×
09.02.2020
220.018.0156

Способ определения положения отражённого импульса

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной технике и может быть использовано в области электроэнергетики, где локационные методы определения дальности до объекта используются для определения расстояния до повреждений на линиях электропередачи. Техническим результатом изобретения является повышение точности и надежности определения положения отраженного импульса в локационных методах, а также добавление критерия ложного определения отражённого сигнала. Технический результат достигается тем, что в способе определения положения отраженного импульса, заключающемся в многократном зондировании линии электропередачи одиночными электромагнитными импульсами, приеме и регистрации отраженного линией электропередачи сигнала, составляющего рефлектограмму из точек Vi, где индекс i лежит в интервале от 0 до N, согласно изобретению задается несколько интервалов поиска внутри рефлектограммы, которые состоят из точек Vj, где индекс j лежит в интервале от B≥0 до C≤N, где B – начальный индекс интервала поиска, C – конечный индекс интервала поиска, для каждого интервала поиска задается массив точек эталонного отраженного импульса En, форма которого определяется ожидаемой формой отраженного импульса, где индекс n лежит в интервале от 0 до M, внутри каждого массива точек эталонного импульса En задается индекс z0 центра эталонного импульса, который является центром ожидаемой формы отраженного импульса, используется уменьшение корреляционной функции в стороне от истинного положения отраженного импульса, для чего с двух сторон от максимального значения корреляционной функции добавляются защитные интервалы, на которых корреляционная функция должна спадать, подсчитывается массив точек коэффициента корреляции Rq, среди всех Rq определяется максимальное значение Rqmax, при значении индекса q=qmax определяется центр отраженного импульса в данном интервале поиска Vj, внутри первого защитного интервала в массиве коэффициентов корреляции Rq с индексами от (qmax-z0) до (qmax-z0+z1) определяется максимальное значение Rq1max при значении индекса q1=q1max, внутри второго защитного интервала в массиве коэффициентов корреляции Rq с индексами от (qmax-z0+z2) до (qmax-z0+M) определяется максимальное значение Rq2max при значении индекса q2=q2max, для каждого интервала поиска Vj задаем коэффициенты W1 и W2, которые определяют, во сколько раз коэффициенты корреляции Rq1max, Rq2max в стороне от центра 4 импульса 5 должны быть меньше, чем коэффициент корреляции Rqmax в центре импульса, при выполнении условий (Rqmax/Rq1max)>W1 и (Rqmax/Rq2max)>W2 определенный центр отраженного импульса в данном интервале поиска Vj считается достоверным, в противном случае определенный центр отраженного импульса отвергается как недостоверный. 1 ил.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к измерительной технике и может быть использовано в области электроэнергетики, где локационные методы определения дальности до объекта используются для определения расстояния до повреждений на линиях электропередачи.

Известен «Способ определения дальности и скорости удаленного объекта» (патент РФ RU 2562148 C1, от 09.06.2014), принятый за прототип, который включает в себя многократное зондирование объекта импульсами лазерного излучения, прием и регистрацию отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты, образующим ячейки дальности, и статистическую обработку зарегистрированных данных. При этом производят серию зондирований способом некогерентного накопления, если принятый сигнал меньше порогового значения, которое определяется заданной вероятностью F ложного срабатывания. И если принятый сигал больше порогового значения, то зондирование производят в моноимпульсном режиме измерения дальности и скорости. По окончании процесса накопления, то есть по достижении накопленной суммы необходимого значения хотя бы в одной ячейке дальности, анализируют массив накопленных данных, определяя положение накопленного массива относительно временной шкалы по установленному критерию, например по максимуму корреляционной функции.

Недостатком данного метода определения дальности является невысокая точность определения дальности ввиду того, что точность измерений зависит от размера ячейки дальности, кроме того, отсутствует критерий ложного определения положения отраженного сигнала.

Задачей заявляемого изобретения является разработка способа определения положения отраженного импульса, в котором устранены недостатки прототипа.

