×
25.12.2019
219.017.f21b

Результат интеллектуальной деятельности: Способ изготовления композитного чувствительного пьезоэлемента

Вид РИД

Изобретение

Аннотация: Использование: для изготовления композитного чувствительного пьезоэлемента. Сущность изобретения заключается в том, что на торцевые поверхности пьезокерамического каркаса, имеющего открытые поры и общую пористость 40-60%, наносят электроды путем вжигания серебросодержащей пасты, поляризуют полученную заготовку, припаивают к электродам провода и покрывают пьезоэлемент слоем эластичного полимера. Способ отличается тем, что перед нанесением серебросодержащей пасты на торцевые поверхности пьезокерамического каркаса наносят равномерный слой органического полимера и сушат его до образования тонкопленочного покрытия. Технический результат: увеличение объемной чувствительности к звуковому давлению по напряжению, а также уменьшение расхода серебросодержащей пасты при нанесении электродов. 2 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к пьезотехнике, а именно, к технологии изготовления композитных чувствительных пьезоэлементов на основе пористой пьезокерамики со смешанной связностью 3-0 и 3-3, используемых в акустических и гидроакустических пьезопреобразователях, работающих в режиме приема.

В качестве чувствительных элементов приемников звука традиционно использовали плотную пьезокерамику, отличающуюся высокими значениями электрофизических параметров и их стабильностью в широком интервале температур. Однако плотная пьезокерамика способна фиксировать преимущественно, одноосные колебания, поскольку имеет крайне низкие объемно-чувствительные характеристики, высокие значения плотности и скорости звука и, как следствие, высокий акустический импеданс, что затрудняет согласование в воздушной и водной средах. При использовании плотной пьезокерамики для целей акустики и гидроакустики приходится трансформировать объемные колебания в одноосные путем усложнения конструкции пьезоэлектрического преобразователя.

Этих недостатков лишены преобразователи на основе пьезокомпозитов, которые благодаря высоким объемно-чувствительным характеристикам и лучшему акустическому согласованию с водой позволяют отказаться от необходимости трансформации объемного давления в одноосное и, следовательно, существенно упростить конструкцию преобразователей для целей акустики и гидроакустики и снизить их стоимость.

Частным случаем композиционных материалов является пористая пьезокерамика. Ее высокая эффективность, возможность в широких пределах варьировать свойствами материала и технологическая простота вызывают растущий интерес к пористой пьезокерамике и чувствительным пьезоэлементам на ее основе. Пористая пьезокерамика может иметь как открытые, так и закрытые поры. Чем выше общая пористость керамического каркаса чувствительного пьезоэлемента, тем выше удельная доля пористости открытого типа [1, 2]. С ростом открытой пористости возрастают объемно-чувствительные характеристики пьезокомпозита, вследствие этого наибольший практический интерес представляют пьезокомпозиты с пористостью от 40 до 60%. Пьезокомпозиты с пористостью более 65% практически не используются в связи с их низкой механической прочностью [3].

Наиболее близким по технической сущности к заявляемому изобретению является способ изготовления композитного чувствительного пьезоэлемента (RU 2298300, МПК H04R 17/00, H01L 41/08, G01L 21/10, опубл. 21.04.2007 С. 6-7) [4], принимаемый за прототип.

Согласно способу - прототипу изготовление чувствительных пьезоэлементов включает следующие операции:

- изготовление из пьезокерамического материала ЦТС-36 пористого керамического каркаса в форме диска диаметром 12 мм, высотой 5 мм с пористостью 62-63% объема;

- металлизацию торцевых поверхностей дисков;

- припаивание к электродам проводов для снятия сигналов;

- поляризацию композитного чувствительного пьезоэлемента;

- изолирование композитного чувствительного пьезоэлемента слоем эластичного полимера, такого как полиуретан, силиконовый каучук и синтетический каучук.

