×
05.02.2020
220.017.fe00

Результат интеллектуальной деятельности: Усилитель лазерного излучения с большим коэффициентом усиления, высокой средней и пиковой мощностью и высоким качеством выходного пучка

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. Твердотельный лазерный усилитель включает основанный на лазерных диодах источник излучения накачки, выступающий в роли волновода для излучения накачки твердотельный активный элемент продолговатой аксиально-симметричной формы с переменным по площади поперечным сечением с двумя круговыми торцевыми гранями, служащими для ввода излучения в твердотельный активный элемент и вывода излучения из твердотельного активного элемента, который контактирует боковой поверхностью со слоем материала, обеспечивающим волноводное распространение излучения накачки. Также устройство содержит систему охлаждения боковой поверхности твердотельного активного элемента, оптическую систему для заведения излучения накачки в твердотельный активный элемент, расположенную со стороны большей по площади круговой торцевой грани твердотельного активного элемента, оптическую систему для заведения усиливаемого лазерного излучения в твердотельный активный элемент, обеспечивающую его свободное распространение в твердотельном активном элементе и расположенную со стороны меньшей по площади круговой торцевой грани твердотельного активного элемента, а также по крайней мере одно дихроичное зеркало для пространственного разделения излучения накачки и усиливаемого лазерного излучения. Твердотельный активный элемент имеет экспоненциальную форму образующей боковой поверхности, изменяющуюся в соответствии с формулой S = Sexp(-αL), где L - длина усеченного прямого аксиально-симметричного активного элемента, S - площадь по площади круговой торцевой грани твердотельного активного элемента, S - площадь по площади круговой торцевой грани твердотельного активного элемента, α - коэффициент поглощения материала твердотельного активного элемента. Технический результат заключается в увеличении коэффициента усиления и повышении эффективности извлечение запасенной мощности вдоль всей длины активного элемента усилителя для одного прохода усиливаемого лазерного излучения и излучения накачки через активный элемент. 3 з.п. ф-лы, 1 ил.

Изобретение относится к лазерной технике и может быть использовано для усиления непрерывного или импульсного лазерного излучения с различными параметрами. Предлагаемый усилитель обладает высоким коэффициентом усиления за один проход излучения через активный твердотельный элемент и способен работать при высокой средней и пиковой мощности. Устройство может быть использовано в качестве конечного усилителя для увеличения мощности задающих лазерных генераторов, а также в качестве предусилителя в крупных высокомощных лазерных установках. В частности, устройство может быть применено для усиления излучения волоконного лазера.

Все усилители, которые сейчас используются для вышеперечисленных целей, обладают различными недостатками. Волоконные лазерные усилители не позволяют достигать высоких пиковых мощностей из-за нелинейных эффектов в волокне [Eidam, Т. et. al., Optics Letters, 35 (2), pp. 94-96, 2010]. Твердотельные лазерные усилители обладают не достаточно большим коэффициентом усиления. Из-за этого необходимо либо применять схему усиления с большим числом проходов излучения через активный элемент [J.-P. Negel et. al., Optics Letters 38 (24), pp. 5442-5445, 2013], либо увеличивать путь излучения в активном элементе [Н. Kiriyama et. al., Optics Letters 28 (18), pp. 1671-1673, 2003], что существенно усложняет конструкцию усилителя. Кроме того, твердотельные лазерные усилители при работе на высокой средней мощности подвержены влиянию вредных тепловых эффектов, величина которых увеличивается пропорционально количеству проходов излучения через активный элемент.

