×
04.02.2020
220.017.fd88

Результат интеллектуальной деятельности: Способ получения диопсидного стекла (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения на основе минерального сырья доломита (CaMg(CO)) и диоксида кремния (чистого кварцевого песка) диопсидного стекла, близкого к составу MgCaSiO, с различными функциональными свойствами, в частности, для получения люминесцентных и окрашенных диопсидных стекол с добавками редкоземельных оксидов, которые могут быть использованы для изготовления изделий промышленного, ювелирного и декоративно-художественного назначения. Способ включает подготовку шихты термообработкой смеси из минерального сырья доломита и диоксида кремния в мольном соотношении 1:2 в открытом алундовом тигле путем нагрева до 1200°С, плавку подготовленной шихты в стеклоуглеродном тигеле в инертной атмосфере с использованием высокочастотного нагрева с перегревом расплава до 1600-1700°С до осветления расплава и закалку расплава в режиме выключенной печи. Редкоземельные оксиды, такие как празеодим, неодим, самарий, европий, тербий или диспрозий, вводят в состав подготовленной шихты в количестве 1-30 мас.%. Применение доломита упрощает подготовку шихты, поскольку доломит содержит в своем составе соотношение кальция и магния, близкое как в диопсиде и необходимое для получения диопсидного стекла. 2 н. и 2 з.п. ф-лы, 3 табл., 3 ил.

Изобретение относится к способу получения на основе минерального сырья доломита (CaMg(CO3)2) и диоксида кремния (чистого кварцевого песка) диопсидного стекла, близкого к составу MgCaSi2O6, с различными функциональными свойствами, в частности, для получения люминесцентных и окрашенных диопсидных стекол с добавками редкоземельных оксидов, которые могут быть использованы для изготовления изделий промышленного, ювелирного и декоративно-художественного назначения, а также в производстве стекло - керамических изделий.

Чистый беспримесный диопсид имеет химическую формулу MgCaSi2O6, представляет собой кристаллический порошок белого цвета, в виде кристаллов - это бесцветные прозрачные образцы.

Использование доломита в стекольной промышленности широко известно и обусловлено введением в состав шихты для промышленных стекол оксида магния в концентрациях, не превышающих 5 масс. % для повышения прочности и химической стойкости стекол [Новый справочник химика и технолога. Сырье и продукты промышленности органических и неорганических веществ. Часть I, раздел 7 Стекло, 7.3. Состав промышленных стекол различного назначения - СПб: "Мир и Семья", 2002, 988 с.]. Поэтому в состав шихты для стекол доломит, как источник оксида магния, вводится в малых концентрациях, содержание оксида кальция регулируется добавками извести. Качество доломита для промышленных стекол определено ГОСТом 23672-79* Доломит для стекольной промышленности. Технические условия.

При получении специальных стекол доломит в состав шихты вводится в больших концентрациях. Так, например, в патенте [US 2961328 Refractory glass composition, опубл. 22.11.1960, МПК: С03С 3/076, С03С 3/102] для получения специальных многокомпонентных тугоплавких стекол, предназначенных для использования при высоких рабочих температурах и устойчивых к повреждению от ядерного излучения, вводят в состав шихты до 7-30% кальция и магния оксидов в форме доломита. Известен состав шихты для цветного стекла, включающий в состав шихты применение порядка 25 масс. % доломита (магний-кальциевого карбоната) наряду с песком и известью и добавок, понижающих температуру плавления шихты и окрашивающих [RU 2569942, Шихта для получения цветного стекла, опубл. 10.12.2015, МПК: С03С 6/04]. Известен также состав, включающий доломит, песок и известь и добавки, содержащие железо, для получения зеленого стекла для автомобильных и архитектурных остеклений, поглощающего инфракрасное и ультрафиолетовое излучения [ЕР 465645 BATCH COMPOSITION FOR MAKING INFRARED AND ULTRAVIOLET RADIATION ABSORBING GREEN GLASS, опубл. 15.01.1992, МПК: C03C 3/087, C03C 3/095, С03С 4/02, С03С 4/08, С03 6/04].