Металлизацию торцевых поверхностей выполняют методом нанесения и вжигания серебросодержащей пасты при температуре 800-850°С, поскольку альтернативные способы нанесения электродов - никелирование и напыление металлов неприемлемы для высокопористых чувствительных элементов. Это обусловлено тем, что при никелировании в результате погружения пьезоэлемента в раствор происходит проникновение по открытым порам растворов по всему объему керамического каркаса, что полностью исключает возможность применения такого способа нанесения электродов. Способ напыления электродов не применим к пористым композиционным материалам, так как при напылении образуется тонкий слой металлического электрода, что для пористых пьезоэлементов делает практически невозможной дальнейшую пайку электрических выводов. В способе - прототипе серебросодержащая паста при нанесении проникает вглубь керамического каркаса по открытым порам, что приводит к уменьшению эффективного (реального) расстояния между электродами пьезокомпозита, и как следствие, недостаточно высокой объемной чувствительности к звуковому давлению по напряжению Mu,, а также расходу серебросодержащей пасты. При изготовлении чувствительных элементов в соответствии с технологией прототипа серебросодержащая паста, имеющая консистенцию сметаны и используемая при нанесении электродов, проникает в открытые поры вглубь керамического каркаса, а образующийся металлический электрод после спекания полностью повторяет морфологию поверхности керамического каркаса. При этом глубина проникновения серебросодержащей пасты связана с величиной общей пористости керамического каркаса: чем выше пористость, тем глубже проникает серебросодержащая паста вглубь пористого керамического каркаса элемента. При вжигании серебросодержащей пасты это приводит к уменьшению эффективного (реального) расстояния между электродами пьезокомпозита, и как следствие, недостаточно высокой объемной чувствительности к звуковому давлению по напряжению Mu. Кроме этого для образования качественного электрода, пригодного для последующей поляризации и пайки, необходимо нанесение 2-3-х слоев серебросодержащей пасты на пористые каркасы с пористостью 30-40% и 3-4х слоев с пористостью более 40%, что приводит к значительному расходу драгметалла.и, следовательно, удорожанию пьезоэлемента.

Техническим результатом настоящего изобретения является увеличение объемной чувствительности к звуковому давлению по напряжению Mu композитного чувствительного пьезоэлемента за счет увеличения эффективного (реального) расстояния между электродами, и удешевление пьезоэлемента за счет уменьшение расхода серебросодержащей пасты при нанесении электродов.

Указанный технический результат достигается тем, что способ изготовления композитного чувствительного пьезоэлемента заключается в нанесении электродов на торцевые поверхности пьезокерамического каркаса, имеющего общую пористость 40-60% путем вжигания серебросодержащей пасты, поляризации, припаивании к электродам проводов и покрытии пьезоэлемента слоем эластичного полимера.

Согласно изобретения перед нанесением серебросодержащей пасты на торцовые поверхности пористого пьезокерамического каркаса наносят слой органического полимера и сушат его до получения тонкопленочного покрытия.

В предпочтительном варианте выполнения:

- в качестве органического полимера использован бутираль-фенольный состав марки БФ-2;

- в качестве органического полимера использован нитроцеллюлозный состав марки НЦ-88.

Создание тонкопленочного слоя из органического полимера перед нанесением серебросодержащей пасты "залечивает" поверхностные открытые поры и выравнивает поверхность, что препятствует проникновению серебросодержащей пасты при ее нанесении вглубь пористого керамического каркаса. При вжигании серебросодержащей пасты уже при температуре 400°С слой из указанных органических полимеров полностью выгорает. Чтобы получить электроды, пригодные для последующей поляризации и пайки, наносят 1-2 слоя серебросодержащей пасты на пористые каркасы с пористостью 30-40% и 3-4 слоя с пористостью более 40%, что приводит к экономии драгметалла.

Сущность изобретения поясняется фигурами чертежей и таблицами.

Фиг. 1 Фотография поверхности пористого керамического каркаса, материал ЦТС-36, пористость 40%, увеличение х 100.

Фиг. 2. Поперечное сечение композитного чувствительного пьезоэлемента -прототипа, где 1 - пористый керамический каркас, 2 - серебряный электрод на поверхности керамического каркаса, частично проникающий внутрь него, 3 - эффективное (реальное) расстояние между электродами.

Фиг. 3 Поперечное сечение композитного чувствительного пьезоэлемента, изготовленного заявляемым способом, где 1 - пористый керамический каркас, 2 - серебряный электрод на поверхности керамического каркаса, 3 - эффективное (реальное) расстояние между электродами.

Таблица 1. Сравнение значений объемной чувствительности к звуковому давлению по напряжению Mu композитного чувствительного пьезоэлемента из материала ЦТС-36 диаметром 12 мм, высотой 5 мм и 9 мм, изготовленного способом - прототипом и с использованием органического полимерного слоя.

