×
08.02.2020
220.018.0039

Результат интеллектуальной деятельности: СПОСОБ РЕГИСТРАЦИИ МУЛЬТИСПЕКТРАЛЬНОГО ЦИФРОВОГО ГОЛОГРАФИЧЕСКОГО ИЗОБРАЖЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологиям цифровой голографии, а именно количественной фазовой микроскопии, и предназначено для измерения спектральной зависимости пространственного распределения фазовой задержки, вносимой оптически прозрачным объектом в световую волну. Технический результат заключается в возможности одновременной регистрации множества цифровых голографических изображений в узких спектральных интервалах в пределах широкого диапазона без спектральной перестройки. Способ регистрации мультиспектрального цифрового голографического изображения заключается в: формировании коллимированного светового пучка широкополосного излучения, его спектральной фильтрации акустооптическим фильтром, работающем в полихроматическом режиме, с одновременной линейной поляризацией, пропускании его через двухлучевой интерферометр, в одном из плеч которого располагается анализируемый объект, сведении волновых фронтов из плеч интерферометра с образованием интерференционной картины, регистрации интерференционной картины матричным приемником излучения, с установленным мозаичным растром. 3 з.п. ф-лы, 1 ил.

Изобретение относится к технологиям цифровой голографии, а именно количественной фазовой микроскопии, и предназначено для измерения спектральной зависимости пространственного распределения фазовой задержки, вносимой оптически прозрачным объектом в световую волну.

Известны устройства, в которых регистрируется интерференционное изображение, образованное в результате интерференции прошедшей через исследуемый образец объектной волны с опорной световой волной, и результатом обработки зарегистрированной интерференционной картины является двумерное распределение фазовой задержки, вносимой образцом в световую волну [US patent 7127109 B1 24.10.2006; М. Mir, В. Bhaduri, R. Wang, R. Zhu, G. Popescu, Progress in Optics, 57, 133-217 (2012)]. Поскольку фазовая задержка в каждой точке исследуемого объекта пропорциональна оптической длине пути прошедшего через него света, то, используя полученное распределение фазовой задержки, при известной толщине образца возможно вычисление пространственного распределения интегрального показателя преломления, а при известном распределении показателя преломления - распределение толщины [С. Nelson, М. Samarendra, Opt. Lett. 38(6), 1007-1009 (2013)].

Если априорная информация о пространственном распределении толщины отсутствует, то одним из способов получения количественной информации о показателе преломления является регистрация и обработка голографических изображений на нескольких длинах волн. Кроме того, в случае, если показатель преломления исследуемого объекта и, как следствие, вносимая им фазовая задержка имеют характерную спектральную зависимость, которая может быть использована в задачах идентификации объекта и анализа протекающих в нем процессов, целесообразно проводить измерения на многих длинах волн, в том числе на конкретных, определяемых составом объекта. К другим методам, использующим фазовую информацию более чем на одной длине волны, относятся методы восстановления цветных амплитудных изображений [I. Yamaguchi, Т. Matsumura, J. Koto, Opt. Lett. 27, 1108 (2002)] и методы увеличения осевого разрешения, в т.ч. с целью расширения динамического диапазона измерения параметров быстропротекающих процессов [Y. Fu, G. Pedrini, В.М. Hennelly, R.М. Groves, and W. Osten, Opt Lasers Eng 47, 552 (2009)]

Существует целый ряд подходов к решению задачи регистрации мультиспектральных цифровых голографических изображений:

1) метод на основе ксеноновой лампы, сменных светофильтров и последовательной регистрации спектральных интерферограмм на монохромную фотоприемную матрицу [Y. Park, Т. Yamauchi, W. Choi, R. Dasari, and M.S. Feld, Opt. Lett. 34, 3668 (2009)];

2) метод на основе лазера с оптическим параметрическим усилителем и удвоением частоты и последовательной регистрации двух спектральных интерферограмм на монохромную фотоприемную матрицу [D. Fu, W. Choi, Y.J. Sung, Z. Yaqoob, R.R. Dasari, and M. Feld, Biomed. Opt. Express 1, 347 (2010)];

3) метод, использующий набор из шести переключаемых источников излучения (светодиодов) и последовательную регистрацию спектральных интерферограмм на монохромную фотоприемную матрицу [V. Dubey, G. Singh, V. Singh, A. Ahmad, and D.S. Mehta, Appl. Opt. 55, 2521-2525 (2016)],

