×
17.01.2020
220.017.f677

Способ формирования трубчатого канального волновода и установка для его осуществления

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002711001
Дата охранного документа
14.01.2020
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области оптического приборостроения и касается способа формирования в образце оптического материала оболочки трубчатого канального волновода. Способ осуществляется путем локального уменьшения показателя преломления материала в рабочей области перетяжки сфокусированного излучения фемтосекундного лазера, перемещаемой относительно образца по цилиндрической спирали, создаваемой эллиптическими перемещениями образца в поперечном сечении волновода с осями Y-Z и продольным перемещением образца вдоль оси X волновода. Ось лазерного пучка лежит в плоскости Y-Z параллельно поперечной оси Z волновода. Сечение перетяжки в плоскости Y-Z образуют путем асимметричной дефокусировки лазерного пучка в направлении узкой оси Y перетяжки до размера, необходимого для образования равнотолщинной оболочки по всему ее периметру. Технический результат заключается в обеспечении возможности создания трубчатого канального волновода с равностенной оболочкой неограниченной длины при минимальных потерях передаваемой через волновод энергии. 3 н.п. ф-лы, 5 ил.
Реферат Свернуть Развернуть

Изобретение относится к оптическим волноводам, в частности, к трубчатым канальным волноводам, выполненным в составе оптического материала.

Известна техника формирования оптических структур в стеклах и кристаллах путем воздействия на них сфокусированным излучением фемтосекундных лазеров, в том числе формирования канальных волноводов [1-4].

Наиболее близким по технической сущности к заявляемому решению является способ формирования в образце оптического материала трубчатого канального волновода путем локального уменьшения показателя преломления материала в рабочей области перетяжки сфокусированного излучения фемтосекундного лазера, перемещаемой относительно образца по цилиндрической спирали, создаваемой эллиптическими относительными перемещениями образца в поперечном сечении волновода с осями Y-Z и продольным перемещением образца вдоль оси X волновода, причем, ось лазерного пучка лежит в плоскости Y-Z параллельно поперечной оси Z волновода, плотность энергии лазерного импульса в рабочей области перетяжки лазерного пучка превышает пороговое значение, при котором происходит изменение показателя преломления материала, и при этом скорость сканирования перетяжки такова, что области изменения показателя преломления, создаваемые последовательными лазерными импульсами, перекрываются [4].

Данный способ характеризуется асимметрией рабочей области перетяжки лазерного пучка, приводящей к неравностенности формируемой оболочки волновода. Для предотвращения этого вводят лазерное излучение в образец параллельно оси волновода [4, Fig 1 с)]. Однако при таком решении существенно ограничена длина волновода. В указанном источнике длина сформированного волновода составляет всего 4,7 мм.

Задачей настоящего изобретения является создание трубчатого канального волновода с равностенной оболочкой неограниченной длины при минимальных потерях передаваемой через волновод энергии.

Указанная задача решается за счет того, что в известном способе формирования в образце оптического материала оболочки трубчатого канального волновода путем локального уменьшения показателя преломления материала в рабочей области перетяжки сфокусированного излучения фемтосекундного лазера, перемещаемой относительно образца по цилиндрической спирали, создаваемой эллиптическими перемещениями

образца в поперечном сечении волновода с осями Y-Z и продольным перемещением образца вдоль оси X волновода, причем, ось лазерного пучка лежит в плоскости Y-Z параллельно поперечной оси Z волновода, плотность энергии лазерного импульса в рабочей области перетяжки лазерного пучка превышает пороговое значение, при котором происходит изменение показателя преломления материала, сечение перетяжки в плоскости Y-Z образуют путем асимметричной дефокусировки лазерного пучка в направлении узкой оси Y перетяжки до размера, необходимого для образования нужной толщины оболочки по всему ее периметру.

Предлагаемый способ может быть осуществлен на установке для формирования трубчатого канального волновода в образце оптического материала, содержащей источник фемтосекундного лазерного излучения, объектив с фокусным расстоянием F, столик для крепления образца оптического материала с возможностью продольной подвижки вдоль оси X и эллиптического сканирования образца в плоскости Z-Y, перед объективом введена цилиндрическая линза с фокусным расстоянием где d - расстояние между главными плоскостями объектива и цилиндрической линзы, Dо - световой диаметр объектива, k=dY/dZ, dY - диаметр рабочей области перетяжки в направлении оси Y, dZ - диаметр рабочей области перетяжки в направлении оси Z.