Чистый доломит с кремневой кислотой используют для получения гидротермальным способом кристаллического порошка диопсида, пригодного для использования как сырье в керамической промышленности [US 3652207 PROCESS FOR THE PRODUCTION OF SYNTHETIC DIOPSIDE, опубл. 28.03.1972, МПК: C04B 35/16, C04B 35/20, C01B 33/00, C01B 33/24, C04B 33/26]. Применение же таким образом приготовленного диопсида для получения диопсидного стекла экономически невыгодно из-за сложности гидротермального процесса, включающего предварительную декарбонизацию с превращением доломита в порошковую смесь оксидов магния и кальция.

Люминесценция на порошках синтезированного MgCaSi2O6:Ln (допированного диопсида) изучена в работе [Sahu Ishwar Prasad // J Mater Sci: Mater Electron, 2016, V. 27, P. 10353-10363] для редкоземельных ионов (Се3+, Sm3+, Eu3+, Eu2+, Dy3+, Tb3+) излучающих в видимой области спектра. Высказана перспективность применения люминофоров на основе диопсида для диодных источников света.

Люминесценция редкоземельных ионов в диопсидных стеклах состава MgCaSi2O6 не изучена. Имеются сведения о люминесценции в многокомпонентной стеклокерамике [Jinshu Cheng, Peijing Tian,Weihong Zheng, Jun Xie, Zhenxia Chen // Journal of Alloys and Compounds 471 (2009) 470-473; Peijing Tian, Jinshu Cheng, Gaoke Zhanga, Zhenxia Chen, and Qian Wang // Glass Physics and Chemistry, 2010, Vol. 36, No. 4, pp. 431-435], включающей зерна диопсидного стекла с более ярким свечением, которые скорее всего по составу относятся к примесному легкоплавкому диопсидному стеклу и закристаллизованной при 1000°С фазе диопсида с примесями, поскольку известно о большой растворимости оксидов металлов в диопсиде.

Для проведения структурных исследований расплавов вдоль ряда соединений MgSiO3-CaSiO3 при быстром охлаждении (закалке) расплава получены прозрачные стекла состава (Ca2xMg2-2xSi2O6, где х=0, 0,25, 0,75 и 1. [Cormier L., Cuello G.J. // Geochimica et Cosmochimica Acta, 2013, V. 122, P. 498-510]. Для получения расплава используют шихту в составе SiO2, MgO и СаСО3, которую предварительно подвергают декарбонизации в течение ночи при 800°С, затем плавят на воздухе при температуре на 100 С выше температуры плавления в течение часа в платино-родиевом тигле. Проводят закалку дна тигля с расплавом в воду и получают стекла. Этот способ получения диопсидного стекла пригоден для исследовательских целей и не является технологичным: длительное время декарбонизации, использование дорогостоящей платины и дорогих реактивов, нетехнологичность проведения процесса закалки расплава.

Технической задачей является разработка экономичного способа получения, как чистого диопсидного стекла, близкого к составу MgCaSi2O6, так и, содержащих добавки редкоземельных оксидов для получения люминесцентных и цветных диопсидных стекол, пригодных для изготовления изделий промышленного, ювелирного и декоративно-художественного назначения, а также в производстве стекло - керамических изделий.

Технический результат изобретения достигается за счет использования шихты, содержащей минералообразующие компоненты диопсида - минеральное сырье беспримесный доломит CaMg(CO3)2 и кварцевый песок в соотношении 1:2 мол. %, которую предварительно декарбонизируют нагреванием до 800°С со скоростью 20-30°С/мин с последующим медленным нагревом со скоростью 3-4°С/мин до 1000°С, выдерживают при этой температуре не менее часа, затем нагревают до 1200°С в течение часа с последующей выдержкой в течение не менее 2 часов, при этом шихту гомогенизируют перетиранием в процессе выдержки при 1000°С и 1200°С, затем шихту загружают в стеклоуглеродный тигель и плавят в инертной атмосфере с использованием высокочастного нагрева с перегревом расплава до 1600°С, после осветления расплава проводят закалку расплава в режиме выключенной печи.