Техническим результатом изобретения является повышение точности и надежности определения положения отраженного импульса в локационных методах, а также добавление критерия ложного определения отражённого сигнала.

Технический результат достигается тем, что в способе определения положения отраженного импульса, который заключается в многократном зондировании линии электропередачи одиночными электромагнитными импульсами, приеме и регистрации отраженного линией электропередачи сигнала, составляющего рефлектограмму из точек Vi, где индекс i лежит в интервале от 0 до N, согласно изобретению задается несколько интервалов поиска внутри рефлектограммы, которые состоят из точек Vj, где индекс j лежит в интервале от B≥0, где B представляет собой начальный индекс интервала поиска, до C≤N, где C представляет собой конечный индекс интервала поиска, для каждого интервала поиска задается массив точек эталонного отраженного импульса En, форма которого определяется ожидаемой формой отраженного импульса, где индекс n лежит в интервале от 0 до M, внутри каждого массива точек эталонного импульса En задается индекс z0 центра эталонного импульса, который является центром ожидаемой формы отраженного импульса, для повышения надежности определения отражённого импульса предлагается использовать такое свойство, как уменьшение корреляционной функции в стороне от истинного положения отраженного импульса, для этого с двух сторон от максимального значения корреляционной функции добавляются защитные интервалы, на которых корреляционная функция должна спадать, таким образом задается первый защитный интервал с индексами точек от 0 до z1, где z1< z0, задается второй защитный интервал с индексами точек от z2 до M, где z2> z0, внутри каждого интервала поиска Vj подсчитывается массив точек коэффициента корреляции Rq,

,

где Rq – массив точек коэффициента корреляции;

индекс q изменяется от B до С;

индекс n лежит в интервале от 0 до M;

z0 – центр эталонного отраженного импульса En;

Vn+q-z0 – массив точек рефлектограммы Vi;

VS – среднее арифметическое массива Vn+q-z0;

En – массив точек эталонного отраженного импульса;

ES – среднее арифметическое массива En,

среди всех Rq определяется максимальное значение Rqmax, при значении индекса q=qmax определяется центр отраженного импульса в данном интервале поиска Vj, внутри первого защитного интервала в массиве коэффициентов корреляции Rq с индексами от (qmax-z0) до (qmax-z0+z1) определяется максимальное значение Rq1max при значении индекса q1=q1max, внутри второго защитного интервала в массиве коэффициентов корреляции Rq с индексами от (qmax-z0+z2) до (qmax-z0+M) определяется максимальное значение Rq2max при значении индекса q2=q2max, для каждого интервала поиска Vj задаем коэффициенты W1 и W2, которые определяют, во сколько раз коэффициенты корреляции Rq1max, Rq2max в стороне от центра 4 импульса 5 должны быть меньше, чем коэффициент корреляции Rqmax в центре импульса, при выполнении условий (Rqmax / Rq1max)>W1 и (Rqmax / Rq2max)>W2, определенный центр отраженного импульса в данном интервале поиска Vj считается достоверным, в противном случае определенный центр отраженного импульса отвергается как недостоверный.

Предлагаемый способ определения положения отраженного импульса иллюстрируется на фиг. 1, где ось А – амплитуда импульсов, ось t – время от начала зондирования, от момента посылки зондирующего импульса, цифрами обозначены:

1 – отраженный линией электропередачи сигнал, составляющий рефлектограмму из точек Vi;

2 – массив точек эталонного отраженног импульса En;

3 – график изменения массива точек коэффициента корреляции Rq;

4 – центр отраженного импульса 5 на рефлектограмме 1;

5 – отраженный импульс;

6 – края графика массива точек коэффициента корреляции Rq, на которых коэффициент корреляции Rq уменьшается, по сравнению с максимальным значением при индексе qmax;

7, 8 – положения массива точек эталонного отраженного импульса En немного в стороне от центра 4 отраженного импульса 5 на рефлектограмме 1, при которых массив коэффициентов корреляции Rq имеет примерно половинное значение, по сравнению с максимальным значением при индексе qmax;

9 – положение массива точек эталонного отраженного импульса En далеко в стороне от центра 4 отраженного импульса 5 на рефлектограмме 1, при котором массив коэффициентов корреляции Rq имеет примерно нулевое значение.