Вместо цилиндрической линзы между источником лазерного излучения и объективом может быть введена щелевая диафрагма с щелью, параллельной оси X, при ширине щели отстоящая от входного зрачка объектива не более, чем на , где λ - длина волны излучения лазера.

На Фиг. 1 показан принцип формирования рабочей области лазерного пучка с помощью цилиндрической линзы в продольном сечении Z-X (Фиг. 1а) и в поперечном сечении Z-Y (Фиг. 1б). Фиг. 2 иллюстрирует сечения траектории рабочей области в плоскости Z-Y при в отсутствии цилиндрической линзы (Фиг. 2а) и с цилиндрической линзой (Фиг. 2б). На Фиг. 3 представлены микрофотографии сформированного торца волновода (Фиг. 3а), записанного с цилиндрической линзой, и вида волновода сбоку (Фиг. 3б). На Фиг. 4 приведена схема установки для реализации способа путем асимметричной дефокусировки лазерного пучка с помощью цилиндрической линзы. Фиг. 5 иллюстрирует зависимость ширины рабочей области перетяжки от размера щелевой диафрагмы, ограничивающей входной пучок по оси X (Фиг. 5а) и по оси Y (Фиг. 5б).

Согласно Фиг. 1 или Фиг. 5 лазерный пучок концентрируется в рабочую область с габаритами dX, dY, dZ, в которой плотность энергии лазерного импульса в рабочей области

перетяжки лазерного пучка превышает пороговое значение, при котором происходит изменение показателя преломления материала. Рабочая область пучка при сканировании образца в плоскости Y-Z образует кольцевую зону в поперечном сечении волновода - неравностенную (Фиг. 2а) при отличающихся значениях dY и dZ и равностенную при их близких значениях (Фиг. 2б). При одновременном продольном вдоль оси X перемещении образца оптического материала внутри него формируется спиральная траектория рабочей области лазерного пучка, вдоль которой образуется трубчатая оболочка волновода толщиной, определяемой габаритами рабочей области (Фиг. 3а и Фиг. 3б).

Установка для формирования волновода (Фиг. 4) содержит лазер 1, и оптическую систему 2, включающую цилиндрическую линзу 3 и объектив 4, в фокусе которой образуется рабочая область перетяжки лазерного пучка 5, расположенная в толще образца оптического материала 6. Рабочая область может совершать круговые движения относительно образца по траектории 7 в плоскости, перпендикулярной оси X путем соответствующих передвижений столика 8, на котором укреплен образец, имеющего возможность поперечного и продольного передвижений образца по трем координатам с помощью трехкоординатного трансляционного стола 9, управляемого программным устройством 10.

Для асимметричной дефокусировки лазерного пучка между лазером и объективом 4 может быть установлена щелевая диафрагма 11 (фиг. 5).

Оптический материал 6, например, активированный неодимом иттрий-алюминиевый гранат, устанавливают на столик 8 так, чтобы направление продольной подачи совпадало с намеченной осью X оптического волновода. Через полированную поверхность образца фокусируют излучение лазера 1 параллельно оси Z с помощью оптической системы 2. При этом рабочая область 5, образуемая перетяжкой сфокусированного лазерного пучка, размещается относительно образца так, чтобы при ее эллиптическом движении, обеспечиваемом трансляционным столом 9, траектория рабочей области совпадала с зоной оболочки волновода. При каждом излучении лазером фемтосекундного импульса в рабочей области лазерного пучка образуется участок оптического материала, отличающийся пониженным значением показателя преломления. Если при этом скорость сканирования перетяжки достаточно мала, так что области изменения показателя преломления, создаваемые отдельными лазерными импульсами, перекрываются, одновременная продольная подача образца 6 позволяет формировать трубчатую оболочку в форме цилиндрической спирали (Фиг. 3).

