×
05.02.2020
220.017.fe33

Способ контроля качества меда

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к спектральному методу контроля. Способ контроля качества меда заключается в анализе спектров поглощения. Анализируются спектры прохождения света в диапазоне длин волн 200-900 нм. Определяется интегральная спектральная энергия в этом диапазоне. Сравниваются значения энергии эталонной пробы и контролируемой пробы и при отклонении этих значений выше 15% выявляется фальсифицированный мед. Технический результат заключается в разработке способа контроля качества меда путем проведения анализа спектральных характеристик света, прошедшего через пробу, в интервале частот 200-900 нм. 15 ил., 7 табл.
Реферат Свернуть Развернуть

Изобретение относится к спектральному методу контроля оптически прозрачных сред и может быть использовано для контроля качества меда, как в стационарных условиях, так и для экспресс-контроля.

Мед сложный продукт, результат превращения нектара в организме рабочей пчелы при протекании физиологических и физико-химических процессов. В составе натурального меда преобладают следующие вещества: фруктоза 38%, глюкоза 32%, вода 18%. Эти значения являются приблизительными, потому что в зависимости от сорта меда, погодных условий и территориального расположения пасеки, где был получен этот мед, состав продукта может меняться, но незначительно. Например, в падевом меде содержание фруктозы составляет 33,18%, а сахарозы 3,95%, в то время как гречишный мед содержит 43,95% фруктозы и 0% сахарозы. В зрелом продукте может содержать до 20% воды, 33-35% глюкозы, около 40% фруктозы и всего 0,18-0,2% сахарозы. При нормальной влажности меда (не более 21%) масса его в 1 литре составляет 1400 г. [1].

В то же время мед, полученный искусственным путем, в своем составе может содержать более 13% сахарозы, вследствие чего процентное содержание фруктозы и глюкозы уменьшается. Это означает, что спектральная характеристика искусственного меда должна отличаться от характеристики натурального из-за изменения его состава [2].

Для определения качества меда применяют физические методы, такие как: микроскопия, поляриметрия, калориметрия, рефрактометрия, спектрометрия, спектроскопия, реология и др. [3], позволяющие измерять кислотность, коэффициент преломления, коэффициент рефракции, вязкость, липкость и др. Основа спектрального анализа - спектроскопия атомов и молекул; его классифицируют по целям анализа и типам спектров [4].

Способы фальсификации меда многочисленны и разнообразны. Фальсификация может рассматриваться как действия, направленные на ухудшение потребительских свойств меда [5]. Одними из самых распространенных способов фальсификации являются подкормка пчел сахарным сиропом в период медосбора, а также искусственный мед, изготовленный без участия пчел. Различают качественную и количественную фальсификацию меда. Качественная фальсификация предусматривала подмену натурального меда сахарным медом, искусственным инвертным сахаром или медом с примесью сахарозы. Количественная - увеличение количества меда путем добавления к нему посторонних веществ (вода, крахмал, мел).

Однако для получения физико-химических характеристик меда необходимо стационарное оборудование специализированных лабораторий. Это затрудняет процесс контроля качества, особенно при оперативном контроле.

Существует база данных инфракрасных спектров меда различного географического происхождения [6]. Согласно данным этой базы оптические спектры поглощения имеют два характерных пика поглощения в инфракрасной области в диапазоне длин волн 2,5-20 мкм. Максимум поглощения одного лежит в интервале длин волн 2,5-4,0 мкм, а интервал длин волн другого - 5,5-20 мкм. Эти спектральные данные для разных медов различаются по максимальной интенсивности и по форме пиков поглощения. Это означает, что даже в разбавленном различными добавками продукте в инфракрасной области будут наблюдаться характеристические пики поглощения в указанных двух частотных диапазонах.

Таким образом, инфракрасные спектральные характеристики не позволяют определить фальсифицированный мед, так как даже малая доля меда в фальсифицированной пробе даст нам характерный спектр поглощения, принадлежащий именно меду.

Целью изобретения является разработка способа контроля качества меда путем проведения анализа спектральных характеристик света, прошедшего через пробу, в интервале частот от 200 и до 900 нм.