Наиболее близким по технической сущности к заявляемому устройству является взятый за прототип усилитель лазерного излучения с большим коэффициентом усиления, высокой средней и пиковой мощностью и высоким качеством выходного пучка на основе твердотельного активного элемента, изготовленного в геометрии усеченного прямого кругового конуса [см. патент РФ на изобретение №2618498 (МПК H01S 3/06, публ. 03.05.2017, дата приоритета 20.05.2015, правообладатель ИПФ РАН, авторы Кузнецов И.И., Мухин И.Б, Палашов О.В.) и статью Thin-tapered-rod Yb:YAG laser amplifier / Ivan Kuznetsov, Ivan Mukhin, Oleg Palashov, and Ken-Ichi Ueda // Opt.Lett. 41, 5361-5364 (2016)]. Усилитель-прототип включает в себя основанный на лазерных диодах источник излучения накачки, выступающий в роли волновода для излучения накачки твердотельный активный элемент, имеющий форму усеченного прямого кругового конуса с двумя круговыми торцевыми гранями, служащими для ввода излучения в твердотельный активный элемент и вывода излучения из твердотельного активного элемента, который контактирует боковой поверхностью со слоем материала, обеспечивающим волноводное распространение излучения накачки, систему охлаждения боковой поверхности твердотельного активного элемента, оптическую систему для заведения излучения накачки в твердотельный активный элемент, расположенную со стороны его круговой торцевой грани, которая является большим основанием усеченного прямого кругового конуса, оптическую систему для заведения усиливаемого лазерного излучения в твердотельный активный элемент, расположенную со стороны его круговой торцевой грани, которая является меньшим основанием усеченного прямого кругового конуса, а также по крайней мере одно дихроичное зеркало для пространственного разделения излучения накачки и усиливаемого лазерного излучения. Приведенный в статье усилитель имеет твердотельный активный элемент, имеющий форму усеченного прямого кругового конуса с диаметрами большего и меньшего оснований 1 мм и 0,3 мм, соответственно и характерной длиной 3 см. Оптическая система для заведения усиливаемого лазерного излучения в активный элемент обеспечивает один проход излучения через активный элемент, при этом диаметр пучка излучения в активном элементе составляет от 40% до 60% от диаметра твердотельного активного элемента. Оптическая система для заведения излучения накачки представляет собой сферическую линзу или систему сферических линз, фокусирующих излучение накачки вдоль оси твердотельного активного элемента так, что минимальный диаметр пучок излучения накачки имеет на круговой торцевой грани твердотельного активного элемента, которая является большим основанием усеченного прямого кругового конуса, и диаметр пучка меньше диаметра этого основания. Излучение накачки распространяется в твердотельном активном элементе волноводным образом, многократно отражаясь от его боковой поверхности, за счет контакта этой боковой поверхности со слоем материала, обеспечивающим такое отражение. Оптическая система для заведения излучения накачки в твердотельный активный элемент устроена так, чтобы угол падения излучения на боковую поверхность активного элемента был больше критического угла полного внутреннего отражения. Система охлаждения отводит тепло с боковой поверхности твердотельного активного элемента. Разделение излучения накачки и усиливаемого лазерного излучения осуществляется с применением дихроичного зеркала, которое пропускает излучение накачки и отражает усиливаемое лазерное излучение или наоборот.

Первый недостаток прототипа заключается в том, что погонное усиление в дальней по ходу распространения излучения накачки части твердотельного активного элемента, имеющего форму усеченного прямого кругового конуса меньше, чем в ближней. Это связано с тем, что интенсивность излучения накачки зависит от продольной координаты конуса, и уменьшается вдоль координаты из-за ее поглощения в активном элементе. Данная проблема ограничивает усиление в активном элементе. Чтобы решить эту проблему, обычно используют схему усилителя, где излучение накачки заводится в активный элемент с двух противоположных торцов. Это можно реализовать, используя два источника излучения накачки или разделяя пучок накачки на два, что существенно усложняет конструкцию усилителя.

Второй недостаток прототипа заключается в том, что эффективность извлечения мощности из ближней по ходу распространения усиливаемого лазерного излучения части твердотельного активного элемента, имеющего форму усеченного прямого кругового конуса, меньше, чем из дальней части. Это связано с тем, что интенсивность усиливаемого излучения зависит от продольной координаты стержня и в ближней его части ниже, чем в дальней, из-за усиления. В результате, в усилителе с одним проходом усиливаемого излучения через активный элемент мощность извлекается малоэффективно. Чтобы решить эту проблему, обычно используют схему усилителя, в которой усиливаемое излучение проходит через активный элемент несколько раз, что также существенно усложняет конструкцию усилителя.

Задачей, на решение которой направлено настоящее изобретение, является увеличение коэффициент усиления и повышение эффективности извлечение запасенной мощности вдоль всей длины активного элемента усилителя для одного прохода усиливаемого лазерного излучения и излучения накачки через твердотельный активный элемент усилителя лазерного излучения с большим коэффициентом усиления, высокой средней и пиковой мощностью и высоким качеством выходного пучка.