4) метод на основе генератора суперконтинуума с изменением длины пути в одном из плечей двухлучевого интерферометра и последовательной регистрации интерферограмм на монохромную фотоприемную матрицу [S. Kalenkov, G. Kalenkov, A. Shtanko. // JOSA В, 4(5), В49-В55 (2017)],

5) метод, использующий узкополосную спектральную фильтрацию широкополосного излучения с последовательной перестройкой по спектру и регистрацией спектральных интерферограмм на монохромную фотоприемную матрицу [A. Machikhin, О. Polschikova, A. Ramazanova, V. Pozhar, J. Opt., 19, 075301 (2017)],

6) метод, использующий пространственную фильтрацию спектрального разложения излучения галогенной лампы в первом порядке дифракционной решетки и последовательную регистрацию спектральных интерферограмм на монохромную фотоприемную матрицу [патент US 8837045; Н. Pham, В. Bhaduri, Н. Ding, and G. Popescu, Opt. Lett. 37, 3438 (2012)],

7) метод на основе трех лазерных источников и одновременной регистрации трех спектральных интерферограмм на одну [C.J. Mann, P.R. Bingham, V.C. Paquit, Kenneth W. Tobin, Opt. Exp., 16(13), 9753-9764 (2008)] или три [1. J.M. Desse, P. Picart, and P. Tankam, Meas. Sci. Technol. 22, 064005 (2011)] монохромные фотоприемные матрицы,

8) методы на основе трех лазерных источников и одновременной регистрации трех спектральных интерферограмм на цветную (RGB) фотоприемную матрицу с фильтром Байера [Н. Toge, Н. Fujiwara, K. Sato, Proc. SPIE, 6912, 69120 U, (2008)] или на цветную (RGB) трехслойную фотодиодную матрицу [J. - М. Desse, P. Picart, and P. Тапкат, Opt. Express 16, 5471 (2008)].

Ни один из методов не является универсальным: каждый обладает недостатками, ограничивающими его область применения. Методы 1-3, 7 и 8 ограничены небольшим числом рабочих длин волн (от 2 до 7). Методы 1, 3 и 4 требуют механического перемещения компонентов, что накладывает ограничения на точность измерений, а в методах 1-6 ввиду необходимости перемещения компонентов, переключения источников или спектральной перестройки производят ряд измерений, разнесенных во времени, что ограничивает быстродействие методов и не позволяет работать с быстро меняющимися объектами. Существующие методы одновременной регистрации спектральных интерферограмм ограничены 3-мя каналами за счет регистрации на трехцветные (RGB) камеры (методы 8) или ограничений, накладываемых на пространственное или частотное разделение интерферирующих пучков фотоприемных матрицах (методы 7).

Существует еще несколько факторов, влияющих на чувствительность систем, их избирательность и другие важные характеристики.

Поскольку фоновая засветка, вызванная паразитным рассеянием на элементах системы, пропорциональна спектральной ширине канала, то широкие спектральные каналы дают намного более низкий контраст регистрируемой интерференционной картины по сравнению с узкополосными каналами, что ведет к росту погрешности восстановления фазы. Важную роль в повышении избирательности систем играет возможность оптимизировать положение каналов в спектре. Поэтому интерес представляет создание систем, обеспечивающих одновременную регистрацию множества узкополосных спектральных голографических изображений и не требующих механической или электронной спектральной перестройки.

В качестве прототипа предлагаемого метода был выбран метод 5, основанный на узкополосной фильтрации излучения при помощи акустооптического (АО) перестраиваемого фильтра (монохроматора). В нем используется широкополосный источник света, из спектра излучения которого с помощью АО монохроматора выделяется одна спектральная компонента излучения, направляемая на вход интерферометра Маха-Цендера. Последовательная перестройка фильтра позволяет зарегистрировать цифровые топографические изображения во всех требуемых спектральных интервалах. По этим изображениям численными методами восстанавливается распределение фазы в каждом спектральном интервале. Недостатком этого метода является необходимость спектральной перестройки и, как следствие, неодновременная регистрация спектральных голографических изображений, что ограничивает применение этого метода для анализа быстропротекающих процессов и движущихся объектов.

Задачей изобретения является устранение недостатков известных решений.