Способ определения положения отраженного импульса работает следующим образом.

Производится многократное зондирование линии электропередачи одиночными электромагнитными импульсами, прием и регистрация отраженного линией электропередачи сигнала, составляющего рефлектограмму из (N+1) точек Vi (1 на фиг.1), где индекс i лежит в интервале от 0 до N, где N – это длина рефлектограммы, точки Vi являются измерениями АЦП, отраженного линией электропередачи сигнала.

На данной рефлектограмме, состоящей из точек Vi, условия приема отраженного импульса могут изменяться, поэтому задается несколько интервалов поиска внутри рефлектограммы, которые состоят из точек Vj, где индекс j лежит в интервале от B≥0, где B представляет собой начальный индекс интервала поиска, до C≤N, где C представляет собой конечный индекс интервала поиска. Заданный индексами B и C интервал поиска характеризуется тем, что условия приема отраженного импульса внутри интервала поиска остаются неизменными.

Для каждого интервала поиска задается массив (M+1) точек, составляющих массив точек эталонного отраженного импульса En (2 на фиг.1), где индекс n лежит в интервале от 0 до M, число M связано с длительностью отраженного (и зондирующего) импульса. Эталонный отраженный импульс En задает форму, которую приблизительно должен иметь отраженный импульс 5 на рефлектограмме Vi, который может появится в любом месте внутри интервала поиска Vj, и может отличаться от эталонного отраженного импульса En амплитудой. Эталонный отраженный импульс 2 на фиг.1 задан прямоугольным, как самая простая форма импульса, удобная для объяснения принципа работы предлагаемого способа определения положения отраженного импульса.

Внутри каждого интервала поиска Vj подсчитывается массив точек коэффициента корреляции Rq,

,

где Rq – массив точек коэффициента корреляции;

индекс q изменяется от B до С;

индекс n лежит в интервале от 0 до M;

z0 – центр массива точек эталонного отраженного импульса En;

Vn+q-z0 – массив точек рефлектограммы Vi;

VS – среднее арифметическое массива Vn+q-z0;

En – массив точек эталонного отраженного импульса;

ES – среднее арифметическое массива En,

средние значения VS и ES используются для того, чтобы убрать влияние постоянных составляющих массивов точек Vn+q-z0 и En на массив точек коэффициента корреляции Rq.

Для прямоугольного эталонного отраженного импульса En (2 на фиг.1) и аналогичного по форме отраженного импульса 5 на рефлектограмме Vi (1 на фиг.1), изменение массива точек коэффициента корреляции Rq от времени представляет собой треугольную форму 3. Максимум коэффициента корреляции Rqmax, при значении индекса q=qmax, наблюдается при совпадении 4 центра отраженного импульса 5 на интервале поиска Vj и положения эталонного отраженного импульса En (2 на фиг.1), таким образом индекс qmax является центром обнаруженного отраженного импульса на интервале поиска Vj. При этом точность определения центром отраженного импульса максимальна, и определяется временным отрезком между двумя измерениями АЦП, или интервалом времени между двумя измеренными точками массива Vj.

Если положения 7, 8 эталонного отраженного импульса En немного в стороне от центра 4 отраженного импульса 5 на рефлектограмме 1, при котором только половина длительности эталонного отраженного импульса En 7, 8 пересекается с импульсом 5 на рефлектограмме 1, тогда коэффициент корреляции Rq будет иметь примерно половинное значение, по сравнению с максимальным значением при индексе qmax.

Если положение эталонного отраженного импульса 2 далеко в стороне 9 от импульса 5 на рефлектограмме 1, эталонный отраженный импульс 2 совсем не пересекается с импульсом 5 на рефлектограмме 1, тогда значение коэффициента корреляции Rq будет вблизи нуля 6.

