и горизонтальную опору. Монтажное основание выполнено в...
Тип: Изобретение
Номер охранного документа: 0002715602
Дата охранного документа: 02.03.2020
11.03.2020
№220.018.0ae3

Формирователь шумоподобных фазоманипулированных сигналов

Изобретение относится к радиотехнике и может быть использовано в помехозащищенных системам связи, использующих шумоподобные фазоманипулированные сигналы, и позволяет формировать сигналы в диапазонах длин волн СДВ-УКВ цифровым способом. Технический результат – снижение требований к...
Тип: Изобретение
Номер охранного документа: 0002716217
Дата охранного документа: 10.03.2020
+ добавить свой РИД