Технический результат достигается также за счет введения в шихту, содержащую минералообразующие компоненты диопсида - минеральное сырье беспримесный доломит CaMg(CO3)2 и кварцевый песок в соотношении 1:2 мол. %, редкоземельных оксидов в количестве от 1 до 30 масс. %. Шихту, содержащую доломит и кварцевый песок, предварительно декарбонизируют нагреванием до 800°С со скоростью 20-30°С/мин с последующим медленным нагревом со скоростью 3-4°С/мин до 1000°С, выдержкой при этой температуре не менее часа, затем нагревают до 1200°С в течение часа с последующей выдержкой в течение не менее 2 часов, при этом шихту гомогенизируют перетиранием в процессе выдержки при 1000°С и 1200°С.

После введения редкоземельных оксидов шихту гомогенизируют, затем загружают в стеклоуглеродный тигель и плавят в инертной атмосфере с использованием высокочастного нагрева с перегревом расплава до 1600-1700°С, после осветления расплава проводят закалку расплава в режиме выключенной печи.

В качестве редкоземельного оксида используют оксид празеодима, или неодима, или самария, или европия, или тербия или диспрозия. Для получения люминесцентных стекол в состав шихты вводят от 1 до 5 масс. % редкоземельного оксида: Pr, или Nd, или Sm, или Eu, или Tb или Dy, ионы которых излучают в видимой области спектра. Для получения окрашенных стекол в состав шихты вводят от 5 до 30 масс. % редкоземельного оксида: Pr, или Nd или Ей, ионы которых придают стеклу зеленую, сиреневую, красного оттенка окраску, при этом перегрев расплава повышают до 1700°С с последующей закалкой отключением индукционного нагрева.

Прозрачность и однородность полученных стекол показана на фиг. 1. На фиг. 2 представлены спектры люминесценции диопсидных стекол, допированных редкоземельными оксидами (3 масс. %) при возбуждении λ=300 нм. На фиг. 3 представлены спектры диффузного отражения (СДО) порошков растертых стекол: 1-30 масс. % оксида празеодима; 2-10 масс. % оксида европия; 3-30 масс. % оксида европия.

Суть предлагаемого изобретения раскрывается примерами.

Для приготовления шихты использован белый доломит марки ДК-19-0,5 (Карьер Таензинский, Шерегеш), практически не содержащий примеси железа. По результатам элементного анализа он представляет собой беспримесный магний кальциевый карбонат состава Mg1-xCa(CO3)2. Результаты элементного анализа представлены в таблице 1.

Пример 1. 10 г измельченного и просеянного доломита смешивают с 6,52 г порошкового диоксида кремния, марки чда (ГОСТ 9428-73). Смесь компонентов в алундовом тигле предварительно подвергалась термической обработке путем быстрого нагрева со скоростю 20-30°С/мин до 800°С с последующим медленным нагревом со скоростью 3-4°С/мин до 1000°С, одночасовой выдержкой при 1000°С, чтобы процесс разложения карбоната был неинтенсивным и не произошло выброса шихты из тигля за счет газовыделения. Последующий нагрев до 1200°С в течении 1 часа с выдержкой в течение 2 часов и перетирание шихты в процессе выдержки при 1000°С и 1200°С обеспечивает дополнительную гомогенизацию смеси, окончательное удаление газовых примесей и доведение шихты до постоянного веса. По результатам рентгенофазового анализа шихта представляет собой смесь оксидов магния, кальция и кремния, возможно, с пассивацией поверхности оксидов магния и кальция тонкой пленкой диопсида, поскольку при хранении, таким образом подготовленной шихты, не наблюдали изменения ее веса. После охлаждения шихта готова к хранению и использованию для плавки и получению диопсидного стекла. Для получения диопсидного стекла 3 г шихты помещают в стеклоуглеродный тигель диаметром 15 мм высотой 60 мм. Плавку шихты осуществляют с использованием индукционного нагрева до 1600°С до осветления расплава и последующей закалки расплава в режиме выключенной печи. Известно, что индукционный нагрев создает магнитное поле, способствующее перемешиванию расплава и получению при закалке однородных стекол. В таблице 2 представлены результаты анализа диопсидного стекла.