Толщина оболочки зависит от формы перетяжки 5 лазерного пучка. Обычно рабочая область перетяжки вытянута вдоль оси Z лазерного пучка, и при ее круговом

движении толщина оболочки получается разной в направлении осей Y и X (Фиг. 2а). В направлении оси Y оболочка может оказаться слишком тонкой, что приведет к потерям при передаче энергии по волноводу.

Согласно предлагаемому решению перетяжку лазерного пучка 1 расширяют вдоль оси Y путем его асимметричной дефокусировки, что обеспечивает требуемую равнотолщинность оболочки в ее поперечном сечении (Фиг. 2б). Дефокусировка обеспечивается с помощью цилиндрической линзы 3 (Фиг. 4), образующая которой параллельна оси X, или с помощью щелевой диафрагмы 11, ориентированной параллельно оси X (Фиг. 5).

Цилиндрическая линза вносит астигматизм в лазерный пучок, так что после объектива образуются две перетяжки, первая на дистанции фокусного расстояния объектива F, как и в отсутствии цилиндрической линзы, а вторая на расстоянии Fz. На фиг. 1 изображен пример для случая отрицательной цилиндрической линзы. В этом случае первая перетяжка является рабочей. Расстояние до второй перетяжки Fz может может быть вычислено в приближении геометрической оптики из соотношения: [5]

где Fц - фокусное расстояние цилиндрической линзы (знаки в формуле (1) учитывают отрицательную оптическую силу цилиндрической линзы);

d - расстояние между главными плоскостями объектива и цилиндрической линзы в плоскости Z-Y.

Из (1) следует

Расстояние FZ определяется необходимой степенью дефокусировки лазерного пучка для создания рабочей области с заданным соотношением габаритов dZ и dY (фиг. 1).

Согласно построениям фиг. 1б)

где Do - световой диаметр объектива, откуда

С учетом заданного проектного соотношения dY=kdZ получается расчетная формула

Далее для фокусного расстояния (2) цилиндрической линзы находим:

Пример 1.

F=3,6 мм (определяется параметрами лазерного пучка и оптического материала); D0=4.7 мм; d=50 мм; dz=0,01 мм; 0,5≤k≤2.

При этих данных согласно (5) 3,604 мм ≤ FZ ≤ 3,615 мм.

И в соответствии с (6)

173 мм ≤ F4 ≤ 1642 мм.

Ограничение ширины пучка по оси Y щелевой диафрагмой также обеспечивает построение эллиптического сечения перетяжки пучка после фокусировки объективом, причем диаметр перетяжки по оси X такой же, что и при отсутствии щелевой диафрагмы, а диаметр перетяжки по оси Y dY вычисляется по формуле для диаметра перетяжки Гауссова пучка в фокусе линзы с учетом уменьшения эффективного размера пучка перед объективом вдоль оси Y за счет действия щели [6]:

где λ - длина волны излучения лазера, hY - ширина щелевой диафрагмы, k - проектное соотношение для эллиптичности перетяжки, F - фокусное расстояние объектива.

Щелевая диафрагма должна быть установлена на расстоянии объектива dh, не превышающем половину рэлеевской длины, чтобы дифракционная расходимость пучка увеличила ограниченный ею размер пучка на входе в объектив несущественно.

Пример 2.

F=3,6 мм; dZ=0,01 мм, dh=30 мм, λ=1030 нм. При условии 0,5≤k≤2 ширина рабочей области вдоль оси Y должна быть в диапазоне 0,005<dy<0,02. Далее в соответствии с (7) для ширины щели получаем 0,23 мм < hY < 0,92 мм, при этом половина рэлеевской длины что более чем dh=30 мм.

Благодаря данному техническому решению оболочка волновода формируется более однородным инструментом рабочей области перетяжки лазерного пучка, эллиптичность которого определяется проектным соотношением k, чем обеспечивается высокий коэффициент передачи волновода при любой его длине. При этом габариты

рабочей области минимально необходимы и достаточны для создания требуемой оптической структуры.

Измеренный коэффициент пропускания волновода не превышает 1 Дб/см, что соответствует наилучшим достижениям в данной области.

