×
27.12.2019
219.017.f2b0

Результат интеллектуальной деятельности: ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники. Технический результат: создание условий, при которых обеспечиваются более высокие значения коэффициента ослабления входных синфазных сигналов и коэффициента подавления помех по шинам питания. Для этого предложен дифференциальный каскад на комплементарных JFET полевых транзисторах с повышенным ослаблением входного синфазного сигнала, который содержит первый (1) и второй (2) входы устройства, первый (3) входной полевой транзистор, первый (4) токовый выход устройства, первую (5) шину источника питания, второй (6) входной полевой транзистор, второй (7) токовый выход устройства, третий (8) входной полевой транзистор, третий (9) токовый выход устройства, вторую (10) шину источника питания, четвертый (11) входной полевой транзистор, четвертый (12) токовый выход устройства, первый (13) дополнительный полевой транзистор, первый (14) вспомогательный двухполюсник. 1 з.п. ф-лы, 12 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения, например, операционных усилителях (ОУ), компараторах, мостовых усилителях мощности и т.п., в т.ч. работающих при низких температурах и воздействии радиации [1].

Известны схемы классических дифференциальных каскадов на комплементарных транзисторах [2-28], в т.ч. на комплементарных КМОП полевых транзисторах [3-28] и комплементарных полевых транзисторах с управляющим p-n переходом (JFet) [2], которые стали основой многих серийных аналоговых микросхем. В литературе по аналоговой микроэлектронике этот класс ДК имеет специальное обозначение – dual-input-stage [29].

Для работы при низких температурах и жестких ограничениях на уровень шумов перспективно использование JFet полевых транзисторов [30-32]. ДК данного класса активно применяются в структуре малошумящих аналоговых интерфейсов для обработки сигналов датчиков [33-35].

Ближайшим прототипом (фиг. 1) заявляемого устройства является дифференциальный каскад, описанный в патенте US 5.291.149, fig.4, 1994г., который содержит первый 1 и второй 2 входы устройства, первый 3 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с первым 4 токовым выходом устройства, согласованным с первой 5 шиной источника питания, второй 6 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен со вторым 7 токовым выходом устройства, согласованным с первой 5 шиной источника питания, причем истоки первого 3 и второго 6 входных полевых транзисторов связаны друг с другом, третий 8 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с третьим 9 токовым выходом устройства, согласованным со второй 10 шиной источника питания, четвертый 11 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен с четвертым 12 токовым выходом устройства, согласованным со второй 10 шиной источника питания, причем истоки третьего 8 и четвертого 11 входных полевых транзисторов связаны друг с другом.

Существенный недостаток известного ДК фиг. 1 состоит в том, что статический режим его входных полевых транзисторов (ПТ) определяется двумя независимыми источниками опорного тока I1 (I2), которые, как правило, неидентичны из-за разных напряжений отсечки ПТ c p- и n-каналами. Это становится источником дополнительных погрешностей при усилении сигналов, ухудшает коэффициент ослабления входных синфазных сигналов ДК (Кос.сф), а также коэффициент подавления помех по шинам питания (Кпп). В прецизионных устройствах требования к этим параметрам иногда доминируют.

Основная задача предполагаемого изобретения состоит в создании условий, при которых в ДК фиг. 1 обеспечиваются более высокие значения Кос.сф и Кпп, в т.ч. при отрицательных температурах (до -197̊С).

Поставленная задача решается тем, что в дифференциальном каскаде фиг. 1, содержащем первый 1 и второй 2 входы устройства, первый 3 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с первым 4 токовым выходом устройства, согласованным с первой 5 шиной источника питания, второй 6 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен со вторым 7 токовым выходом устройства, согласованным с первой 5 шиной источника питания, причем истоки первого 3 и второго 6 входных полевых транзисторов связаны друг с другом, третий 8 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с третьим 9 токовым выходом устройства, согласованным со второй 10 шиной источника питания, четвертый 11 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен с четвертым 12 токовым выходом устройства, согласованным со второй 10 шиной источника питания, причем истоки третьего 8 и четвертого 11 входных полевых транзисторов связаны друг с другом, предусмотрены новые элементы и связи – в схему введен первый 13 дополнительный полевой транзистор, затвор которого соединен с объединенными истоками первого 3 и второго 6 входных полевых транзисторов, сток подключен к объединенным истокам третьего 8 и четвертого 11 входных полевых транзисторов, а исток связан с объединенными истоками первого 3 и второго 6 входных полевых транзисторов через первый 14 вспомогательный двухполюсник.