Технический эффект достигается тем, что усилитель лазерного излучения включает по крайней мере один основанный на лазерных диодах источник излучения накачки, выступающий в роли волновода для излучения накачки твердотельный активный элемент продолговатой аксиально-симметричной формы с переменным по площади поперечным сечением с двумя круговыми торцевыми гранями, служащими для ввода излучения в твердотельный активный элемент и вывода излучения из твердотельного активного элемента, который контактирует боковой поверхностью со слоем материала, обеспечивающим волноводное распространение излучения накачки, систему охлаждения боковой поверхности твердотельного активного элемента, оптическую систему для заведения излучения накачки в твердотельный активный элемент, расположенную со стороны большей по площади круговой торцевой грани твердотельного активного элемента, оптическую систему для заведения усиливаемого лазерного излучения в твердотельный активный элемент, обеспечивающую его свободное распространение в твердотельном активном элементе и расположенную со стороны меньшей по площади круговой торцевой грани твердотельного активного элемента, а также по крайней мере одно дихроичное зеркало для пространственного разделения излучения накачки и усиливаемого лазерного излучения.

Новым является то, что твердотельный активный элемент имеет экспоненциальную форму образующей боковой поверхности.

В частном случае реализации изобретения по п. 2 слой материала, обеспечивающий волноводное распространение излучения накачки, выполнен из металла.

В частном случае реализации изобретения по п. 3 слой материала, обеспечивающий волноводное распространение излучения накачки, является диэлектрической оболочкой с меньшим, чем у твердотельного активного элемента показателем преломления, а оптическая система для заведения излучения накачки в твердотельный активный элемент устроена так, чтобы угол падения излучения накачки на боковую поверхность активного элемента был больше критического угла полного внутреннего отражения.

В частном случае реализации изобретения по п. 4 в качестве слоя материала, обеспечивающего волноводное распространение излучения накачки, выступает слой жидкости, циркулирующей в системе охлаждения, с меньшим показателем преломления, чем у твердотельного активного элемента, а оптическая система для заведения излучения накачки в твердотельный активный элемент устроена так, чтобы угол падения излучения накачки на боковую поверхность активного элемента был больше критического угла полного внутреннего отражения.

Сущность изобретения поясняется Фиг. 1, на котором представлена схема предлагаемого усилителя лазерного излучения. Предлагаемое устройство состоит из основанного на лазерных диодах источника излучения накачки 1, оптической системы для заведения излучения накачки 2 в аксиально-симметричный твердотельный активный элемент 3, боковая поверхность которого (здесь и далее под боковой поверхностью подразумевается вся поверхность твердотельного активного элемента 3 за исключением его оснований, т.е. круговых торцевых граней) имеет экспоненциальную форму образующей 4, причем оптическая система для заведения излучения накачки 2 расположена со стороны большей по площади круговой торцевой грани твердотельного активного элемента 3, слоя материала 5, обеспечивающего волноводное распространение излучения накачки, с которым контактирует боковой поверхностью твердотельный активный элемент 3, системы охлаждения 6 боковой поверхности твердотельного активного элемента 3, оптической системы для заведения усиливаемого лазерного излучения 7 в твердотельный активный элемент 3, причем оптическая система для заведения усиливаемого лазерного излучения 7 расположена со стороны меньшей по площади круговой торцевой грани твердотельного активного элемента 3, и дихроичного зеркала 8.

Работа устройства осуществляется следующим образом. Излучение накачки основанного на лазерных диодах источника накачки 1 заводится в твердотельный активный элемент 3 с помощью оптической системы для заведения излучения накачки 2. Оптическая система для заведения излучения накачки 2 представляет собой сферическую линзу или систему сферических линз, фокусирующих излучение накачки вдоль оси твердотельного активного элемента 3 так, что минимальный диаметр пучок излучения накачки имеет на большей по площади круговой торцевой грани твердотельного активного элемента 3, и диаметр пучка меньше диаметра этой торцевой грани. Излучение накачки распространяется в твердотельном активном элементе 3 волноводным образом, многократно отражаясь от его боковой поверхности, за счет контакта этой боковой поверхности со слоем материала 5.