Пример 2. В 3 г шихты приготовленной согласно примеру 1 вводится от 1 до 5 масс. % оксида редкоземельного элемента: Pr, или Nd, или Sm, или Eu, или Tb или Dy. Смеси после тщательного перемешивания готовы для получения стекол с люминесцентными свойствами. Стекла получены закалкой расплава шихты от 1600°С, спектры люминесценции которых, представлены на фиг. 2.

Пример 3. В 3 г шихты, приготовленной согласно примеру 1, вводят от 5 до 30 масс. % оксида прозеодима, или оксида неодима или оксида европия. Смеси после тщательного перемешивания готовы для получения ярко окрашенных диопсидных стекол. Стекла получены закалкой расплава шихты от 1700°С с характерным для редкоземельных ионов, соответственно, зеленым, сиреневым или красного оттенка цветом (фиг. 1).

Цветовые характеристики ряда цветных диопсидных стекол, полученных из спектров диффузного отражения (СДО) порошков растертых стекол (фиг. 3), представлены в таблице 3.

Параметры цвета, вычисленные из СДО в соответствии с ГОСТ Р 52489-2005 и ГОСТ Р 52662-2006. Источник света: D65. Наблюдатель 10° (1964 г.).


Способ получения диопсидного стекла (варианты)
Способ получения диопсидного стекла (варианты)
Источник поступления информации: Роспатент

Показаны записи 21-30 из 30.
10.12.2019
№219.017.ebdb

Способ получения цветного хромдиопсидового стекла (варианты)

Изобретение относится к использованию минерального сырья хромдиопсида (магний-кальциевый силикат состава MgCaSiO, содержащий примесь хрома) для получения ювелирного поделочного материала в виде плавленых цветных однородных окрашенных стеклообразных образцов. Зеленое хромдиопсидовое стекло...
Тип: Изобретение
Номер охранного документа: 0002708438
Дата охранного документа: 06.12.2019
27.12.2019
№219.017.f31b

Фотолюминесцентный материал редкоземельного ортобората и способ его получения

Изобретение может быть использовано при изготовлении экологически чистых источников света. Сначала готовят исходную смесь следующих компонентов, мол.%: карбонат калия KCO - 12,5; карбонат кальция CaCO - 25; борную кислоту НВО - 50 и оксид редкоземельного элемента неодима NdO - 12,5. Полученную...
Тип: Изобретение
Номер охранного документа: 0002710191
Дата охранного документа: 24.12.2019
09.06.2020
№220.018.25c3

Фотолюминесцентный материал на основе сложного бората

Изобретение относится к химической промышленности. Фотолюминесцентный материал на основе сложного бората, допированного тербием, относится к пространственной группе Р-1 триклинной сингонии, имеет состав LiBaScBO:0,1Tb, параметры решетки а=5,2231 b=8,5640 с=11,4209 α=73,362°, β=78,566°,...
Тип: Изобретение
Номер охранного документа: 0002723028
Дата охранного документа: 08.06.2020
14.05.2023
№223.018.56d1

Способ выращивания кристалла из испаряющегося раствор-расплава

Изобретение относится к технологии получения кристаллов из испаряющихся (летучих) растворов-расплавов. Кристалл KCaNd(BO) выращивают из испаряющегося раствор-расплава путем контроля степени пересыщения раствор-расплава, при этом сначала подготавливают поликристаллический образец KCaNd(BO),...
Тип: Изобретение
Номер охранного документа: 0002732513
Дата охранного документа: 18.09.2020
15.05.2023
№223.018.57a5

Способ получения кристаллов алмаза из расплава щелочноземельного карбоната

Изобретение относится к способу получения кристаллов алмаза из расплава щелочноземельного карбоната, при высоких давлении и температуре, включающему восстановление углерода в расплаве. Способ характеризуется тем, что восстановление углерода проводят электрохимическим методом в расплаве...
Тип: Изобретение
Номер охранного документа: 0002766962
Дата охранного документа: 16.03.2022
15.05.2023
№223.018.5c46