Поставленная цель достигается тем, что, как и в известном способе анализируется спектр в широком диапазоне длин волн, но сдвинутый в диапазон 200-900 нм. Для этого с помощью спектрометра, например, оптико-волоконного спектрометр USB4000 определяется интенсивность спектральных составляющих света галогеновой лампы, прошедшего пробу меда. По полученным зависимостям интенсивности прошедшего света от длины волны определяется интегральная спектральная характеристика (фактически суммарная энергия в исследуемом диапазоне длин волн) и интегральный фон, позволяющий привести интегральную спектральную характеристику (интегральный параметр) к состоянию, независимому от интенсивности источника света. Интегральный фон вычитается из интегрального параметра, таким образом, определяется интегральная спектральная характеристика пробы меда, свободная от фона. По отношению бесфонового интегрального параметра исследуемой пробы и интегрального параметра пробы, взятой за эталон, определяется коэффициент отклонения исследуемой пробы от эталонной, значение которого позволяет определить фальсифицированную пробу меда.

Пример 1. Провели анализ интенсивности света в диапазоне длин волн 177,62-873 нм, прошедшего через пробы меда 1-10. Пробы меда Алтайского края, собранного за период 2016-2017 годы, приведены в таблице 1.

Как следует из данных табл. 1 из 10 проб меда, полученного в различных районах Алтайского края, проба 1 выбрана за эталон. Выбор такой пробы определен тем, что именно эта проба получена непосредственно на пасеке в отличие от других проб. Таким образом, выбор эталонного образца в любом регионе должен осуществляется из медов именно этого региона.

Анализ интенсивности света, прошедшего через пробы меда, осуществили с помощью малогабаритного оптико-волоконного спектрометра USB4000 (фиг. 1).

Кювета с исследуемой пробой меда через первый волоконно-оптический кабель, диафрагму (диаметр отверстия 3 мм) и фокусирующую линзу освещается галогеновой лампой (или лампой накаливания). Пройдя кювету с пробой, свет через вторую диафрагму и линзу попадает во второй волоконно-оптический кабель. Из второго кабеля свет попадает в спектрометр через разъем SMA 905 (1), щель (2) и поглощающий фильтр (3). Световой пучок, отразившись от коллимирующего зеркала (4) в виде параллельного пучка попадает на дифракционную решетку (5), установленную на вращающейся платформе, и далее на фокусирующее зеркало (6). Через фокусирующую линзу (7) детектора (8), в качестве которого используется линейная ПЗС-матрица Toshiba TCD1304AP, состоящая из 3648 элементов, сфокусированный свет попадает на элементы детектора. Фильтры (9) полностью блокируют свет второго и третьего порядков, предотвращая его попадание на элементы детектора. Опция (10) позволяет стандартное окно (ВК7) детектора заменять кварцевым окном, что позволяет улучшить работу спектрометра в диапазоне < 340 нм. Далее после детектора данные попадают в персональный компьютер спектрометра. Технические характеристики спектрометра USB4000 приведены в табл. 2.

В персональном компьютере спектрометра USB4000 установлено программное обеспечение SpectraSuite. Данные с прибора сохраняются в формате.txt и могут быть импортированы в Microsoft Exel для дальнейшей обработки.

При прохождении света галогеновой лампы через слой вещества (раствора) толщиной l светового потока с интенсивностью J0 его интенсивность в результате поглощения в слое, отражения и рассеяния уменьшается до значения J. При относительных измерениях поглощения света растворами потерями излучения вследствие отражения и рассеяния обычно пренебрегают.

Связь между интенсивностями световых потоков J0 и J устанавливается законом Бугера-Ламберта, согласно которому однородные слои одного и того же вещества одинаковой толщины поглощают одну и ту же долю падающей на них световой энергии (при постоянной концентрации растворенного вещества).

Математически этот закон выражается уравнением экспоненциальной зависимости:

J(l)=J0exp(-kλl),

где kλ - спектральный коэффициент поглощения.

На фиг. 2 приведены спектрограммы 10 проб, а их интегральные спектральные параметры представлены в таблице 3.

Как следует из приведенных спектрограмм меда, спектральные параметры у всех проб имеют одинаковые характерные признаки, выраженные как немонотонности на зависимости интенсивности от длины волны. Однако величина максимума интенсивности у всех проб различается, например, у проб 1 и 10 это различие существенно.

Как следует из данных, приведенных в таблице 3, интегральные спектральные параметры могут совпадать, в пределах погрешности измерения, а могут и существенно различаться, что позволяет отбраковывать пробы.