Мощность излучения накачки (Рpump) по мере распространения в твердотельном активном элементе 3 (по оси z) спадает по экспоненциальному закону из-за поглощения:

Рpump=Ppump0exp(-αpumpz),

где Рpump0 - мощность излучения накачки на входе в твердотельный активный элемент 3, αpump - коэффициент поглощения. В случае изменения площади поперечного сечения твердотельного активного элемента 3 вдоль оси z по экспоненциальному закону:

S(z)=Sbigexp(-αpumpz),

где Sbig - площадь круговой торцевой грани аксиально-симметричного твердотельного активного элемента 3, зависимость радиуса твердотельного оптического элемента 3 от продольной координаты (экспоненциальной формы образующей 8 боковой поверхности) будет определяться формулой:

r(z)=rmaxexp(αpump z/2),

где rmах - радиус по площади круговой торцевой грани аксиально-симметричного твердотельного активного элемента 3.

Тогда площадь Ssmall круговой торцевой грани аксиально-симметричного твердотельного активного элемента 3 будет выражаться в виде:

Ssmall=Sbigexp(-αpump L),

где L - длина аксиально-симметричного твердотельного активного элемента 3. Также из формулы следует, что интенсивность накачки на круговых торцевых гранях твердотельного активного элемента 3 будет одинаковой при выполнении условия:

Это позволяет создать равномерное распределение погонного коэффициента усиления вдоль оси z в длинном твердотельном активном элементе 3, используя схему усилителя, где излучение накачки заводится в твердотельный активный элемент 3 только с одной торцевой грани. Таким образом, можно достигнуть большого коэффициента усиления, используя простую систему заведения излучения накачки в твердотельный активный элемент 3.

Из-за волноводного распространения излучения накачки площадь сечения пучка излучения накачки в твердотельном активном элементе 3 равна площади сечения твердотельного активного элемента 3:

Spump(z)=S(z).

Интенсивность излучения накачки в каждой точке вдоль оси z постоянна и находится по формуле:

Из формулы видно, что в случае экспоненциальной формы боковой поверхности, интенсивность излучения накачки не зависит от z, в отличие от прототипа.

Усиливаемое лазерное излучение заводится в твердотельный активный элемент 3, с помощью оптической системы для заведения усиливаемого лазерного излучения 6 и распространяется в твердотельном активном элементе 3 свободным образом. Оптическая система для заведения усиливаемого лазерного излучения 7 представляет собой сферическую линзу или систему сферических линз, фокусирующих излучение вдоль оси твердотельного активного элемента 3 в точку перед твердотельным активным элементом 3 так, что диаметр пучка усиливаемого лазерного излучения увеличивается по мере своего распространения в твердотельном активном элементе 3 пропорционально увеличению диаметра твердотельного активного элемента 3. Таким образом, площадь сечения пучка усиливаемого лазерного излучения в твердотельном активном элементе 3 прямо пропорциональна площади сечения твердотельного активного элемента 3:

Slas=k*S(z)

где k - коэффициент пропорциональности. Для эффективного извлечения запасенной мощности из твердотельного активного элемента 3 при минимальных дифракционных потерях на его краях диаметр пучка усиливаемого лазерного излучения должен составлять от 40% до 60% от диаметра твердотельного активного элемента 3 в каждой точке твердотельного активного элемента 3 по оси z.

Мощность усиливаемого лазерного излучения Plas по мере распространения в твердотельном активном элементе 3 (против оси z) растет по экспоненциальному закону из-за усиления:

Plas=Plas0exp(αlas(L-z)),

где Plas0 - мощность усиливаемого лазерного излучения на входе в твердотельный активный элемент 3, αlas - коэффициент усиления. С учетом того, что площадь сечения твердотельного активного элемента 3 вдоль оси z спадает по экспоненциальному закону, интенсивность усиливаемого лазерного излучения в каждой точке вдоль оси z находится по формуле:

Таким образом, интенсивность усиливаемого лазерного излучения не зависит от z в отличие от прототипа, что позволяет, за счет однородного распределения интенсивностей излучения накачки и усиливаемого лазерного излучения вдоль оси z, более эффективно в сравнении с прототипом извлечь запасенную мощность вдоль всей длины твердотельного активного элемента 3.