Фотолюминесцентный материал скандобората самария smsc(bo)

Изобретение относится к фотолюминесцентному материалу на основе скандобората самария формулы SmSc(BO), излучающего свет от 566 до 708 нм, кристаллизующегося в тригональной сингонии с пространственной группой с параметрами элементарной ячейки а = 4.8923(4) , с = 16.3003(13) . Скандоборат...
Тип: Изобретение
Номер охранного документа: 0002753258
Дата охранного документа: 12.08.2021
15.05.2023
№223.018.5c47

Фотолюминесцентный материал скандобората самария smsc(bo)

Изобретение относится к фотолюминесцентному материалу на основе скандобората самария формулы SmSc(BO), излучающего свет от 566 до 708 нм, кристаллизующегося в тригональной сингонии с пространственной группой с параметрами элементарной ячейки а = 4.8923(4) , с = 16.3003(13) . Скандоборат...
Тип: Изобретение
Номер охранного документа: 0002753258
Дата охранного документа: 12.08.2021
15.05.2023
№223.018.5c6b

Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения

Изобретение относится к получению экологически чистых источников света и люминофоров. Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария состава SmSc(BO) нецентросимметричной моноклинной структуры имеет пространственную группу Сс с параметрами решетки...
Тип: Изобретение
Номер охранного документа: 0002759536
Дата охранного документа: 15.11.2021
15.05.2023
№223.018.5c6c

Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения

Изобретение относится к получению экологически чистых источников света и люминофоров. Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария состава SmSc(BO) нецентросимметричной моноклинной структуры имеет пространственную группу Сс с параметрами решетки...
Тип: Изобретение
Номер охранного документа: 0002759536
Дата охранного документа: 15.11.2021
16.05.2023
№223.018.6222

Фотолюминесцентный материал состава nasryb(bo) и способ его получения

Изобретение относится к люминофорам с общей формулой АВС(ВО), где А, В, С - катионы щелочных, щелочноземельных и редкоземельных металлов, излучающих свет в инфракрасной области. Фотолюминесцентный материал состава NaSrYb(BO) излучает свет в инфракрасной области в диапазоне от 950 до 1050 нм и...
Тип: Изобретение
Номер охранного документа: 0002786154
Дата охранного документа: 19.12.2022
Показаны записи 21-24 из 24.
15.05.2023
№223.018.5c47

Фотолюминесцентный материал скандобората самария smsc(bo)

Изобретение относится к фотолюминесцентному материалу на основе скандобората самария формулы SmSc(BO), излучающего свет от 566 до 708 нм, кристаллизующегося в тригональной сингонии с пространственной группой с параметрами элементарной ячейки а = 4.8923(4) , с = 16.3003(13) . Скандоборат...
Тип: Изобретение
Номер охранного документа: 0002753258
Дата охранного документа: 12.08.2021
15.05.2023
№223.018.5c6b

Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения

Изобретение относится к получению экологически чистых источников света и люминофоров. Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария состава SmSc(BO) нецентросимметричной моноклинной структуры имеет пространственную группу Сс с параметрами решетки...
Тип: Изобретение
Номер охранного документа: 0002759536
Дата охранного документа: 15.11.2021
15.05.2023
№223.018.5c6c

Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения

Изобретение относится к получению экологически чистых источников света и люминофоров. Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария состава SmSc(BO) нецентросимметричной моноклинной структуры имеет пространственную группу Сс с параметрами решетки...
Тип: Изобретение
Номер охранного документа: 0002759536
Дата охранного документа: 15.11.2021
16.05.2023
№223.018.6222

Фотолюминесцентный материал состава nasryb(bo) и способ его получения

Изобретение относится к люминофорам с общей формулой АВС(ВО), где А, В, С - катионы щелочных, щелочноземельных и редкоземельных металлов, излучающих свет в инфракрасной области. Фотолюминесцентный материал состава NaSrYb(BO) излучает свет в инфракрасной области в диапазоне от 950 до 1050 нм и...
Тип: Изобретение
Номер охранного документа: 0002786154
Дата охранного документа: 19.12.2022
+ добавить свой РИД