×
25.12.2019
219.017.f215

АКТИВНАЯ ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002710105
Дата охранного документа
24.12.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к радиолокации, в частности к активной фазированной антенной решетке (АФАР), управляемой как по направлению излучения и приема, так и по параметрам зондирующего сигнала, работающей в составе импульсно-доплеровской радиолокационной станции (РЛС). Техническим результатом является создание АФАР, масштабируемой по количеству АР при неизменной номенклатуре элементов АФАР, не требующей при этом кратного увеличения производительности вычислителя, а также обеспечивающей использование зондирующих сигналов произвольной формы. Активная фазированная антенная решетка, содержащая элементы антенной решетки, приемо-передающие модули (ППМ), центральный процессор (ЦПР), в которую введены блок формирования опорного сигнала (БФОС), М*K базовых элементов решетки (БЭР), включающие в свой состав устройство цифровой обработки (УЦО). 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к радиолокации, в частности к активной фазированной антенной решетке (АФАР), управляемой как по направлению излучения и приема, так и по параметрам зондирующего сигнала, работающей в составе импульсно-доплеровской радиолокационной станции (РЛС).

Из существующего уровня техники известна АФАР (1 - Патент США, H01Q 3/22, №6441783 от 27.08.02. Circuit module for a passed array), которая состоит из множества элементов антенной решетки (АР), приемо-передающих модулей (НИМ), отдельного модуля гетеродинов (МГ), отдельного модуля синхронизации (МС) и отдельного модуля центрального процессора. Приемо-передающие модули выполняются как совмещенные аналого-цифровые модули, реализующие канал приема/передачи, подключенные к элементам АР. При излучении все НИМ формируют сигналы промежуточной частоты, которые в результате взаимодействия в смесителе с сигналом гетеродина переносятся на несущую частоту, усиливаются, подводятся к элементам АР и излучаются. Формирование передающей диаграммы направленности выполняется за счет сложения в пространстве сигналов, излучаемых всеми элементами АР. Формирование сигналов промежуточной частоты в передающем тракте НИМ осуществляется квадратурным генератором прямого синтеза (КГПС) с заданными индивидуально для каждого элемента АР значениями начальной фазы и амплитуды, вычисляемым центральным процессором в соответствии с параметрами АР. При приеме сигналы, пришедшие от элементов АР, поступают в приемный тракт НИМ, где усиливаются, переносятся на промежуточную частоту, оцифровываются и перемножаются с цифровым сигналом КГПС с получением квадратур демодулированного по пространственной частоте (направлению) сигнала. Выходные сигналы приемного тракта из каждого ППМ в цифровой форме поступают в модуль центрального процессора для последующей обработки сигналов. Синхронизация работы всех ППМ осуществляется синхронизирующими сигналами модуля синхронизации и модуля гетеродинов. Алгоритм функционирования радиолокационной станции, построенной на базе такой АФАР, может варьироваться в соответствии с функциональностью используемых в составе АФАР модулей.

Недостатком устройства является ограничение по форме излучаемого сигнала, связанное с применением КГПС для формирования излучаемого сигнала. Для реализации наиболее эффективного алгоритма обработки сигналов АФАР в качестве излучаемого сигнала может потребоваться сигнал такой формы, который не может быть сформирован КГПС из-за ограниченности его функциональных возможностей. Таким образом, не могут быть достигнуты потенциально возможные параметры радиолокационной станции.

Дополнительным недостатком устройства является наличие непосредственных связей между каждым ППМ и модулем центрального процессора. При этом, увеличение количества элементов АР при сохранении заданного быстродействия радиолокационной станции требует кратного увеличения количества точек подключения для связей с ППМ и, как минимум, кратного увеличения производительности центрального процессора. Таким образом, ухудшается масштабируемость АФАР по количеству элементов АР.