Полученная зависимость интенсивности усиливаемого лазерного излучения от координаты позволяет оценить увеличение коэффициента усиления (Kотн) для твердотельного активного элемента с экспоненциальной формой образующей боковой поверхности по сравнению с твердотельным активным элементом, имеющим форму усеченного прямого кругового конуса. Величина Kотн зависит от отношения интегралов от распределений интенсивности вдоль продольной координаты z для каждого из профилей боковой поверхности. Для конкретного случая, в котором величины диаметров большей и меньшей круговых торцевых граней составляют 1 мм и 0,3 мм, использование экспоненциальной формы образующей боковой поверхности позволяет увеличить коэффициент усиления на 25%.

Это позволяет более эффективно использовать схему усилителя, в которой усиливаемое лазерное излучение проходит через твердотельный активный элемент 3 только один раз. Кроме того, как и в прототипе, при усилении лазерных импульсов до больших энергий увеличение диаметра пучка усиливаемого лазерного излучения по мере распространения в твердотельном активном элементе 3 позволяет уменьшить В-интеграл усилителя и вероятность оптического пробоя в толще твердотельного активного элемента 3 и на его торцах. Благодаря этому усилитель может быть использован без схемы усиления чирпированных импульсов для получения импульсов с большой энергией.

Система охлаждения 6 отводит тепло с боковой поверхности активного элемента 3. Разделение излучения накачки и усиливаемого лазерного излучения осуществляется с применением дихроичного зеркала 8, которое пропускает излучение накачки и отражает усиливаемое лазерное излучение или наоборот.

В усилителе лазерного излучения по п. 2 слой материала 5, обеспечивающий волноводное распространение излучения накачки, выполнен из металла. Данное покрытие многократно отражает излучение накачки и обеспечивает его волноводное распространение.

В усилителе лазерного излучения по п. 3 слой материала 5, обеспечивающий волноводное распространение излучения накачки, является диэлектрической оболочкой с меньшим, чем у твердотельного активного элемента 3, показателем преломления. Данная оболочка обеспечивает волноводное распространение излучения накачки за счет эффекта полного внутреннего отражения на границе твердотельного активного элемента 3 и оболочки.

В усилителе лазерного излучения по п. 4 система охлаждения 6 твердотельного активного элемента 3 устроена так, что боковая поверхность активного элемента 3 омывается охлаждающей жидкостью с меньшим показателем преломления, чем у активного элемента, и в качестве слоя материала 5, обеспечивающего волноводное распространение излучения накачки, выступает слой жидкости, циркулирующей в системе охлаждения 6. Охлаждающая жидкость обеспечивает волноводное распространение излучения накачки за счет эффекта полного внутреннего отражения на границе активного элемента 3 и охлаждающей жидкости.

В усилителях лазерного излучения по п. 3 и п. 4 оптическая система для заведения излучения накачки в твердотельный активный элемент 3 устроена так, чтобы угол падения излучения на боковую поверхность активного элемента был больше критического угла полного внутреннего отражения.

Таким образом, предлагаемый усилитель лазерного излучения, как и прототип, способен работать при высокой средней и пиковой мощности с высоким качеством пучка, но за счет специальной геометрии активного элемента позволяет обеспечивать больший по сравнению с прототипом коэффициент усиления и более эффективное извлечение запасенной мощности вдоль всей длины активного элемента при одном проходе излучения накачки и усиливаемого лазерного излучения через активный элемент усилителя. Как и в прототипе, в таком однопроходном усилителе лазерного излучения отпадает необходимость использования нескольких источников накачки и сложных оптических систем для заведения и разделения пучков лазерного излучения и излучения накачки, а также схемы усиления чирпированных импульсов, что существенно упрощает и удешевляет конструкцию усилителя.


Усилитель лазерного излучения с большим коэффициентом усиления, высокой средней и пиковой мощностью и высоким качеством выходного пучка
Усилитель лазерного излучения с большим коэффициентом усиления, высокой средней и пиковой мощностью и высоким качеством выходного пучка
Усилитель лазерного излучения с большим коэффициентом усиления, высокой средней и пиковой мощностью и высоким качеством выходного пучка
Усилитель лазерного излучения с большим коэффициентом усиления, высокой средней и пиковой мощностью и высоким качеством выходного пучка
Источник поступления информации: Роспатент

Показаны записи 21-30 из 64.
19.01.2018
№218.016.0113

Способ определения параметра оптической анизотропии кубического монокристалла, относящегося к классу симметрии m3m, 43m или 432