Таким образом, график изменения коэффициента корреляции Rq 3 характеризуется двумя факторами: 1) имеется максимум коэффициента корреляции Rqmax, при значении индекса q=qmax, который наблюдается при совпадении при совпадении 4 центра отраженного импульса 5 на интервале поиска Vj и положения эталонного отраженного импульса En (2 на фиг.1), выделенный внутри рефлектограммы Vi (1 на фиг.1); 2) график 3 изменения коэффициента корреляции Rq спадает при отклонении индекса от qmax, коэффициент корреляции Rq уменьшается, по сравнению с максимальным значением Rqmax.

Первый фактор был учтен при нахождении максимума коэффициента корреляции Rqmax, при значении индекса q=qmax.

Второй фактор поможет для достоверного обнаружения положения импульса 5 на рефлектограмме Vi (1 на фиг.1): внутри каждого эталонного импульса 2 En задается первый защитный интервал с индексами точек от 0 до z1, где z1< z0, задается второй защитный интервал с индексами точек от z2 до M, где z2> z0. Внутри первого защитного интервала в массиве коэффициентов корреляции Rq с индексами от (qmax-z0) до (qmax-z0+z1) определяется максимальное значение Rq1max при значении индекса q1=q1max, внутри второго защитного интервала в массиве коэффициентов корреляции Rq с индексами от (qmax-z0+z2) до (qmax-z0+M) определяется максимальное значение Rq2max при значении индекса q2=q2max.

Для реального отраженного импульса 5 график 3 изменения коэффициента корреляции Rq должен спадать при отклонении индекса от qmax, то есть значения Rq1max и Rq2max, найденные в стороне от точки максимального значения коэффициента корреляции Rqmax, должны быть меньше данного максимального значения Rqmax.

Для каждого интервала поиска Vj зададим коэффициенты W1 и W2, которые определяют, во сколько раз коэффициенты корреляции Rq1max, Rq2max в стороне от центра 4 импульса 5 должны быть меньше, чем коэффициент корреляции Rqmax в центре импульса. При выполнении условий (Rqmax / Rq1max)>W1 и (Rqmax / Rq2max)>W2, где W1 и W2 заданные для данного интервала поиска Vj коэффициенты, определенный центр отраженного импульса при индексе qmax в данном интервале поиска Vj считается достоверным, в противном случае определенный центр отраженного импульса отвергается как недостоверный. Коэффициенты W1 и W2 определяют, во сколько раз максимальный коэффициент корреляции Rqmax должен быть больше коэффициентов корреляции в защитных интервалах Rq1max и Rq2max, найденные в стороне от точки максимального значения коэффициента корреляции Rqmax.

Таким образом, способ определения положения отраженного импульса позволяет повысить точность и надежность определения положения отраженного импульса в локационных методах, с добавлением критерия ложного определения отражённого сигнала.


Способ определения положения отражённого импульса
Способ определения положения отражённого импульса
Источник поступления информации: Роспатент

Показаны записи 1-10 из 11.
27.03.2020
№220.018.109b

Способ определения места однофазного замыкания на землю в сетях 6-10 кв с изолированной нейтралью

Изобретение относится к электротехнике, а именно к определению места однофазного замыкания на землю (ОЗЗ) в сетях 6-10 кВ с изолированной нейтралью. Технический результат: повышение надежности и точности определения места повреждения в воздушной ЛЭП, уменьшение стоимости оборудования за счет...
Тип: Изобретение
Номер охранного документа: 0002717697
Дата охранного документа: 25.03.2020
21.06.2020
№220.018.2900

Устройство для опреснения воды

Изобретение относится к области очистки морской воды и грунтовых вод путем дистилляции для обеспечения питьевой водой сельского, коммунального хозяйства и на морских судах, в которых наблюдается дефицит пресной питьевой воды. Устройство для опреснения воды содержит емкости для исходной воды,...
Тип: Изобретение
Номер охранного документа: 0002723858
Дата охранного документа: 17.06.2020
29.06.2020
№220.018.2cc9