На чертеже фиг. 1 представлена схема ДК-прототипа по патенту US 5.291.149, fig.4, 1994г., а на чертеже фиг. 2 - схема заявляемого дифференциального каскада на комплементарных полевых транзисторах с управляющим p-n переходом в соответствии с п.1 формулы изобретения.

На чертеже фиг. 3 показана схема заявляемого дифференциального каскада в соответствии с п.2 формулы изобретения.

На чертеже фиг. 4 приведен статический режим ДК фиг. 3 при t=-197ᵒC в среде LTSpice на моделях CJFet транзисторов ОАО «Интеграл» (г. Минск).

На чертеже фиг. 5 представлены проходные характеристики ДК фиг. 4 при температуре 27ᵒС, сопротивлениях резисторов R1=R2=10 кОм, напряжениях питания V1=V2=±5В для токовых выходов Out.1, Out.2, Out.3, Out.4 при входном напряжении V3=Uвх, изменяющимся в пределах -5÷5В.

На чертеже фиг. 6 показаны проходные характеристики ДК фиг. 4 при температуре -197ᵒС, сопротивлениях резисторов R1=R2=10 кОм, напряжениях питания V1=V2=±5В для токовых выходов Out.1, Out.2, Out.3, Out.4 при входном напряжении V3=Uвх, изменяющимся в пределах -5÷5В.

На чертеже фиг. 7 представлен статический режим ДК фиг. 2 в режиме измерения проводимости передачи входного синфазного сигнала uc при эквивалентном сопротивлении резистора R15(R1)=13,5 кОм, обеспечивающего идентичные статические токи стоков входных полевых транзисторов J1-J4 по 100 мкА при температуре 25ᵒС.

На чертеже фиг. 8 приведена частотная зависимость крутизны передачи входного синфазного сигнала (Sсф) дифференцильного каскада фиг. 7 со входов 1, 2 до первого 4 (Вых.i1) и второго 7 (Вых.i2) токовых выходов.

На чертеже фиг. 9 показана частотная зависимость крутизны передачи помех на шинах питания Sп(+), Sп(-) (синусоидальное напряжение с амплитудой 100 мВ на положительной и отрицательной шинах) в ДК фиг. 7 по первому 4 (Вых.i1) и второму 7 (Вых.i2) токовым выходам.

На чертеже фиг. 10 представлены статические токи в заявляемом ДК фиг. 2 в режиме измерения проводимостей передачи входного синфазного сигнала при температуре 25ᵒС.

На чертеже фиг. 11 приведена частотная зависимость крутизны передачи Sсф входного синфазного сигнала ДК фиг. 10 для первого 4 (Вых.i1) и второго 7 (Вых.i2) токовых выходов при статических токах входных полевых транзисторов по 100 мкА, идентичных токам ПТ в схеме фиг. 7.

На чертеже фиг. 12 показана частотная зависимость крутизны передачи помех по шинам питания Sп(+), Sп(-) с амплитудой 100 мВ в ДК фиг. 10 для первого 4 (Вых.i1) и второго 7 (Вых.i2) токовых выходов.

Дифференциальный каскад на комплементарных JFET полевых транзисторах с повышенным ослаблением входного синфазного сигнала фиг. 2 содержит первый 1 и второй 2 входы устройства, первый 3 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с первым 4 токовым выходом устройства, согласованным с первой 5 шиной источника питания, второй 6 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен со вторым 7 токовым выходом устройства, согласованным с первой 5 шиной источника питания, причем истоки первого 3 и второго 6 входных полевых транзисторов связаны друг с другом, третий 8 входной полевой транзистор, затвор которого соединен с первым 1 входом устройства, сток соединен с третьим 9 токовым выходом устройства, согласованным со второй 10 шиной источника питания, четвертый 11 входной полевой транзистор, затвор которого соединен со вторым 2 входом устройства, а сток соединен с четвертым 12 токовым выходом устройства, согласованным со второй 10 шиной источника питания, причем истоки третьего 8 и четвертого 11 входных полевых транзисторов связаны друг с другом. В схему введен первый 13 дополнительный полевой транзистор, затвор которого соединен с объединенными истоками первого 3 и второго 6 входных полевых транзисторов, сток подключен к объединенным истокам третьего 8 и четвертого 11 входных полевых транзисторов, а исток связан с объединенными истоками первого 3 и второго 6 входных полевых транзисторов через первый 14 вспомогательный двухполюсник.