Способ определения параметра оптической анизотропии кубического монокристалла, относящегося к классу симметрии m3m, или 432, в котором производят измерение распределения локальной степени деполяризации лазерного излучения, прошедшего через цилиндрический образец кубического монокристалла с...
Тип: Изобретение
Номер охранного документа: 0002629700
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.02e3

Электронный свч прибор

Изобретение относится к области электронной СВЧ-техники. Электронный СВЧ-прибор большой мощности пролетного типа включает выполненный из материала с низкой электропроводностью вакуумный корпус, магнитную систему формирования и транспортировки электронного пучка, выполненный отдельно от...
Тип: Изобретение
Номер охранного документа: 0002630251
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.03bb

Способ дистанционного определения скорости морского течения

Изобретение относится к радиолокационным методам мониторинга морской поверхности с целью дистанционного определения скорости морских течений в приповерхностном слое. Достигаемый технический результат – повышение точности измерений малогабаритной и мобильной аппаратурой. Способ позволяет...
Тип: Изобретение
Номер охранного документа: 0002630412
Дата охранного документа: 07.09.2017
20.01.2018
№218.016.1061

Устройство получения направленного экстремального ультрафиолетового излучения с длиной волны 11,2 нм ±1% для проекционной литографии высокого разрешения

Изобретение относится к области оптического приборостроения и касается устройства получения направленного экстремального ультрафиолетового излучения с длиной волны 11.2 нм ±1% для проекционной литографии высокого разрешения. Устройство включает в себя гиротрон, генерирующий пучок излучения...
Тип: Изобретение
Номер охранного документа: 0002633726
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.138f

Источник нейтронов ограниченных размеров для нейтронной томографии

Заявленное изобретение относится к источнику нейтронов ограниченных размеров для нейтронной томографии, а именно к «точечному» источнику нейтронов с характерными размерами меньше 100 мкм с потоком нейтронов на уровне 1010 нейтр⋅с-1. В заявленном устройстве нейтроны образуются в результате...
Тип: Изобретение
Номер охранного документа: 0002634483
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.13c9

Способ идентификации переменного морского течения по данным радиолокационных наблюдений

Изобретение относится к радиолокационным методам изучения водной поверхности с целью обнаружения переменных течений. Достигаемый технический результат заключается в том, что способ позволяет идентифицировать переменные во времени и пространстве морские течения, которые на масштабах порядка...
Тип: Изобретение
Номер охранного документа: 0002634592
Дата охранного документа: 01.11.2017
17.02.2018
№218.016.2e1b

Способ вывода из осаждённого из газовой фазы алмаза электромагнитного излучения центров окраски

Способ вывода из осаждённого из газовой фазы алмаза электромагнитного излучения центров окраски, в котором у поверхности алмазного образца формируется собирающая излучение центров окраски оптическая система, состоящая из конуса с круглым основанием из оптического стекла, окружающего конус...
Тип: Изобретение
Номер охранного документа: 0002643694
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.367d

Изолятор фарадея с переменным направлением поля магнитной системы

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров ближнего и среднего ИК-диапазона. Изолятор Фарадея с переменным направлением поля магнитной системы содержит последовательно расположенные на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002646551
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36d4

Способ монтажа дискового активного элемента на высокотеплопроводный радиатор

Изобретение относится к лазерной технике и может быть использовано для изготовления дисковых активных элементов мощных лазеров, обеспечивающих эффективное охлаждение активной среды. В способе согласно изобретению на активный элемент наносят с торцов диэлектрические отражающие и просветляющие...
Тип: Изобретение
Номер охранного документа: 0002646431
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.4420

Сильноточный источник пучка ионов на основе плазмы электронно-циклотронного резонансного разряда, удерживаемой в открытой магнитной ловушке

Изобретение относится к области формирования сильноточных пучков ионов путем их экстракции из плотной плазмы ЭЦР разряда, создаваемой в открытой магнитной ловушке мощным излучением миллиметрового диапазона длин волн. Сильноточный источник пучков ионов на основе плазмы электронно-циклотронного...
Тип: Изобретение
Номер охранного документа: 0002649911
Дата охранного документа: 05.04.2018
Показаны записи 21-30 из 33.
29.12.2017
№217.015.f3c7