Известно устройство (2 - «Активная фазированная антенная решетка», патент Российской Федерации №2451373, от 10.09.2010 г., МПК H01Q 3/26), взятое в качестве прототипа, состоящее из множества элементов АР, соединенных со своими приемо-передающими модулями (ППМ), первого когерентного СВЧ гетеродина (КГ1), второго когерентного СВЧ гетеродина (КГ2), первого делителя мощности (ДМ1), второго делителя мощности (ДМ2), синхронизатора (СНХ), коммутатора (КОМ) и центрального процессора (ЦПР). Все ППМ являются однотипными, каждый из которых обслуживает один элемент АР. ППМ содержит циркулятор, элементы приемного и передающего тракта (преселектор (ПС), ключ (Кл), малошумящий усилитель (МШУ), усилитель мощности (УМ), смеситель (СМ), фильтр ПЧ (ФПЧ), векторный модулятор (ВМ)) и узел управления. ВМ состоит из квадратурного генератора прямого цифрового синтеза (КГПС) и квадратурного балансного смесителя (КБС). Исходным сигналом для излучения является сигнал ПЧ, формируемый КГПС, который поступает в КБС, где в результате взаимодействия с сигналом КГ1 на выходе появляется излучаемый сигнал на несущей частоте, который затем усиливается в УМ и через циркулятор подается на элемент АР и излучается. Параметры излучаемого сигнала (фаза и амплитуда) задаются узлом управления, в который из ЦПР поступают команды управления. Принимаемые сигналы, поступающие от элементов АР, поступают в циркулятор, затем последовательно через преселектор и ключ (Кл) в МШУ, где выполняется усиление сигнала. С выхода МШУ сигнал подается в смеситель (СМ), где в результате взаимодействия с сигналом КГ2 на выходе появляется сигнал ПЧ, который оцифровывается аналого-цифровым преобразователем (АЦП) и в цифровой форме передается в ЦПР для последующей обработки сигналов АФАР. Синхронизация работы АФАР обеспечивается общими для всей АФАР синхронизатором (СНХ), формирующим синхронизирующие последовательности, первым когерентным СВЧ гетеродином (КГ1) и вторым когерентным СВЧ гетеродином (КГ2). Алгоритм обработки сигналов АФАР и функции взаимодействия с потребителем реализуются центральным процессором (ЦПР).

Недостатком прототипа является отсутствие необходимой гибкости при масштабировании структуры АФАР в части увеличения количества элементов АР. Увеличение количества элементов АР, помимо увеличения количества ППМ, влечет за собой пропорциональное количеству добавляемых элементов АР увеличение количества связей между каждым приемо-передающим модулем, участвующим в формировании регулярной структуры, и элементами АФАР, не входящими в состав регулярной структуры, такими как СНХ, ДМ1, ДМ2 и ЦПР. При этом, в связи с ростом количества связей, требуется изменение конфигурации и характеристик СНХ, ДМ1, ДМ2 и ЦПР. Кроме этого, при увеличении количества элементов АР требуется, как минимум, кратное количеству добавленных элементов АР увеличение производительности ЦПР для сохранения исходных параметров быстродействия, поскольку в ЦПР заводятся потоки необработанных отсчетов сигналов, принятых элементами АР, из каждого ППМ.

Дополнительным недостатком прототипа является ограничение по возможности модификации алгоритма обработки сигналов АФАР из-за невозможности формирования зондирующих сигналов произвольной формы, так как каждый алгоритм обработки сигналов АФАР предусматривает использование сигналов оптимальной формы для получения максимальной эффективности, а применение КГПС в качестве формирователя излучаемого сигнала позволяет формировать сигналы только определенной формы.

Задачей, на решение которой направлено заявленное изобретение, является создание масштабируемой АФАР, имеющей минимальную номенклатуру элементов и структуру с минимальным количеством прямых соединений, связывающих однотипные элементы АФАР, объединенные в регулярную двумерную структуру, с остальными элементами АФАР, а также не требующую при увеличении количества элементов АР, кратного количеству добавляемых элементов АР, увеличения производительности центрального процессора и реализующую возможность формирования зондирующих сигналов произвольной формы.