Резистор 15 в схеме фиг. 2 соответствует эквивалентному сопротивлению между истоками транзисторов 3 и (6) и 8 (11). Его введение необходимо для оценки эффективности предлагаемого схемотехнического решения по величине реализуемых Кос.сф и Кпп.

Кроме этого, на чертеже фиг. 2 двухполюсники 16, 17, 18 и 19 моделируют свойства нагрузки ДК. В практических аналоговых микросхемах в качестве таких нагрузок используются входы токовых зеркал, обеспечивающих дальнейшее преобразование токовых сигналов по выходам 4, 7, 9, 12.

На чертеже фиг. 3, в соответствии с п. 2 формулы изобретения, в схему введен второй 20 дополнительный полевой транзистор, затвор которого соединен с объединенными истоками третьего 8 и четвертого 11 входных полевых транзисторов, сток подключен к объединенным истокам первого 3 и второго 6 входных полевых транзисторов, а исток связан с объединенными истоками третьего 8 и четвертого 11 входных полевых транзисторов через второй 21 вспомогательный двухполюсник.

Рассмотрим работу ДУ фиг. 2 с учетом результатов сравнительного компьютерного моделирования, представленных на чертежах фиг. 8, фиг. 9, фиг. 11 и фиг. 12.

Компьютерное моделирование проходной характеристики ДК фиг. 4 в среде LTspice при комнатной (фиг. 5) и криогенной (фиг. 8) температурах показывает, что рассматриваемое схемотехнические решение обеспечивает преобразование входного синфазного напряжения ДК uc в токи выходов ДК (Out.1, Out.2, Out.3, Out.4) в диапазоне Vin=±1В. Это достаточно для многих применений.

Коэффициент ослабления входного синфазного сигнала ДК фиг.2 для первого 4 выхода (Вых.i1) определяется по формуле

(1)

где Ксф=R16Sсф – коэффициент преобразования входного синфазного сигнала ДК (uc=uc1=uc2) в напряжение на эквивалентном двухполюснике нагрузки 16;

S=iвых.1/uc – проводимость передачи входного синфазного сигнала uc по первому 4 токовому выходу;

Kd=R16(S3+S6) – дифференциальный коэффициент усиления по напряжению от дифференциального входа ДК (входы 1, 2) к первому 4 токовому выходу;

S3≈S6 – крутизна стоко-затворной характеристики первого 3 и второго 6 входных полевых транзисторов.

Из уравнения (1) можно получить

(2)

Похожие формулы можно получить и для коэффициентов подавления помех по шинам питания

(3)

(4)

Таким образом, для повышения помехоустойчивости ДК необходимо минимизировать схемотехническим путем проводимости передачи по входному синфазному сигналу (Sсф=0) и проводимости передачи помех по шинам питания (Sп(+)=0, Sп(-)=0).

Результаты сравнительного компьютерного моделирования схемы фиг. 2 с дополнительными элементами 13 и 14, которые введены в соответствии с п.1 формулы изобретения, а также без элементов 13 и 14 (только с резистором 15, обеспечивающим идентичный статический режим входных полевых транзисторов ДК по 100 мкА), представлены на чертежах фиг. 8 и фиг. 11. Их анализ показывает, что предлагаемое схемотехническое решение обеспечивает на низких частотах следующие проводимости передачи Sсф=376 пСм и Sп(+)=Sп(-)=900 пСм.

В то же время схема ДК-аналога дает Sсф*=48 нСм, Sп(+)*=Sп(-)*=128 нСм.

Таким образом, в заявляемом устройстве коэффициенты Кос.сф и Кпп улучшаются не менее чем на два порядка:

(5)

(6)

(7)

Следовательно, заявляемое устройство имеет существенные преимущества в сравнении с известными схемотехническими решениями ДК класса dual-input-stage [2-28] по величине коэффициента ослабления входного синфазного сигнала и уровню подавления помех по шинам питания. Это позволяет рекомендовать рассмотренные схемы ДК для практического использования в прецизионных ОУ и построения малошумящих, низкотемпературных и радиационно-стойких аналоговых микросхем по техпроцессу CJFet ОАО «Интеграл» (г. Минск), а также комплементарному биполярно-полевому технологическому процессу АО «НПП «Пульсар» (г. Москва).