Тем самым обеспечивается выполнение задачи изобретения - создание трубчатого канального волновода с равностенной оболочкой неограниченной длины при минимальных потерях передаваемой через волновод энергии.

Источники информации

1. Патент WO 2005040874. Laser inscription of optical structures in crystals. 06.05.05.

2. US Pat. 7,132,223. Laser-written cladding for waveguide formations in glass. 07.11 06.

3. US Pat. 10, 201,874. Method and apparatus for realizing tubular optical waveguides in glass by femtosecond laser direct writing. 02.12.19.

4. Gabriela Salamu, Florin Jipa, Marian Zamfirescu, and Nicolaie Pavel 1. Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique. Optical Materials Express, Vol. 4, No. 4. p. 792. - прототип.

5. Панов В.А., Кругер М.Я., Кулагин В.В. и др. Справочник конструктора оптико-механических приборов. Под общ. ред. В. А. Панова. - 3-е изд., перераб. и доп. - Л.: Машиностроение, 1980. - 742 с.

6. K. Moh, Y. Tan, Х.-С.Yuan, D. Low, and Z. Li, "Influence of diffraction by a rectangular aperture on the aspect ratio of femtosecond direct-write waveguides," Optics Express Vol. 13, 7288-7297 (2005).


Способ формирования трубчатого канального волновода и установка для его осуществления
Способ формирования трубчатого канального волновода и установка для его осуществления
Способ формирования трубчатого канального волновода и установка для его осуществления
Способ формирования трубчатого канального волновода и установка для его осуществления
Способ формирования трубчатого канального волновода и установка для его осуществления
Способ формирования трубчатого канального волновода и установка для его осуществления
Способ формирования трубчатого канального волновода и установка для его осуществления
Способ формирования трубчатого канального волновода и установка для его осуществления
Способ формирования трубчатого канального волновода и установка для его осуществления
Источник поступления информации: Роспатент

Показаны записи 1-8 из 8.
10.10.2014
№216.012.fc77

Способ изготовления микроструктурированных волоконных световодов

Изобретение относится к оптоволоконной технике и может быть использовано в производстве микроструктурированных волоконных световодов, используемых в оптических усилителях, лазерах, спектральных фильтрах и телекоммуникационных сетях. Способ изготовления микроструктурированных волоконных...
Тип: Изобретение
Номер охранного документа: 0002530477
Дата охранного документа: 10.10.2014
25.08.2017
№217.015.9d19

Полиимидное покрытие волоконных световодов и способ его изготовления

Изобретение относится к новым термостойким растворимым полиимидным покрытиям волоконных световодов и способу их изготовления. Полученные покрытия характеризуются удовлетворительной адгезией к волокну как в присутствии аппрета, так и без него. В предлагаемом способе покрытие формируется из...
Тип: Изобретение
Номер охранного документа: 0002610503
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a869

Микроструктурированный световод для широкополосной генерации второй гармоники

Изобретение относится к области оптоволоконной техники и может быть использовано в нелинейных волоконных преобразователях частоты сверхкоротких импульсов. Микроструктурированный световод для широкополосной генерации второй гармоники в инфракрасном оптическом диапазоне длин волн накачки выполнен...
Тип: Изобретение
Номер охранного документа: 0002611213
Дата охранного документа: 21.02.2017
26.08.2017
№217.015.e852

Волоконный световод для усиления оптического излучения в спектральной области 1500-1800 нм, способ его изготовления и широкополосный волоконный усилитель

Изобретение относится к волоконным световодам и может быть использовано в широкополосных волоконно-оптических системах связи, при разработке перестраиваемых непрерывных импульсных лазеров. Волоконный световод для усиления оптического излучения в спектральной области 1500 – 1800 нм содержит...
Тип: Изобретение
Номер охранного документа: 0002627547
Дата охранного документа: 08.08.2017
04.04.2018
№218.016.30b9

Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления

Изобретение относится к покрытиям волоконных световодов из растворимых ароматических полиамидов и способу их изготовления. Предложено покрытие волоконного световода из ароматического гомо- или сополиамида формулы I с молекулярной массой от 35000 до 85000: где х:у=0-1:1-0; Способ включает...
Тип: Изобретение
Номер охранного документа: 0002644891
Дата охранного документа: 14.02.2018
13.12.2018
№218.016.a5b8