Для решения поставленной задачи предлагается активная фазированная антенная решетка, содержащая приемопередающие модули, центральный процессор, аналого-цифровые преобразователи, элементы антенной решетки. Согласно изобретению, дополнительно введены блок формирования опорного сигнала и М*К базовых элементов решетки, в состав которых, кроме 2L, L=1, 2, 3, 4, …, приемо-передающих модулей и 2L элементов антенной решетки включено устройство цифровой обработки, содержащее, кроме 2L аналого-цифровых преобразователей, дополнительно 2L цифро-аналоговых преобразователей и узел управления и обработки; выходы блока формирования опорного сигнала, номер каждого из которых соответствует номеру базового элемента решетки, соединены с первыми входами базовых элементов решетки, девятым входом узла управления и обработки и четвертым входом приемо-передающего модуля, второй вход-выход базового элемента решетки соединен с третьим входом-выходом базового элемента решетки, расположенного в том же столбце матрицы АФАР на одну строку матрицы АФАР выше, второй вход-выход каждого из базовых элементов решетки, расположенных в верхней строке матрицы АФАР остается не подключенным, третий вход-выход каждого из базовых элементов решетки, расположенных в нижней строке матрицы АФАР подключен к одному из входов-выходов центрального процессора, четвертый выход базового элемента решетки подключен к шестому входу базового элемента решетки, расположенному в той же строке матрицы АФАР на один столбец матрицы АФАР правее, четвертый выход каждого из базовых элементов решетки, расположенных в правом столбце матрицы АФАР остается не подключенным, шестой вход каждого из базовых элементов решетки, расположенных в левом столбце матрицы АФАР остается не подключенным, пятый выход базового элемента решетки соединен с седьмым входом базового элемента решетки, расположенного в том же столбце матрицы АФАР на одну строку матрицы АФАР ниже, пятый выход каждого базовых элементов решетки, расположенных в нижней строке матрицы АФАР остается не подключенным, седьмой вход каждого из базовых элементов решетки, расположенных в верхней строке матрицы АФАР остается не подключенным; каждый элемент антенной решетки в составе базового элемента решетки подключен непосредственно к приемо-передающему модулю, номер которого соответствует номеру элемента антенной решетки, каждый приемо-передающий модуль в составе базового элемента решетки подключен к устройству цифровой обработки, в каждом базовом элементе решетки первый выход приемо-передающего модуля подключен к первому входу аналого-цифрового преобразователя, второй вход приемо-передающего модуля подключен к первому выходу цифро-аналогового преобразователя, третий вход приемо-передающего модуля подключен к пятому выходу узла управления и обработки с индексом, соответствующим номеру приемо-передающего модуля в пределах базового элемента решетки, второй выход аналого-цифрового преобразователя подключен к первому входу узла управления и обработки с индексом, соответствующим номеру приемо-передающего модуля в пределах базового элемента решетки, третий вход аналого-цифрового преобразователя подключен ко второму выходу узла управления и обработки с индексом, соответствующим номеру приемо-передающего модуля в пределах базового элемента решетки, второй вход цифро-аналогового преобразователя подключен к третьему выходу узла управления и обработки с индексом, соответствующим номеру приемо-передающего модуля в пределах базового элемента решетки, третий вход цифро-аналогового преобразователя подключен к четвертому выходу узла управления и обработки с индексом, соответствующим номеру приемо-передающего модуля в пределах базового элемента решетки; первый вход-выход центрального процессора обеспечивает связь с потребителем; при этом базовые элементы решетки формируют регулярную двумерную структуру активной фазированной антенной решетки, представляющую собой матрицу АФАР размерностью М*К (М - количество строк матрицы АФАР, К - количество столбцов матрицы АФАР) с общим количеством элементов антенной решетки N=2L*M*K.

Техническим результатом является создание АФАР, масштабируемой по количеству элементов АР при неизменной номенклатуре элементов АФАР, не требующей при этом кратного увеличения производительности вычислителя, а также обеспечивающей возможность использования зондирующих сигналов произвольной формы.

На фигуре показана структурная схема предлагаемой АФАР.

Сущность изобретения поясняется дальнейшим описанием и фигурой, относящейся к предлагаемой АФАР.