Таблица 2. Сравнение значений объемной чувствительности к звуковому давлению по напряжению Mu композитного чувствительного пьезоэлемента из материала ПКП-13 диаметром 12 мм, высотой 5 мм и 9 мм, изготовленного способом - прототипом и с использованием органического полимерного слоя.

Пьезокерамический композитный материал изготавливают по известной технологии [2]. Пьезокерамический состав смешивают с порообразователем в требуемом соотношении, формуют заготовку и подвергают термической обработке в процессе которой порообразователь удаляется в виде газообразных соединений и происходит спекание керамического каркаса заданной пористости 40-60% (фиг. 1), затем на поверхности керамического каркаса, подлежащие металлизации, наносят равномерно слой органического полимера- бутираль-фенольный состав марки БФ-2 или нитроцеллюлозный состав марки НЦ-88, сушат при температуре 60°С. Далее наносят последовательно два слоя серебросодержащей пасты и помещают заготовку в печь и нагревают до температуры 800-850°С в результате чего происходит вжигание серебросодержащей пасты и выгорание органического полимерного слоя. В качестве органического полимера может любой органический полимер, который полностью выгорает при температуре вжигания серебросодержащей пасты. Полученную заготовку поляризуют при напряженности поля 0,9-1,5 кВ/мм, припаивают электроды и герметизируют слоем эластичного полимера, такого как полиуретан, силиконовый каучук и синтетический каучук. Измерения объемной чувствительности к звуковому давлению по напряжению Mu композитного чувствительного пьезоэлемента из материала ЦТС-36 диаметром 12 мм выполнены на установке контроля параметров пьезоэлементов «Паскаль-4» (изготовитель НКТБ Пьезоприбор, Ростов-на-Дону).

Так как объемная чувствительность к звуковому давлению по напряжению Mu прямо пропорциональна расстоянию между электродами:

Mu=gv⋅h,

gv - удельная объемная чувствительность;

h - расстояние (реальное) между электродами.

За расстояние между электродами на практике принимается геометрический размер между поверхностями элемента, которые подвергаются металлизации. В способе-прототипе, эффективное (реальное) расстояние между электродами уменьшается вследствие проникновения серебросодержащей пасты в открытые поры керамического каркаса (Фиг. 2), что и приводит уменьшению объемной чувствительности к звуковому давлению по напряжению Mu.

В заявляемом способе эффективное (реальное) расстояние между электродами соответствует геометрическому расстоянию между металлизированными поверхностями элемента, что и сопровождается более высокими значениями объемной чувствительности к звуковому давлению по напряжению Mu по сравнению с прототипом.

Повышение объемной чувствительности к звуковому давлению по напряжению Mu по сравнению с прототипом поясняется следующими примерами.

Пример 1.

Из пьезокерамического материала ЦТС-36 были изготовлены чувствительные элементы диаметром 12 мм и толщиной 5 и 9 мм и пористостью 40, 50, 60 об. %. Бутираль-фенольный состав марки БФ-2 наносился на поверхность, подлежащую металлизации, просушивался в течение 1 часа при температуре 60°С. Долее на поверхность наносилась серебросодержащая паста, которая вжигалась при температуре 800°С. После поляризации, пайки и герметизации, измерялась объемная чувствительность к звуковому давлению по напряжению Mu. Полученные результаты представлены в таблице 1.

Пример 2.

Из пьезокерамического материала ЦТС-36 были изготовлены чувствительные элементы диаметром 12 мм и толщиной 5 и 9 мм и пористостью 40, 50, 60 об. %. Нитроцеллюлозный состав марки НЦ-88 наносился на поверхность, подлежащую металлизации, просушивался в течение 1 часа при температуре 60°С. Далее на поверхность наносилась серебросодержащая паста, которая вжигалась при температуре 800°С. После поляризации, пайки и герметизации, измерялась объемной чувствительности к звуковому давлению по напряжению Mu. Полученные результаты представлены в таблице 1.

Пример 3.