Пример 2. На основе пробы 1 (эталонный мед) были приготовлены пробы меда, разбавленные водой, крахмалом, мукой, сахарной пудрой в разных пропорциях, и осуществлен, как в примере 1, анализ интенсивности прошедшего через пробы света. На фиг. 3 и в табл. 4 приведена спектрограмма света, прошедшего через пробу 1, разбавленную водой в интервале концентраций 10-90%.

Из данных фиг. 3 и табл. 4 следует, что по мере увеличения содержания воды в меде проба становится более прозрачной и интенсивность прошедшего света увеличивается. Пик интенсивности достигается при 90% воды в меде пробы 1. Из данных таблицы 4 следует, что разности интегральных параметров отрицательные числа. Это означает, что интенсивность света, прошедшего разбавленную водой пробу выше интенсивности света, прошедшего эталонную пробу 1. Таким образом, отрицательные значения разности интегральных параметров могут свидетельствовать об избыточном содержании воды в пробе меда.

На фиг. 4 приведена спектрограмма света, прошедшего через пробу 1, разбавленную мукой в интервале концентраций 10-50%, а в таблице 5 представлены интегральные параметры в сопоставлении с эталонной пробой 1. Из приведенных (фиг. 4) данных видно, что при разбавлении меда мукой на 50% наблюдается самая низкая интенсивность прошедшего через пробу света.

Из данных таблицы 5 следует, что уже 10% муки в пробе приводит к существенному отклонению интегрального спектрального параметра света пробы по сравнению с эталонной пробой 1.

На фиг. 5 приведены спектрограммы света, прошедшего через пробу 1, разбавленную сахарной пудрой в интервале концентраций 10-50%. В таблице 6 представлены интегральные спектральные параметры света, прошедшего через пробы, разбавленные сахарной пудрой. Как и в экспериментах с мукой, наименьшая интенсивность наблюдается при разбавлении пробы сахарной пудрой на 50%.

Из данных табл. 6 следует, что уже 10% сахарной пудры в пробе приводит к существенному (57%) отклонению интегрального спектрального параметра света пробы по сравнению с эталонной пробой 1.

На фиг. 6 приведены спектрограммы света, прошедшего через пробу 1, разбавленную крахмалом в интервале концентраций 10-50%. В таблице 7 представлены интегральные спектральные параметры света прошедшего через пробы, разбавленные сахарной пудрой. Из приведенных данных следует, что наименьшая интенсивность достигается при 50% растворе меда и крахмала. То есть проба 1, разбавленная крахмалом, поглощает свет как пробы, разбавленные сахарной пудрой и мукой.

Таким образом, даже десятипроцентное разбавление меда различными добавками приводит к существенному отклонению интегрального спектрального параметра от параметра эталонной пробы, что позволяет надежно отбраковывать фальсифицированный мед.

Пример 3. Сопоставим спектрограммы проб 2-10 (пример 1, таблица 3) со спектром света, прошедшего через эталонную пробу 1. Учитывая, что некоторое отклонение интегральных параметров различного меда естественно допустимо, Будем считать, что относительное отклонение интегральных параметров пробы и эталона в пределах 15% допустимо, учитывая влияние состава меда, собранного в разных географических зонах и при различных погодных условиях.

Из спектральных данных фиг. 7 видно, что интенсивность света, прошедшего через пробу 2 (поз. 12) практически совпадает с интенсивностью света, прошедшего через пробу 1 (поз. 11). Из данных таблицы 3 отклонение интегрального параметра пробы 2 от эталонной пробы 1 незначительно и составляет 0,133, то есть 13,3%. Следовательно, можно утверждать, что проба 2, как и проба 1, натуральный мед.

Спектральные данные фиг. 8 свидетельствуют, что интенсивность света, прошедшего пробу 3 (поз. 13), значительно меньше, чем интенсивность эталонной пробы 1. Из данных таблицы 3 отклонение интегрального параметра пробы 3 от эталонной пробы 1 составляет 0,357, то есть 35,7%. Можно утверждать, что проба 3 разбавлена или крахмалом, или мукой, или сахарной пудрой.

Спектральные данные фиг. 9 свидетельствуют, что интенсивность света, прошедшего пробу 4 (поз. 14) немного меньше, чем у эталонной пробы 1. Из данных таблицы 3 отклонение интегрального параметра пробы 4 от эталонной пробы 1 составляет 0,178, то есть 17,8%. Это различие не существенно по сравнению с пробой 3. Проба 4 (поз. 14) это натуральный мед.