Библиографический список

1. Dvornikov O. V., Dziatlau V. L., Prokopenko N. N., Petrosiants K. O., Kozhukhov N. V. and Tchekhovski V. A. The accounting of the simultaneous exposure of the low temperatures and the penetrating radiation at the circuit simulation of the BiJFET analog interfaces of the sensors // 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, 2017, pp. 1-6. DOI: 10.1109/SIBCON.2017.7998507

2. Патент US 5.291.149 fig. 4, 1994 г.

1. Патент US 4.377.789, fig. 1, 1983 г.

2. Патентная заявка US 2006/0125522, 2006 г.

3. Патент US 7.907.011, 2011

4. US 2008/0024217, fig. 1, 2008 г.

5. Патент EP 0318263,1989 г.

6. Патент US 5.907.259, fig. 1, 1999 г.

7. Патент US 7.408.410, 2008 г.

8. Патент US 6.628.168, fig.2, 2003 г.

9. Патентная заявка US 2009/0302895, 2009 г.

10. Патент US 5.714.906, fig. 4, 1998 г.

11. Патент US 2005/0285677, 2005 г.

12. Патент US 5.070.306, fig. 3, 1991 г.

13. Патент US 2010/001797, 2010 г.

14. Патент US 6.972.623, fig. 4, fig. 6, 2005 г.

15. Патент US 2008/0252374, 2008 г.

16. Патент US 7.586.373, 2009 г.

17. Патент US 2006/0215787, 2006 г.

18. Патент US 7.453.319, 2008 г.

19. Патент US 2004/0174216, fig. 2, 2004 г.

20. Патент US 7.215.200, fig. 6, 2007 г.

21. Патент US № 6.433.637, fig. 2, 2002 г.

22. Патент US № 6.392.485, 2002 г.

23. Патент US 5.963.085, fig. 3, 1999 г.

24. Патент US 6.788.143, 2004 г.

25. Патент US 4.390.850, 1983 г.

26. Патент US 6.696.894, fig. 1, 2004 г.

29. Prokopenko N. N., Butyrlagin N. V., Bugakova A. V. and Ignashin A. A.  Method for speeding the micropower CMOS operational amplifiers with dual-input-stages // 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, 2017, pp. 78-81.

30. Petrosyants K.O., Ismail-zade M.R., Sambursky L. M., Dvornikov O.V., Lvov B. G. and Kharitonov I. A. Automation of parameter extraction procedure for Si JFET SPICE model in the −200…+110°C temperature range // 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, 2018, pp. 1-5. DOI: 10.1109/MWENT.2018.8337212

31. Создание низкотемпературных аналоговых ИС для обработки импульсных сигналов датчиков. Часть 2 / О. Дворников, В. Чеховский, В. Дятлов, Н. Прокопенко // Современная электроника, 2015, № 5. С. 24-28

32. Dvornikov O.V., Prokopenko N.N., Butyrlagin N.V. and Pakhomov I.V. The differential and differential difference operational amplifiers of sensor systems based on bipolar-field technological process AGAMC // 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, 2016, pp. 1-6. DOI: 10.1109/SIBCON.2016.7491792

33. Дворников О.В., Чеховский В.А., Дятлов В.Л., Прокопенко Н.Н. Малошумящий электронный модуль обработки сигналов лавинных фотодиодов // Приборы и методы измерений, № 2 (7), 2013, pp. 42-46.

34. Дворников О. Чеховский В., Дятлов В., Прокопенко Н. Применение структурных кристаллов для создания интерфейсов датчиков // Современная электроника. – 2014. – №. 1. – С. 32-37.