Из пьезокерамического материала ПКП-13 были изготовлены чувствительные элементы диаметром 12 мм и толщиной 5 мм и пористостью 40, 50, 60 об. %. Бутираль-фенольный состав марки БФ-2 наносился на поверхность, подлежащую металлизации, просушивался в течение 1 часа при температуре 60°С. Долее на поверхность наносилась серебросодержащая паста, которая вжигалась при температуре 800°С.После поляризации, пайки и герметизации измерялась чувствительность к звуковому давлению по напряжению Mu. Полученные результаты представлены в таблице 2.

Пример 4.

Из пьезокерамического материала ПКП-13 были изготовлены чувствительные элементы диаметром 12 мм и толщиной 5 мм и пористостью 40, 50, 60 об. %. Нитроцеллюлозный состав марки НЦ-88 наносился на поверхность, подлежащую металлизации, просушивался в течение 1 часа при температуре 60°С. Долее на поверхность наносилась серебросодержащая паста, которая вжигалась при температуре 800°С. После поляризации, пайки проводов и герметизации пьезоэлемента измерялась чувствительность к звуковому давлению по напряжению Mu. Полученные результаты представлены в таблице 2.

Для сравнения на части образцов металлизация осуществлялась без нанесения органического полимерного слоя. Эти образцы являлись контрольными. Полученные на них значения объемной чувствительности к звуковому давлению по напряжению также представлены в таблицах 1 и 2.

Как следует из таблиц 1 и 2 композитные чувствительные пьезоэлементы, изготовленные заявляемым способом, превосходят по объемной чувствительности к звуковому давлению по напряжению Mu контрольные образцы на 8% при пористости керамического каркаса 40% и на 15-20% при пористости керамического каркаса 60%, что позволяет повысить отношение сигнал/шум в акустических и гидроакустических пьезопреобразователях, работающих в режиме приема. Повышение объемной чувствительности к звуковому давлению по напряжению Mu достигается для пьезоматериала ЦТС-36 и ПКП-13 и нет препятствий для достижения данного эффекта при использования других пьезоматериалов.

Источники информации:

1. А.А. Нестеров, А.А. Панич, С.Н. Свирская, А.Ю.Малыхин, А.В. Скрылев, Е.А. Панич - Способы формирования микроструктуры пористых пьезокерамических каркасов, Инженерный вестник Дона №3 (2012).

2. Е.В. Карюков, А.А. Панич, В.К. Доля, А.Ю. Малыхин, В.В. Немыкин, В.В. Бостанджиян - Пористые пьезокомпозиционные материалы на основе пьезокерамики ПКП-12, Инженерный вестник Дона 47 (4 (47)).

3. Тополов В.Ю. Пьезокомпозиты: получение, свойства, применение (учебное пособие) [Текст] / В.Ю. Тополов, А.Е. Панич. - Ростов н/Д, 2009. - 51 с.: ил.

4. RU 2298300, МПК H04R 17/00, H01L 41/08, G01L 21/10, опубл. 21.04.2007 С. 6-7 - прототип.


Способ изготовления композитного чувствительного пьезоэлемента
Способ изготовления композитного чувствительного пьезоэлемента
Способ изготовления композитного чувствительного пьезоэлемента
Источник поступления информации: Роспатент

Показаны записи 21-30 из 49.
26.08.2017
№217.015.e438

Система селекции движущихся целей с измерением дальности, радиальной скорости и направления движения

Изобретение относится к области радиолокации, а именно к активным радиолокационным системам, и может быть использовано для селекции движущихся целей и одновременного измерения их дальности, радиальной скорости и направления движения на основании результатов обработки принятого отраженного...
Тип: Изобретение
Номер охранного документа: 0002626380
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e450

Способ поляризации пьезокерамических элементов и устройство для его осуществления

Изобретение относится к производству пьезокерамических элементов (ПКЭ) и предназначено для поляризации в воздушной среде крупногабаритных изделий из сегнетожестких материалов с температурой Кюри до 350°C в условиях серийного производства. Технический результат: уменьшение разброса...
Тип: Изобретение
Номер охранного документа: 0002626304
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e8c8

Пьезоэлектрический акселерометр

Изобретение относится к датчикам для измерения вибрационных и ударных ускорений сложных технических объектов, работающих в условиях экстремальных механических перегрузок. Техническим результатом является снижение чувствительности пьезоэлектрического акселерометра к деформации контролируемого...
Тип: Изобретение
Номер охранного документа: 0002627571
Дата охранного документа: 08.08.2017
19.01.2018
№218.015.ff1a