Техническим результатом изобретения является возможность одновременной регистрации множества цифровых голографических изображений в узких спектральных интервалах в пределах широкого диапазона без спектральной перестройки.

Для решения указанной технической задачи с достижением указанного технического результата применяется способ регистрации фазовых изображений микрообъектов в произвольных узких спектральных интервалах, состоящий в формировании коллимированного светового пучка широкополосного излучения I(λ), выделении из него совокупности N длин волн с использованием АО фильтра-полихроматора, направлении отфильтрованного излучения на вход двухлучевого интерферометра, в одном из каналов которого располагается исследуемый объект, сведении волновых фронтов из объектного и опорного плеч интерферометра, регистрации интерференции этих фронтов матричным приемником излучения, на котором установлен мозаичный растр, состоящий из N спектральных светофильтров, каждый из которых пропускает одну из выделенных длин волн.

При этом ширина спектральных каналов, выделяемых АО полихроматором, может быть существенно уже полос пропускания спектральных светофильтров мозаичного растра. Это обеспечивает регистрацию мультиспектрального голографического изображения, содержащего N интерферограмм, сформированных узкополосным излучением с различными длинами волн. Путем цифровой обработки каждой из них вычисляют фазовую задержку, и соответственно пространственное распределение этой величины и ее спектральную зависимость в каждой точке объекта. В частности, это позволяет в однородном по толщине, но неоднородном по составу исследуемом образце определить величину и спектральную зависимость показателя преломления в каждой точке.

Изобретение поясняется чертежом.

На Фиг. 1 показана структурная схема, поясняющая описанный метод, где 1 - широкополосный источник света, 2 - коллимирующая оптическая система, 3 - АО фильтр-полихроматор, 4 - двухлучевой интерферометр, 5 - исследуемый объект, 6 - матричный приемник излучения с мозаичным растром. Спектры показывают спектральный состав излучения до и после полихроматора.

Осуществление изобретения

Изобретение может быть реализовано на основе устройства, состоящего из оптически связанных и расположенных последовательно элементов: широкополосного источника света 1; коллимирующей оптической системы 2, обеспечивающей светоэнергетическое сопряжение источника света 1 и АО фильтра-полихроматора 3, двухлучевого интерферометра 4, в одном из плеч которого установлен исследуемый объект 5; матричного приемника излучения 6 с мозаичным растром.

Отличием изобретения является то, что в качестве матричного приемника излучения 6 используется монохромный матричный приемник излучения с установленным на нем мозаичным растром, состоящим из N спектральных светофильтров, а АО фильтр 3 работает не в одночастотном, а в многочастотном (полихроматическом) режиме, выделяя одновременно N спектральных каналов, максимумы пропускания которых попадают в полосы пропускания спектральных светофильтров мозаичного растра. Это позволяет исключить необходимость последовательной спектральной перестройки АО фильтра. В результате устройство на основе предлагаемого метода отличается высокой скоростью регистрации, определяемой только временем экспонирования приемника излучения, компактностью, высоким спектральным разрешением, отсутствием подвижных элементов. В то же время пространственное разрешение устройства определяется числом элементов используемого мозаичного растра.

В предпочтительном варианте осуществления реализуется вариант схемы, заключающийся в использовании в качестве интерферометра 4 - интерферометра Маха-Цендера, а в качестве фильтра-полихроматора - АО перестраиваемого фильтра 3, работающего в геометрии анизотропной дифракции в режиме многочастотной генерации, выделяющего из поступающего на его вход излучения набор заданных выбранным растром узких спектральных интервалов и одно направление поляризации. Количество элементов растра и их спектры пропускания должны выбираться заранее с учетом решаемой задачи (обнаруживаемых элементов объекта исследований).

Система работает следующим образом.

Исследуемый объект 5 устанавливают в объектное плечо интерферометра 4. Задают N частот ультразвука, подаваемых на АО ячейку 3 и соответствующих требуемым длинам волны света. На выходе интерферометра 4 появляются два совмещенных световых одинаково поляризованных пучка, формирующие N интерференционных картин. Все эти картины регистрируется одновременно одним матричным приемником излучения 6 с установленным на нем мозаичным растром, состоящим из N спектральных светофильтров. В дальнейшем для получения пространственного распределения фазовой задержки, внесенной объектом, каждая из этих интерференционных картин подвергается цифровой обработке.