35. Dvornikov O. V., Bugakova A. V., Prokopenko N. N., Dziatlau V. L. and Pakhomov I. V. The microcircuits MH2XA010-02/03 for signal processing of optoelectronic sensors // 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, 2017, pp. 396-402. DOI: 10.1109/EDM.2017.7981781


ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА
Источник поступления информации: Роспатент

Показаны записи 121-130 из 186.
24.11.2019
№219.017.e616

Двухтактный выходной каскад класса ab аналоговых микросхем на комплементарных полевых транзисторах для работы при низких температурах

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в качестве двухтактных буферных усилителей и выходных каскадов различных аналоговых устройств. Технический результат заключается в создании радиационно-стойкого и низкотемпературного схемотехнического решения...
Тип: Изобретение
Номер охранного документа: 0002706869
Дата охранного документа: 21.11.2019
01.12.2019
№219.017.e867

Универсальный активный rc-фильтр второго порядка на основе мультидифференциальных операционных усилителей

Изобретение относится к области радиотехники. Техническим результатом является обеспечение независимой регулировки добротности полюса АЧХ, при которой коэффициент передачи и частота полюса АЧХ, зависящие от других параметров элементов, остаются постоянными. Универсальный активный RC-фильтр...
Тип: Изобретение
Номер охранного документа: 0002707706
Дата охранного документа: 28.11.2019
18.12.2019
№219.017.ee84

Система для настройки каскада теплового насоса

Изобретение относится к области теплоэнергетики и может быть использовано для улучшения работы теплонасосных установок на объектах их производства, в проектных бюро, а также на производственных предприятиях холодильного парокомпрессионного оборудования. Система для настройки теплового насоса...
Тип: Изобретение
Номер охранного документа: 0002709008
Дата охранного документа: 13.12.2019
19.12.2019
№219.017.eec5

Способ газопламенного напыления порошковых материалов с получением покрытия на никелевой основе посредством термораспылителя

Изобретение относится к области газотермических технологий и может быть использовано для нанесения порошковых покрытий методом низкоскоростного газопламенного напыления.  Способ газопламенного напыления порошкового материала с получением покрытия на никелевой основе посредством термораспылителя...
Тип: Изобретение
Номер охранного документа: 0002709312
Дата охранного документа: 17.12.2019
19.12.2019
№219.017.ef2c

Керамическая масса

Изобретение относится к керамической массе. Техническим результатом является повышение прочности и снижение водопоглощения изделий. Керамическая масса включает аргиллит, воду и дополнительно колеманит. При этом соотношение компонентов следующее, мас.%: аргиллит, измельченный до размера менее...
Тип: Изобретение
Номер охранного документа: 0002709267
Дата охранного документа: 17.12.2019
24.12.2019
№219.017.f17a

Способ посева пропашных культур

Изобретение относится к сельскому хозяйству, в частности к способам посева семян пропашных культур. Способ посева заключается в том, что перед посевом в электронное управляющее устройство сеялки предварительно загружается программа управления исполнительными механизмами подачи семян нечетных 1...
Тип: Изобретение
Номер охранного документа: 0002709967
Дата охранного документа: 23.12.2019
27.12.2019
№219.017.f297

Неинвертирующий усилитель с токовым выходом для работы при низких температурах

Изобретение относится к радиотехнике. Технический результат заключается в создании неинвертирующего CJFet усилителя, обеспечивающего опцию rail-to-rail по выходу и получение повышенных выходных сопротивлений. Последнее качество позволяет создавать высокоомные узлы в аналоговых устройствах и...
Тип: Изобретение
Номер охранного документа: 0002710298
Дата охранного документа: 25.12.2019
16.01.2020
№220.017.f55d

Низкочувствительный arc-фильтр второго порядка на основе двух мультидифференциальных операционных усилителей

Изобретение относится к измерительной технике и может использоваться в качестве ограничителей спектра или широкополосных избирательных усилителей, включаемых на входе аналого-цифровых преобразователей различного назначения. Технический результат заключается в получении на его выходах полного...
Тип: Изобретение
Номер охранного документа: 0002710852
Дата охранного документа: 14.01.2020
16.01.2020
№220.017.f575

Выходной каскад аналоговых микросхем на комплементарных полевых транзисторах с управляющим p-n-переходом

Изобретение относится к аналоговой микроэлектронике. Технический результат заключается в создании условий, которые позволяют повысить быстродействие выходного каскада за счет форсирования процесса перезаряда одного из его паразитных конденсаторов и исключения влияния второго паразитного...
Тип: Изобретение
Номер охранного документа: 0002710917
Дата охранного документа: 14.01.2020
16.01.2020
№220.017.f5ac

Буферный усилитель на основе комплементарных полевых транзисторов с управляющим p-n переходом для работы при низких температурах