Состав для получения топливного брикета

Изобретение раскрывает состав для получения топливного брикета, содержащий мелкозернистый углеродсодержащий материал минерального происхождения, в качестве связующего мелассу и известьсодержащий компонент, характеризующийся тем, что в качестве известьсодержащего компонента использован...
Тип: Изобретение
Номер охранного документа: 0002629365
Дата охранного документа: 29.08.2017
19.01.2018
№218.016.0184

Способ измерения физических величин с помощью датчиков на поверхностных акустических волнах

Изобретение относится к измерительной технике и может быть использовано для дистанционного беспроводного измерения различных физических величин, в частности температуры, давления, перемещения, магнитной индукции, ультрафиолетового излучения, концентрации газов и др., с помощью датчиков на...
Тип: Изобретение
Номер охранного документа: 0002629892
Дата охранного документа: 04.09.2017
20.01.2018
№218.016.104d

Смазочная композиция

Изобретение относится к смазочным композициям и может быть использовано в области машиностроения при смазке узлов трения машин и механизмов, в частности двигателей внутреннего сгорания. Техническим результатом является повышение антифрикционных и нагрузочных характеристик смазочных композиций...
Тип: Изобретение
Номер охранного документа: 0002633697
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.1119

Способ получения пьезокерамического материала на основе цирконата-титаната свинца

Изобретение относится к технологии получения пьезокерамического материала ЦТС-19, который может быть использован в качестве пьезоактивной составляющей композиционных материалов со связностями 1-3 и 3-3, используемых в приемной аппаратуре в гидроакустике и медицине. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002633935
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1d56

Способ оценки знаний учащегося при компьютерном тестировании

Заявленное изобретение относится к средствам обучения, в которых обучающийся выбирает ответ на поставленный вопрос из набора ответов одновременно с регистрацией связанных с событием потенциалов, и может быть использовано для автоматизированной оценки знаний. По наличию компонента Р300 вид...
Тип: Изобретение
Номер охранного документа: 0002640709
Дата охранного документа: 11.01.2018
10.05.2018
№218.016.44dc

9-замещенные-2-бифенилимидазо[1,2-а]бензимидазолы и их фармацевтически приемлемые соли, обладающие антиоксидантными и антирадикальными свойствами

Изобретение относится к производным 9-дизамещенных имидазо[1,2-а]бензимидазолов общей формулы I где R=(C-С) алкил, (С-С)диалкиламино(С-С)алкил, морфолино(С-С)алкил, и их фармацевтически приемлемым солям. Технический результат: получены новые соединения, которые могут найти свое применение в...
Тип: Изобретение
Номер охранного документа: 0002649979
Дата охранного документа: 06.04.2018
09.06.2018
№218.016.6051

Способ получения наноструктурного материала оксида олова на углеродном носителе

Изобретение относится к области гальванотехники, а именно: к приготовлению активной массы электрода с наноразмерными частицами SnO на углеродном носителе, используемого в химических источниках тока, в суперконденсаторах, а также в качестве носителя для катализаторов реакций, протекающих в...
Тип: Изобретение
Номер охранного документа: 0002656914
Дата охранного документа: 07.06.2018
Показаны записи 11-12 из 12.
04.04.2019
№219.016.fcf1

Способ получения порошков фаз кислородно-октаэдрического типа

Изобретение относится к способам получения порошков фаз кислородно-октаэдрического типа, у которых подрешетка В представляет собой совокупность октаэдров ЭО (Э - катионы р- и d-элементов), соединенных между собой вершинами, а катионы подрешетки А заполняют различные по геометрии пустоты...
Тип: Изобретение
Номер охранного документа: 0002448928
Дата охранного документа: 27.04.2012
01.05.2019
№219.017.47da

Чувствительный элемент из пьезокомпозита связности 1-3 и способ его изготовления

Группа изобретений относится к пьезоэлектрическим преобразователям типа керамика-полимер со связностью 1-3 и может быть использована для повышения приемной чувствительности гидроакустических антенн. Чувствительный элемент из пьезокомпозита связности 1-3 содержит стержни, выполненные из...
Тип: Изобретение
Номер охранного документа: 0002686492
Дата охранного документа: 29.04.2019
+ добавить свой РИД