Из спектральных данных фиг. 10 видно, что интенсивность света, прошедшего через пробу 5 (поз. 15) практически совпадает с интенсивностью света, прошедшего через эталонную пробу 1. Из данных таблицы 3 отклонение интегрального параметра пробы 5 от эталонной пробы 1 составляет 0,095, то есть 9,5%. Следовательно, можно утверждать, что проба 5 натуральный мед.

Из спектральных данных фиг. 11 видно, что интенсивности света, прошедшего через пробу 6 (поз. 16) совпадет интенсивностью света от эталонной пробы 1. Из данных таблицы 3 отклонение интегрального параметра пробы 6 от эталонной пробы 1 составляет 0,011, то есть 1,1%. В этой связи можно утверждать, что проба 6 это натуральный мед.

Из спектральных данных фиг. 12 следует, что интенсивность света, прошедшего через пробу 7 (поз. 17) практически совпадает с интенсивностью света, прошедшего через эталонную пробу 1. Из данных таблицы 3 отклонение интегрального параметра пробы 7 от эталонной пробы 1 составляет 0,095, то есть 9,5%. Можно утверждать, что проба 7 это натуральный мед.

Из спектральных данных фиг. 13 следует, что интенсивность света, прошедшего через пробу 8 (поз. 18), меньше, чем интенсивность света, прошедшего эталонную пробу 1. Из данных таблицы 3 отклонение интегрального параметра пробы 8 от эталонной пробы 1 составляет 0,365, то есть 36,5%. Следовательно, мед пробы 8 разбавлен крахмалом или мукой.

Из спектральных данных фиг. 14 следует, что интенсивность света, прошедшего через пробу 9 (поз. 19) выше, чем у эталонной пробы 1. Из данных таблицы 3 отклонение интегрального параметра пробы 9 от эталонной пробы 1 составляет 0,121, то есть 12,1%. Однако разность интегральных параметров отрицательное число. Можно полагать, что в пробе 9 повышенное содержание воды.

Из спектральных данных фиг. 15 следует, что интенсивность света, прошедшего через пробу 10 (поз. 20), значительно меньше, чем интенсивность эталонной пробы 1. Из данных таблица 3 отклонение интегрального параметра пробы 10 от эталонной пробы 1 составляет 0,603, то есть 60,3%. Можно утверждать, что мед пробы 10 разбавлен крахмалом, сахарной пудрой или мукой.

Спектральный анализ позволяет с высокой степенью точности оценивать содержание веществ в исследуемых пробах меда. Оценивая степень поглощения света, прошедшего через пробы, можно заключить:

Мед в пробах 2, 4, 5, 6, 7 натуральный.

Мед в пробах 3, 8, 10 разбавлен крахмалом, мукой или сахарной пудрой.

Мед в пробе 9 имеет повышенное содержание воды. Однако малое значение отклонения от эталона, равное 0,121, может свидетельствовать о меде, который мог быть получен в условиях дождливой погоды, когда в нектаре повышенное содержание влаги.

Литература

1. Заикина, В.И. Экспертиза меда и способы обнаружения его фальсификации. М.: Изд. дом «Дашков и Ко», 2012, 168 с.

2. Ковшова К.А., Сыпин Е.В., Лисаков С.А. Исследование метода спектрального анализа для определения натуральности меда. Бийский технологический институт (филиал) АлтГТУ, г. Бийск.

3. Чепурной, И.П. Экспертиза качества меда. / Чепурной, И.П - М.: Изд. дом «Дашков и Ко», 2012, 112 с.

4. Борцова, Л.Н. Современные технологии производства продуктов питания: состояние, проблемы и перспективы развития/ Борцова Л.Н. //Современные технологии производства продуктов питания: состояние, проблемы и перспективы развития.: сб.ст.- трудов и конференции, Омск 2014 - 101-102 с.

5. Васильев, Д.А. Лабораторный практикум по ветеринарно-санитарной экспертизе меда: Лабораторный практикум/ Васильев Д.А; Ульяновск 2010 г. 38 с.

6. Иванова М.С., Куцев М.Г., Филиппенко М.Л. Инфракрасные спектры меда различного географического происхождения, государственная регистрация базы данных №2013620461 от 01.04.2013 г.