Изобретение относится к аналоговой микроэлектронике. Технический результат заключается в создании радиационно-стойкого и низкотемпературного схемотехнического решения БУ на комплементарных полевых транзисторах, обеспечивающего повышенную стабильность статического режима транзисторов и низкий...
Тип: Изобретение
Номер охранного документа: 0002710923
Дата охранного документа: 14.01.2020
Показаны записи 121-130 из 216.
11.10.2018
№218.016.90c3

Быстродействующий буферный усилитель

Изобретение относится к области радиотехники и связи и может быть использовано в качестве выходного каскада для усиления быстроизменяющихся аналоговых сигналов по мощности (буферного усилителя) в структуре аналоговых микросхем различного функционального назначения, например операционных...
Тип: Изобретение
Номер охранного документа: 0002668985
Дата охранного документа: 05.10.2018
11.10.2018
№218.016.90ca

Быстродействующий дифференциальный операционный усилитель для работы при низких температурах

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в аналоговых интерфейсах и устройствах преобразования сигналов, в том числе работающих в диапазоне низких температур. Техническим результатом является повышение максимальной скорости нарастания выходного...
Тип: Изобретение
Номер охранного документа: 0002668968
Дата охранного документа: 05.10.2018
11.10.2018
№218.016.90e8

Выходной каскад bijfet операционного усилителя

Изобретение относится к области аналоговой микросхемотехники и может быть использовано в качестве биполярно-полевых (BiJFet) буферных усилителей. Техническим результатом является обеспечение двухтактного преобразования входного напряжения при высокой линейности проходной характеристики, малом...
Тип: Изобретение
Номер охранного документа: 0002668981
Дата охранного документа: 05.10.2018
27.10.2018
№218.016.9776

Биполярно-полевой буферный усилитель для работы при низких температурах

Изобретение относится к области аналоговой микроэлектроники. Технический результат заключается в повышении стабильности статического режима и низком уровне шумов при работе устройства в диапазоне низких температур с высокой линейностью амплитудной характеристики. Биполярно-полевой буферный...
Тип: Изобретение
Номер охранного документа: 0002670777
Дата охранного документа: 25.10.2018
23.11.2018
№218.016.a066

Буферный усилитель с дифференцирующей цепью коррекции переходного процесса

Изобретение относится к буферным усилителям с дифференцирующей цепью коррекции переходного процесса. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения и уменьшении времени установления переходного процесса в БУ. В усилитель введены первый и...
Тип: Изобретение
Номер охранного документа: 0002673003
Дата охранного документа: 21.11.2018
14.12.2018
№218.016.a6e8

Быстродействующий буферный усилитель

Изобретение относится к области радиотехники. Технический результат - повышение максимальной скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса в буферном усилителе (БУ) при больших импульсных входных сигналах. Для этого предложен быстродействующий...
Тип: Изобретение
Номер охранного документа: 0002674885
Дата охранного документа: 13.12.2018
26.12.2018
№218.016.ab0f

Быстродействующий операционный усилитель

Изобретение относится к области радиотехники. Технический результат: повышение скорости нарастания выходного напряжения и уменьшение времени установления переходного процесса. Для этого предложен операционный усилитель, который содержит четыре входных транзистора, первый двухполюсник,...
Тип: Изобретение
Номер охранного документа: 0002676014
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b0db

Биполярно-полевой буферный усилитель

Изобретение относится к области радиотехники и связи и может быть использовано в качестве выходного каскада для усиления быстроизменяющихся аналоговых сигналов по мощности (буферного усилителя - БУ), в структуре аналоговых микросхем различного функционального назначения, например операционных...
Тип: Изобретение
Номер охранного документа: 0002677401
Дата охранного документа: 16.01.2019
18.01.2019
№219.016.b0e7

Входной каскад быстродействующего операционного усилителя

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в различных аналоговых микросхемах. Технический результат заключается в расширении диапазона активной работы входного дифференциального каскада, повышении максимальной скорости нарастания выходного напряжения...
Тип: Изобретение
Номер охранного документа: 0002677364
Дата охранного документа: 16.01.2019
18.01.2019
№219.016.b15d

Активный rc-фильтр

Изобретение относится к области аналоговой микросхемотехники и может быть использовано в качестве устройства частотной селекции в современных системах связи и телекоммуникации. Технический результат заключается в уменьшение влияния площади усиления применяемых операционных усилителей (ОУ) на...
Тип: Изобретение
Номер охранного документа: 0002677362
Дата охранного документа: 16.01.2019
+ добавить свой РИД