В ходе предварительной оптимизации системы длины волн, выделяемые АО фильтром-полихроматором, могут индивидуально подстраиваться, каждая в пределах пропускания соответствующего светофильтра растра, для получения максимального парциального сигнала или минимизации фоновой засветки и других помех.

В альтернативной реализации системы в качестве матричного приемника излучения используется цветной (RGB) сенсор, а АО монохроматор работает в трехчастотном режиме.

В другой реализации системы один светофильтр может пропускать несколько спектральных компонент, но с разным коэффициентом пропускания, что потребует лишь дополнительного матричного численного преобразования после регистрации изображений в каждом спектральном канале для выделения «спектрально чистых» результатов.

В альтернативной реализации системы АО фильтр работает в одночастотном режиме и перестраивается по частоте, последовательно выделяя за время экспонирования матричного приемника излучения спектральные компоненты, число и положение максимумов пропускания которых соответствует полосам пропускания спектральных светофильтров мозаичного растра.


СПОСОБ РЕГИСТРАЦИИ МУЛЬТИСПЕКТРАЛЬНОГО ЦИФРОВОГО ГОЛОГРАФИЧЕСКОГО ИЗОБРАЖЕНИЯ
СПОСОБ РЕГИСТРАЦИИ МУЛЬТИСПЕКТРАЛЬНОГО ЦИФРОВОГО ГОЛОГРАФИЧЕСКОГО ИЗОБРАЖЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 22.
14.03.2019
№219.016.df80

Устройство для определения коэффициента затухания поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения

Изобретение относится к области исследования поверхности материалов оптическими методами и касается устройства определения коэффициента затухания поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения. Устройство включает в себя источник...
Тип: Изобретение
Номер охранного документа: 0002681658
Дата охранного документа: 12.03.2019
05.04.2019
№219.016.fd4c

Устройство для наблюдения обратной коллинеарной дифракции терагерцевого излучения на ультразвуковой волне в кристаллической среде

Изобретение относится к акустооптике и может найти применение для управления такими параметрами электромагнитного излучения терагерцевого диапазона, как направление распространения, интенсивность, поляризация, частота и фаза. Устройство для наблюдения обратной коллинеарной дифракции...
Тип: Изобретение
Номер охранного документа: 0002683886
Дата охранного документа: 03.04.2019
07.06.2019
№219.017.74e9

Способ получения нитрида углерода, обладающего аномально высоким уровнем флуоресценции под действием лазерного излучения видимого диапазона

Изобретение относится к неорганической химии и может быть использовано в фотокатализе, литий-ионных аккумуляторах, медицинских зондах. Меламин разлагают в закрытом кварцевом реакторе в азотсодержащей атмосфере при 275-295 С в течение 4,5-6 ч. Получают графитоподобный g-CN, имеющий молярное...
Тип: Изобретение
Номер охранного документа: 0002690810
Дата охранного документа: 05.06.2019
24.10.2019
№219.017.dab1

Устройство для измерения длины распространения инфракрасной поверхностной электромагнитной волны

Изобретение относится к области исследования поверхности металлов и полупроводников оптическими методами и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ). Устройство содержит источник р-поляризованного монохроматического...
Тип: Изобретение
Номер охранного документа: 0002703772
Дата охранного документа: 23.10.2019
24.10.2019
№219.017.dab5

Устройство для преобразования инфракрасного излучения в поверхностную электромагнитную волну на плоской грани проводящего тела

Изобретение относится к области исследования поверхности металлов и полупроводников путем измерения характеристик направляемых ей поверхностных электромагнитных волн (ПЭВ) и может найти применение в сенсорных устройствах, абсорбционных спектрометрах и интерферометрах, использующих в качестве...
Тип: Изобретение
Номер охранного документа: 0002703941
Дата охранного документа: 23.10.2019
12.12.2019
№219.017.ec49

Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)

Изобретение относится к области оптического приборостроения и может быть использовано в приборостроении, медицине и других областях науки и техники, где возникает необходимость непрерывного и плавного изменения положения перетяжки лазерного гауссова пучка при обеспечении постоянства ее...
Тип: Изобретение
Номер охранного документа: 0002708549
Дата охранного документа: 09.12.2019
21.12.2019
№219.017.efd6