Способ автоматизированного управления эксплуатацией беспилотного транспортного средства в общем транспортном пространстве для обеспечения безопасного трафика движения

Изобретение относится к способу автоматизированного управления эксплуатацией беспилотного транспортного средства в общем транспортном пространстве. Для осуществления способа используют бортовую автоматическую систему управления (АСУ), спутниковую навигационную систему, высокоточные...
Тип: Изобретение
Номер охранного документа: 0002724911
Дата охранного документа: 26.06.2020
12.04.2023
№223.018.47e6

Способ защиты трубопроводов от аварийных ситуаций, вызванных карстовыми провалами

Изобретение относится к способу защиты трубопроводов от аварийных ситуаций, вызванных карстовыми провалами. Технический результат состоит в повышении эффективности защиты трубопроводов. Способ защиты трубопроводов включает вскрытие трубопровода и установке по обе стороны от него бетонных свай,...
Тип: Изобретение
Номер охранного документа: 0002747045
Дата охранного документа: 23.04.2021
20.05.2023
№223.018.6527

Способ определения опасных зон в изоляции трёхжильных трёхфазных кабельных линий электропередач

Изобретение относится к дефектоскопии изоляции трёхжильных трёхфазных кабельных линий номинальным напряжением 6 кВ и выше, в частности методом частичных разрядов (ЧР). Технический результат: повышение надежности и информативности о состоянии изоляции высоковольтных трёхжильных трёхфазных...
Тип: Изобретение
Номер охранного документа: 0002744464
Дата охранного документа: 09.03.2021
20.05.2023
№223.018.6550

Градирня низкого давления для дистилляции воды

Изобретение относится к области теплоэнергетики и может применяться для охлаждения конденсатора теплового насоса, двигателей генераторов и конденсаторов в электростанциях, а также для получения дистиллированной воды для питья или для технологического использования. В градирне низкого давления...
Тип: Изобретение
Номер охранного документа: 0002743154
Дата охранного документа: 15.02.2021
27.05.2023
№223.018.7121

Солнечная станция для дистилляции воды

Изобретение относится к области очистки морской воды и грунтовых вод путем дистилляции для обеспечения питьевой водой сельского, коммунального хозяйства и может применяться для получения дистиллированной воды для технологического использования. Солнечная станция для дистилляции воды содержит...
Тип: Изобретение
Номер охранного документа: 0002767322
Дата охранного документа: 17.03.2022
30.05.2023
№223.018.72d3

Объединенная система пуска и сглаживания графиков нагрузок автономных газопоршневых и дизель-генераторных установок с использованием аккумуляторных батарей большой мощности

Изобретение относится к области электротехники. Технический результат заключается в повышении эффективности пуска первичных электродвигателей и сглаживания графиков нагрузок при эксплуатации автономных газопоршневых и дизель-генераторных установок с использованием аккумуляторных батарей большой...
Тип: Изобретение
Номер охранного документа: 0002736272
Дата охранного документа: 13.11.2020
05.06.2023
№223.018.76ee

Объединенная система пуска и сглаживания графиков нагрузок группы автономных газопоршневых и дизель-генераторных установок с использованием аккумуляторных батарей большой мощности

Изобретение относится к области силовых установок и может быть использовано в целях повышения эффективности группы силовых установок. Техническим результатом является повышение эффективности пуска группы первичных электродвигателей и сглаживания графиков нагрузок при эксплуатации автономных...
Тип: Изобретение
Номер охранного документа: 0002738159
Дата охранного документа: 10.12.2020
06.06.2023
№223.018.78b6

Способ ведения водно-химического режима и регенерации баромембранной водоподготовительной установки с применением унифицированной коррекционно-отмывочной композиции