На фигуре приняты следующие обозначения:

1 - базовый элемент решетки (БЭР п) с номером n={1, М*К},

2 - блок формирования опорного сигнала (БФОС),

3 - центральный процессор (ЦПР),

4 - приемо-передающий модуль (ППМ m-n) с номером m={1, 2L} в пределах БЭР с номером n={1, М*К},

5 - устройство цифровой обработки (УЦО) в пределах БЭР с номером n={1, М*К},

6 - аналого-цифровой преобразователь (АЦП m-n) с номером m={1, 2L} в пределах УЦО с номером n={1, М*К},

7 - цифро-аналоговый преобразователь (ЦАП m-n) с номером m={1, 2L} в пределах УЦО с номером n={1, М*К},

8 - узел управления и обработки (УУПО n) в пределах УЦО с номером n={1, М*К},

9 - элемент антенной решетки (A m-n) с номером m={1, 2L} в пределах БЭР с номером n={1, М*К}.

Устройство (фиг.) работает следующим образом. АФАР строится как регулярная двумерная структура (матрица АФАР), формируемая однотипными 2L-канальными базовыми элементами решетки 1 (БЭР 11…БЭР 1М*К), функционирующая совместно с БФОС 2 и ЦПР 3. Каждый базовый элемент решетки 1 реализует 2L-канальный элемент структуры АФАР. В состав каждого из БЭР 1 включены 2L элементов антенной решетки 9, 2L приемо-передающих модулей 4 и устройство цифровой обработки 5. Устройство цифровой обработки 5 в свой состав включает 2L аналого-цифровых преобразователей 6, 2L цифро-аналоговых преобразователей 7 и узел управления и обработки 8. Объединение базовых элементов решетки 1 в матрицу АФАР выполняется на уровне УЦО 5: все объединяющие интерфейсы и функциональные возможности, обеспечивающие совместную когерентную работу всех базовых элементов решетки 1 в АФАР реализуются посредством УЦО 5, а приемо-передающие модули 4 выполняют функции переноса сигнала, предназначенного для излучения, на несущую частоту, усиление и передачу на элемент антенной решетки 9 для последующего излучения, а также прием сигналов с переносом их на промежуточную частоту для последующей обработки в УЦО 5.

В состав БЭР 1 включены 2L ППМ 4, 2L элементов антенной решетки 9, УЦО 5, содержащее 2L АЦП 6, 2L ЦАП 7 и УУПО 8; выходы БФОС 2, номер каждого из которых соответствует номеру БЭР 1, соединены с первыми входами БЭР 1, девятым входом УУПО 8 и четвертым входом ППМ 4, второй вход-выход БЭР 1 соединен с третьим входом-выходом БЭР 1, расположенного в том же столбце матрицы АФАР на одну строку матрицы АФАР выше, второй вход-выход базовых элементов решетки 1, расположенных в верхней строке матрицы АФАР остается не подключенным, третий вход-выход каждого из базовых элементов решетки 1, расположенных в нижней строке матрицы АФАР подключен к одному из входов-выходов ЦПР 3, четвертый выход БЭР 1 подключен к шестому входу базового элемента решетки 1, расположенному в той же строке матрицы АФАР на один столбец матрицы АФАР правее, четвертый выход каждого из базовых элементов решетки 1, расположенных в правом столбце матрицы АФАР остается не подключенным, шестой вход базовых элементов решетки 1, расположенных в левом столбце матрицы АФАР остается не подключенным, пятый выход БЭР 1 соединен с седьмым входом базового элемента решетки 1, расположенного в том же столбце матрицы АФАР на одну строку матрицы АФАР ниже, пятый выход каждого из базовых элементов решетки 1, расположенных в нижней строке матрицы АФАР остается не подключенным, седьмой вход каждого из базовых элементов решетки 1, расположенных в верхней строке двумерной структуры АФАР остается не подключенным; каждый элемент антенной решетки 9 в составе БЭР 1 подключен непосредственно к ППМ 4, номер которого соответствует номеру элемента антенной решетки 9, каждый ППМ 4 в составе базового элемента решетки подключен к УЦО 5, в каждом БЭР 1 первый выход ППМ 4 подключен к первому входу АЦП 6, второй вход ППМ 4 подключен к первому выходу ЦАП 7, третий вход ППМ 4 подключен к пятому выходу УУПО 8 с подстрочным индексом, соответствующим номеру ППМ 4 в пределах БЭР 1, второй выход АЦП 6 подключен к первому входу УУПО 8 с подстрочным индексом, соответствующим номеру АЦП 6 в УЦО 5, третий вход АЦП 6 подключен ко второму выходу УУПО 8 с подстрочным индексом, соответствующим номеру АЦП 6 в пределах УЦО 5, второй вход ЦАП 7 подключен к третьему выходу УУПО 8 с построчным индексом, соответствующим номеру ЦАП 7 в пределах УЦО 5, третий вход ЦАП 7 подключен к четвертому выходу УУПО 8 с подстрочным индексом, соответствующим номеру ЦАП 7 в пределах УЦО 5; первый вход-выход ЦПР 3 обеспечивает связь с потребителем; при этом базовые элементы решетки 1 формируют регулярную двумерную структуру активной фазированной антенной решетки, представляющую собой матрицу АФАР размерностью М*К (М - количество строк матрицы АФАР, К - количество столбцов матрицы АФАР) размерностью М*К с общим количеством элементов антенной решетки N=2L*M*K.