Способ контроля качества меда, заключающийся в анализе спектров поглощения, отличающийся тем, что анализируются спектры прохождения света в диапазоне длин волн 200-900 нм, определяется интегральная спектральная энергия в этом диапазоне, сравниваются значения энергии эталонной пробы и контролируемой пробы и при отклонении этих значений выше 15% выявляется фальсифицированный мед.
Способ контроля качества меда
Способ контроля качества меда
Способ контроля качества меда
Способ контроля качества меда
Способ контроля качества меда
Способ контроля качества меда
Способ контроля качества меда
Способ контроля качества меда
Способ контроля качества меда
Источник поступления информации: Роспатент

Показаны записи 1-10 из 78.
13.01.2017
№217.015.74c5

Безопасный экстракционно-флуориметрический способ определения селена в воде

Изобретение относится к аналитической химии и касается способа определения селена в воде. Сущность способа заключается в том, что к анализируемому раствору добавляют 0,4 мл раствора 3%-ного щелочного борогидрида натрия восстановителя, закрывают пробкой, встряхивают и оставляют на 5 мин для...
Тип: Изобретение
Номер охранного документа: 0002597769
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.bad9

Люминесцирующие металлсодержащие полимеризуемые композиции и способ их получения

Изобретение относится к химии и технологии материалов, преобразующих электромагнитное излучение, и используется для получения люминесцирующих и избирательно поглощающих электромагнитное излучение металлсодержащих полимерных композиций для светотехники, опто- и микроэлектроники. Основой...
Тип: Изобретение
Номер охранного документа: 0002615701
Дата охранного документа: 06.04.2017
26.08.2017
№217.015.eda4

Индикатор для обнаружения повышенной концентрации аммиака в воздухе рабочей зоны

Изобретение относится к устройствам для выявления утечек аммиака и может быть использовано в областях химической и холодильной промышленностей, в сфере производства удобрений и аммиака, а также для контроля воздушной среды в производственных помещениях. Индикатор представляет собой основу...
Тип: Изобретение
Номер охранного документа: 0002628883
Дата охранного документа: 22.08.2017
29.12.2017
№217.015.f6d1

Способ пластической деформации металлов и сплавов

Изобретение относится к области пластической обработки металлов, таких как алюминий и его сплавы, и может быть использовано в различных областях промышленности и науки для глубокого формования металлических материалов. Способ пластической деформации алюминия и его сплавов включает механическое...
Тип: Изобретение
Номер охранного документа: 0002639278
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f79d

Способ получения линимента на березовых почках

Изобретение относится к фармацевтической промышленности, в частности к способу получения линимента на березовых почках. Способ получения линимента на березовых почках, включающий подготовку свиного жира, закладку березовых почек и свиного жира в емкость и воздействие на смесь жира и почек...
Тип: Изобретение
Номер охранного документа: 0002639571
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.f90b

Дефектоскоп для сварных швов

Изобретение относится к методам неразрушающего контроля и позволяет обнаруживать дефекты малых размеров и глубокого залегания в сварных швах, соединяющих, преимущественно, неферромагнитные материалы. Дефектоскоп для сварных швов включает в себя аппаратную и программную части. Дефектоскоп...
Тип: Изобретение
Номер охранного документа: 0002639592
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fb66

Способ концентрирования микроэлементов

Изобретение относится к аналитической химии и может быть использовано в практике аналитических, агрохимических, медицинских лабораторий. Осуществляют концентрирование микроэлементов для последующего аналитического определения путем соосаждения с диантипирилметаном, образующим в системе вода -...
Тип: Изобретение
Номер охранного документа: 0002640337
Дата охранного документа: 27.12.2017
13.02.2018
№218.016.24a1

Мембранный экстрактор

Изобретение относится к экстракторам системы жидкость-жидкость для применения в биотехнологической, фармацевтической, химической, пищевой промышленности, и, в частности, может быть использовано для ускорения выделения целевых продуктов метаболизма микроорганизмов, например антибиотиков из...
Тип: Изобретение
Номер охранного документа: 0002642641
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.3134

Способ определения иодид-ионов катодной вольтамперометрией

Изобретение относится к области аналитической химии. Способ определения йодид-ионов катодной вольтамперометрией проводят на серебряном электроде в фоновом растворе 0,1 М ацетата натрия, выдерживая потенциал электролиза в диапазоне потенциалов (-0,15±0,05) В при скорости развертки 20 мВ/с - 50...
Тип: Изобретение
Номер охранного документа: 0002645003
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.442b