Интерферометр майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных поверхности твердых тел, способных направлять поверхностные плазмон-поляритоны (ППП). Интерферометр содержит источник коллимированного р-поляризованного монохроматического...
Тип: Изобретение
Номер охранного документа: 0002709600
Дата охранного документа: 18.12.2019
20.05.2020
№220.018.1e1d

Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования

Изобретение относится к области измерительной техники и касается способа бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования. Способ заключается в формировании светового пучка широкополосного излучения, идущего от объекта,...
Тип: Изобретение
Номер охранного документа: 0002721097
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1e2a

Способ одновременной спектральной фильтрации пары световых пучков с перестройкой по спектру

Изобретение относится к области стереоскопии, а именно к способам получения и регистрации спектральных стереоизображений объектов. Техническим результатом изобретения является использование одного акустооптического (АО) кристалла малых массы и габаритов, исключение или упрощение формирующей...
Тип: Изобретение
Номер охранного документа: 0002721170
Дата охранного документа: 18.05.2020
13.06.2020
№220.018.26ba

Управляемый ультразвуком поляризатор терагерцового излучения

Изобретение относится к оптике терагерцового (ТГц) диапазона и может быть использовано для поляризации и амплитудной модуляции ТГц излучения без использования мобильных оптических устройств, размещаемых на пути пучка излучения. Суть изобретения заключается в том, что поляризатор, содержащий...
Тип: Изобретение
Номер охранного документа: 0002723150
Дата охранного документа: 09.06.2020
Показаны записи 11-17 из 17.
05.07.2019
№219.017.a650

Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы

Изобретение относится к технологиям визуально-измерительного контроля. Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы, включает предварительную калибровку устройства на основе совместной...
Тип: Изобретение
Номер охранного документа: 0002693532
Дата охранного документа: 03.07.2019
19.11.2019
№219.017.e379

Метод контроля формы выпуклых оптических сферических и асферических поверхностей и устройство для его осуществления

Изобретение относится к технологиям получения топографической карты поверхности интерференционным методом и позволяет контролировать форму выпуклой сферической (СП) или асферической (АП) поверхностей. Технический результат - возможность получения топографической карты выпуклых СП или АП...
Тип: Изобретение
Номер охранного документа: 0002706388
Дата охранного документа: 18.11.2019
12.12.2019
№219.017.ec49

Способ для продольного перемещения перетяжки лазерного гауссова пучка постоянного диаметра без перемещения компонентов оптической системы (варианты)

Изобретение относится к области оптического приборостроения и может быть использовано в приборостроении, медицине и других областях науки и техники, где возникает необходимость непрерывного и плавного изменения положения перетяжки лазерного гауссова пучка при обеспечении постоянства ее...
Тип: Изобретение
Номер охранного документа: 0002708549
Дата охранного документа: 09.12.2019
27.02.2020
№220.018.0681

Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объекта

Изобретение относится к технологиям дистанционного измерения пространственного распределения температуры и излучательной способности по поверхности объектов. Заявлен способ бесконтактного измерения пространственного распределения температуры и излучательной способности объекта, в котором...
Тип: Изобретение
Номер охранного документа: 0002715089
Дата охранного документа: 25.02.2020
20.05.2020
№220.018.1dd3

Способ изменения длины фокусировки бесселева пучка 0-го порядка

Изобретение относится к области оптического приборостроения и может быть использовано в лазерных оптико-электронных приборах, где возникает необходимость плавного изменения длины фокусировки бесселева пучка 0-го порядка при сохранении постоянным его диаметра ядра. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002721085
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1e1d

Способ бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования

Изобретение относится к области измерительной техники и касается способа бесконтактного измерения пространственного распределения температуры и излучательной способности объектов без сканирования. Способ заключается в формировании светового пучка широкополосного излучения, идущего от объекта,...
Тип: Изобретение
Номер охранного документа: 0002721097
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1e2a

Способ одновременной спектральной фильтрации пары световых пучков с перестройкой по спектру

Изобретение относится к области стереоскопии, а именно к способам получения и регистрации спектральных стереоизображений объектов. Техническим результатом изобретения является использование одного акустооптического (АО) кристалла малых массы и габаритов, исключение или упрощение формирующей...
Тип: Изобретение
Номер охранного документа: 0002721170
Дата охранного документа: 18.05.2020
+ добавить свой РИД