Активный иттербиевый световод-конус с волоконным вводом излучения накачки и полностью волоконная схема усилителя

Группа изобретений относится к активным волоконным световодам с полностью волоконными вводом излучения накачки в первую оболочку. Волоконный световод-конус для усиления оптического излучения содержит сердцевину из кварцевого стекла, легированного ионами редкоземельных элементов и...
Тип: Изобретение
Номер охранного документа: 0002674561
Дата охранного документа: 11.12.2018
29.11.2019
№219.017.e81a

Способ изготовления устройства ввода-вывода для многосердцевинного оптического волокна

Изобретение относится к оптоволоконной технике. Способ изготовления устройства ввода-вывода для многосердцевинного волокна включает использование корпуса, представляющего собой капилляр из кварцевого стекла с воронкой, использование отрезков односердцевинных оптических волокон, диаметр D...
Тип: Изобретение
Номер охранного документа: 0002707383
Дата охранного документа: 26.11.2019
04.05.2020
№220.018.1b50

Планарная градиентная оптическая система (варианты)

Изобретение относится к области солнечной энергетики, а именно к оптическим системам, обеспечивающим повышение концентрации светового излучения. Планарная градиентная оптическая система включает в себя градиентную пластину с плавно изменяющимся показателем преломления от большего значения на...
Тип: Изобретение
Номер охранного документа: 0002720482
Дата охранного документа: 30.04.2020
Показаны записи 1-6 из 6.
20.09.2015
№216.013.7cd6

Микроструктурированный волоконный световод

Изобретение относится к оптоволоконной технике. Микроструктурированный световод содержит тонкостенные трубки, которые расположены равномерно по внутренней поверхности опорной трубы либо в соприкосновении друг с другом, либо раздельно. Тонкостенные трубки заполнены жидкокристаллическим...
Тип: Изобретение
Номер охранного документа: 0002563555
Дата охранного документа: 20.09.2015
25.08.2017
№217.015.bdd3

Способ локальной кристаллизации стекол

Изобретение относится к области оптического материаловедения. Технический результат – получение однородных кристаллических линий в объеме стекла. Локальная кристаллизация стекол проходит под действием фемтосекундного лазерного излучения. Пучок лазера пропускают через призматический телескоп или...
Тип: Изобретение
Номер охранного документа: 0002616958
Дата охранного документа: 18.04.2017
10.05.2018
№218.016.39f1

Способ получения одномодового волновода

Изобретение относится к области лазерной обработки материалов, в частности к способу получения одномодового волновода, основанному на модификации стекла сфокусированным пучком фемтосекундных лазерных импульсов. Способ получения одномодового волновода основан на модификации показателя...
Тип: Изобретение
Номер охранного документа: 0002647207
Дата охранного документа: 14.03.2018
19.01.2019
№219.016.b19f

Способ резки стекла

Изобретение относится к области прецизионной микрообработки материалов, в частности к способу резки стекол при помощи гребенки лазерных импульсов фемтосекундной длительности, и может быть использовано для прецизионной резки стекла на предприятиях и в научно-исследовательских центра. Способ...
Тип: Изобретение
Номер охранного документа: 0002677519
Дата охранного документа: 17.01.2019
27.12.2019
№219.017.f366

Способ записи информации в нанопористом кварцоидном стекле

Изобретение относится к области оптического материаловедения, в частности к способу записи информации на носитель из нанопористого кварцоидного стекла под действием лазерного излучения. Изобретение позволяет увеличить скорость записи информации, осуществляемой наведением...
Тип: Изобретение
Номер охранного документа: 0002710389
Дата охранного документа: 26.12.2019
27.12.2019
№219.017.f3a1

Способ и устройство считывания данных с носителя из стекла

Изобретение относится к анализатору поляризации излучения, способу считывания информации, записанной в виде наведенной анизотропии показателя преломления в многослойном оптическом диске из кварцевого стекла, и устройству для считывания информации с диска. Устройство может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002710388
Дата охранного документа: 26.12.2019
+ добавить свой РИД