Биоразлагаемый поливной шланг для капельного орошения

Изобретение относится к области устройств для капельного орошения. Поливной сочащийся шланг для капельного орошения выполнен из биоразлагаемого бумажного крафт-шпагата. Крафт-шпагат пропитан жидким растительным маслом. Шланг выполнен методом плетения. Плетение шланга обеспечивает микропористую...
Тип: Изобретение
Номер охранного документа: 0002649857
Дата охранного документа: 05.04.2018
Показаны записи 1-10 из 21.
10.06.2015
№216.013.547b

Способ получения монофазной интерметаллической тонкой пленки

Изобретение относится к области физики низкоразмерных структур, а именно к способу получения монофазной интерметаллической тонкой пленки с наноразмерной структурой на стеклянной подложке, и может быть использовано в различных высокотехнологичных областях промышленности и науки для создания...
Тип: Изобретение
Номер охранного документа: 0002553148
Дата охранного документа: 10.06.2015
20.10.2015
№216.013.86de

Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке

Изобретение относится к области физики низкоразмерных структур, а именно к способу получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке, и может быть использовано в различных высокотехнологичных областях промышленности и науки для создания новых материалов....
Тип: Изобретение
Номер охранного документа: 0002566129
Дата охранного документа: 20.10.2015
13.01.2017
№217.015.74cd

Способ получения кристаллографически ориентированных квазимонокристаллических интерметаллических тонких пленок

Изобретение относится к области физики низкоразмерных структур, а именно способу получения квазимонокристаллической интерметаллической тонкой пленки с наноразмерной структурой, и может быть использовано в различных высокотехнологичных областях промышленности и науки для создания наноструктурных...
Тип: Изобретение
Номер охранного документа: 0002597835
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.76c0

Способ получения монофазной интерметаллической тонкой пленки

Изобретение относится к области физики наноразмерных структур, а именно способу получения тонких металлических пленок, в частности, системы Ni-Al. На стеклянную подложку в вакууме при остаточном давлении не ниже 10 Торр наносят не менее шести металлических слоев толщиной 30-60 нм в...
Тип: Изобретение
Номер охранного документа: 0002598723
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.8219

Способ получения тонкой нанокристаллической интерметаллической пленки на стеклянной подложке

Изобретение относится к области физики наноразмерных структур, а именно способу получения тонких металлических пленок, которые могут быть использованы в качестве тест объектов оптических приборов. Способ получения тонкой нанокристаллической пленки системы Ni-Al на стеклянной подложке включает...
Тип: Изобретение
Номер охранного документа: 0002601365
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.b507

Способ получения тонкой наноалмазной пленки на стеклянной подложке

Изобретение относится к технологиям получения износостойких, прочностных тонких алмазных пленок методом вакуумной лазерной абляции и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и создания наноструктурных материалов....
Тип: Изобретение
Номер охранного документа: 0002614330
Дата охранного документа: 24.03.2017
29.12.2017
№217.015.f6d1

Способ пластической деформации металлов и сплавов

Изобретение относится к области пластической обработки металлов, таких как алюминий и его сплавы, и может быть использовано в различных областях промышленности и науки для глубокого формования металлических материалов. Способ пластической деформации алюминия и его сплавов включает механическое...
Тип: Изобретение
Номер охранного документа: 0002639278
Дата охранного документа: 20.12.2017
29.05.2018
№218.016.533e

Способ пластической деформации сплавов из алюминия

Изобретение относится к области пластической обработки металлов и может быть использовано в различных областях промышленности и науки для пластической деформации алюминия и сплавов из алюминия. Способ пластической деформации алюминиево-магниевых сплавов включает механическое нагружение сплава...
Тип: Изобретение
Номер охранного документа: 0002653741
Дата охранного документа: 14.05.2018
24.07.2018
№218.016.73be

Способ пластической деформации алюминия и его сплавов

Изобретение относится к области пластической обработки металлов и может быть использовано в различных областях промышленности и науки для пластической деформации алюминия и сплавов из алюминия. Способ пластической деформации алюминия и его сплавов включает механическое нагружение деформируемого...
Тип: Изобретение
Номер охранного документа: 0002661980
Дата охранного документа: 23.07.2018
03.10.2018
№218.016.8cf9

Способ получения алмазоподобных тонких пленок

Изобретение относится к технологии производства тонких алмазных пленок и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и активных слоев тонкопленочных наноструктур. Алмазоподобную пленку получают конденсацией углерода на...
Тип: Изобретение
Номер охранного документа: 0002668246
Дата охранного документа: 27.09.2018
+ добавить свой РИД