Предложен способ ведения водно-химического режима и регенерации баромембранной водоподготовительной установки с применением унифицированной коррекционно-отмывочной композиции, включающей блоки ультрафильтрации, дожимные и/или основные блоки обратного осмоса, с применением унифицированной...
Тип: Изобретение
Номер охранного документа: 0002753350
Дата охранного документа: 13.08.2021
Показаны записи 1-10 из 34.
27.09.2013
№216.012.70bc

Способ контроля провиса провода линии электропередачи

Изобретение относится к электротехнике. Способ включает размещение на проводе подвесного датчика температуры, а под проводом - контрольного устройства. При помощи первого и второго ультразвуковых приемопередатчиков осуществляют посредством контрольного устройства совместно с подвесным датчиком...
Тип: Изобретение
Номер охранного документа: 0002494511
Дата охранного документа: 27.09.2013
10.11.2013
№216.012.7f92

Способ определения дальности до однофазного замыкания на землю в линиях электропередачи

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной...
Тип: Изобретение
Номер охранного документа: 0002498331
Дата охранного документа: 10.11.2013
27.11.2013
№216.012.8610

Способ определения дальности до однофазного замыкания на землю в линиях электропередачи

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной...
Тип: Изобретение
Номер охранного документа: 0002499998
Дата охранного документа: 27.11.2013
10.01.2014
№216.012.957f

Способ определения места повреждения на линиях электропередачи по спектру переходного процесса

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места повреждения в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью....
Тип: Изобретение
Номер охранного документа: 0002503965
Дата охранного документа: 10.01.2014
10.04.2014
№216.012.b0d0

Цифроаналоговый преобразователь

Изобретение относится к области электроники, а именно к цифроаналоговым преобразователям. Техническим результатом является упрощение конструкции и повышение быстродействия цифроаналогового преобразователя при сохранении точности преобразования за счет формирования двухполярного выходного...
Тип: Изобретение
Номер охранного документа: 0002510979
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0dc

Способ определения допустимых величины и длительности перегрузки силового маслонаполненного трансформаторного оборудования

Изобретение относится к области электроэнергетики, в частности к автоматизированным системам управления и диагностики трансформаторного оборудования электрических подстанций. Технический результат: повышение эксплуатационной надежности трансформаторного оборудования за счет более достоверного...
Тип: Изобретение
Номер охранного документа: 0002515121
Дата охранного документа: 10.05.2014
10.07.2014
№216.012.dc42

Трансформатор источника питания подвесных измерительных датчиков

Изобретение относится к устройству источников питания подвесных измерительных датчиков, устанавливаемых на высоковольтные линии электропередачи. Технический результат состоит в расширении диапазона нагрузок. Трансформатор источника питания переводит его в режим насыщения, при котором выходное...
Тип: Изобретение
Номер охранного документа: 0002522164
Дата охранного документа: 10.07.2014
27.10.2014
№216.013.01ea

Электрический чайник

Изобретение относится к кухонной посуде для кипячения воды, а именно к чайникам. Электрический чайник содержит корпус, нагревательный элемент, соединенный с блоком управления. В него введен сосуд с двойными стенками и вакуумом между ними, а также отражатель, при этом указанный сосуд является...
Тип: Изобретение
Номер охранного документа: 0002531888
Дата охранного документа: 27.10.2014
27.11.2014
№216.013.0be8

Метеодатчик системы контроля температуры

Изобретение относится к устройствам для измерения метеорологических параметров в системах контроля температуры нагреваемого оборудования. Сущность: устройство содержит шарообразный датчик (1), внутри которого расположены датчик (2) температуры и нагревательный элемент (3) с постоянной мощностью...
Тип: Изобретение
Номер охранного документа: 0002534456
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d08

Способ косвенного контроля температуры провода воздушных линий электропередачи

Использование: в области электроэнергетики. Технический результат - обеспечение точного контроля без необходимости непосредственных измерений и снижение числа контролируемых факторов с обеспечением точности контроля. Согласно способу измеряют токи, протекающие по проводу, и с использованием...
Тип: Изобретение
Номер охранного документа: 0002534753
Дата охранного документа: 10.12.2014
+ добавить свой РИД