Изолятор фарадея с кристаллическим магнитооптическим ротатором для лазеров большой мощности

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения. Изолятор Фарадея для лазеров большой мощности с изготовленным из кристалла некубической сингонии магнитооптическим...
Тип: Изобретение
Номер охранного документа: 0002637363
Дата охранного документа: 04.12.2017
19.01.2018
№218.016.0113

Способ определения параметра оптической анизотропии кубического монокристалла, относящегося к классу симметрии m3m, 43m или 432

Способ определения параметра оптической анизотропии кубического монокристалла, относящегося к классу симметрии m3m, или 432, в котором производят измерение распределения локальной степени деполяризации лазерного излучения, прошедшего через цилиндрический образец кубического монокристалла с...
Тип: Изобретение
Номер охранного документа: 0002629700
Дата охранного документа: 31.08.2017
04.04.2018
№218.016.367d

Изолятор фарадея с переменным направлением поля магнитной системы

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров ближнего и среднего ИК-диапазона. Изолятор Фарадея с переменным направлением поля магнитной системы содержит последовательно расположенные на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002646551
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36d4

Способ монтажа дискового активного элемента на высокотеплопроводный радиатор

Изобретение относится к лазерной технике и может быть использовано для изготовления дисковых активных элементов мощных лазеров, обеспечивающих эффективное охлаждение активной среды. В способе согласно изобретению на активный элемент наносят с торцов диэлектрические отражающие и просветляющие...
Тип: Изобретение
Номер охранного документа: 0002646431
Дата охранного документа: 05.03.2018
25.06.2018
№218.016.660b

Способ и устройство передачи дискретной информации для быстродвижущихся объектов

Изобретение относится к области специальной радиотехники и может быть использовано в цифровых системах связи для обмена информацией между быстродвижущимися объектами. Наличие доплеровского эффекта существенно снижает отношение сигнал/помеха на выходе системы, что особенно важно для...
Тип: Изобретение
Номер охранного документа: 0002658649
Дата охранного документа: 22.06.2018
29.04.2019
№219.017.4468

Оптический вентиль с компенсацией термонаведенной деполяризации для лазеров большой мощности

Оптический вентиль содержит последовательно расположенные на оптической оси поляризатор, магнитооптический ротатор, установленный в магнитной системе, и анализатор. При этом магнитооптический ротатор изготовлен в виде двух фарадеевских элементов, поворачивающих плоскость поляризации на 22,5°...
Тип: Изобретение
Номер охранного документа: 0002458374
Дата охранного документа: 10.08.2012
09.05.2019
№219.017.49a4

Активный элемент дискового лазера с системой охлаждения

Изобретение относится к лазерной технике. Сущность заключается в раздельном охлаждении внутренней и внешней части дискового активного элемента либо путем торцевого присоединения внутренней и внешней его части к охлаждающим радиаторам с различной температурой, либо прикреплением внутренней части...
Тип: Изобретение
Номер охранного документа: 0002687088
Дата охранного документа: 07.05.2019
31.05.2019
№219.017.7012

Лазер с модуляцией добротности резонатора и стабилизацией выходных импульсов (варианты)

Изобретение относится к лазерной технике и может быть использовано для конструирования импульсных лазеров с модуляцией добротности. Блок накачки, осуществляющий работу в постоянном режиме, выполнен автономным от задающего генератора, блок управления содержит источник промежуточного напряжения,...
Тип: Изобретение
Номер охранного документа: 0002689846
Дата охранного документа: 29.05.2019
01.06.2019
№219.017.7263

Изолятор фарадея для лазеров с высокой средней мощностью излучения

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения. Изолятор содержит магнитооптический ротатор, установленный в магнитной системе и представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002690037
Дата охранного документа: 30.05.2019
19.06.2019
№219.017.8b89

Способ и устройство прогнозирования нестационарного временного ряда

Изобретение относится к области радиотехники и может быть использовано для прогнозирования данных в системах различного назначения. Технический результат изобретения - повышение помехоустойчивости процесса прогнозирования в условиях влияния аддитивной помехи и выраженном нестационарном...
Тип: Изобретение
Номер охранного документа: 0002467383
Дата охранного документа: 20.11.2012
+ добавить свой РИД