Связи от БФОС 2 к первому входу каждого БЭР 1 обеспечивают передачу сигнала гетеродина для ППМ 4 в составе БЭР 1 и опорного сигнала для работы УЦО 5 в составе БЭР 1.

Аналого-цифровые преобразователи 6 в составе УЦО 5 выполняют преобразование в цифровую форму аналоговых сигналов промежуточной частоты (ПЧ), поступающих из ППМ 4 в режиме приема. Связь между первым выходом ППМ 4 и первым входом АЦП 6 соответствующего канала БЭР 1 служит для трансляции принятого аналогового сигнала на промежуточной частоте из ППМ 4 в УЦО 5, подключение второго выхода АЦП 6 каждого из 2L каналов БЭР 1 к первому входу соответствующего канала УУПО 8 обеспечивает передачу отсчетов принятого сигнала для последующей обработки. Подключение второго выхода УУПО 8 к третьему входу АЦП 6 для каждого из 2L каналов БЭР 1 обеспечивает передачу тактового сигнала АЦП 6.

Цифро-аналоговые преобразователи 7 в составе УЦО 5 выполняют преобразование цифровых сигналов, определяющих форму зондирующего сигнала, в аналоговую форму на промежуточной частоте тракта передачи ППМ 4. Связь между первым выходом ЦАП 7 каждого из 2L каналов БЭР 1 и вторым входом ППМ 4 соответствующего канала служит для передачи из УЦО 5 в ППМ 4 излучаемого аналогового сигнала на промежуточной частоте, сформированного ЦАП 7. Связь третьего выхода УУПО 8 со вторым входом ЦАП 7 для каждого из 2L каналов БЭР 1 обеспечивает передачу излучаемого сигнала в цифровой форме на промежуточной частоте. Связь четвертого выхода УУПО 8 с третьим входом ЦАП 7 для каждого из 2L каналов БЭР 1 обеспечивает передачу тактового сигнала ЦАП 7. Применение ЦАП 7 в качестве формирователя излучаемого зондирующего сигнала обеспечивает возможность применения сигналов произвольной формы.

УУПО 8 в составе УЦО 5 реализует: функции оперативного управления УЦО 5 по командам, поступающим из ЦПР 3, и командам, поступающим из УЦО 5, находящихся в смежных (сверху и слева в структуре АФАР) базовых элементах решетки 1; функции обработки сигналов АФАР; передачу в ЦПР 3 результатов обработки принятых сигналов АФАР; конфигурирование (установка параметров) и координацию работы ППМ 4 и функциональных узлов УЦО 5, согласно установленному алгоритму обработки сигналов АФАР, в том числе управление режимами «прием/передача» и управление значением несущей частоты излучаемых и принимаемых сигналов. УУПО 8 также выполняет функции формирования тактовых сигналов для тактирования функциональных узлов УЦО 5, в том числе АЦП 6 и ЦАП 7, из входного опорного сигнала, получаемого из БФОС 2, при этом обеспечивается минимальное отклонение по фазе между всеми формируемыми сигналами тактирования. Связь пятого выхода УУПО 8 с третьим входом ППМ 4 для каждого из 2L каналов БЭР 1 транслирует команды управления ППМ 4.

В матрице АФАР, формируемой базовыми элементами решетки 1, один из базовых элементов решетки (БЭР 1 с номером 1) является ведущим (задающим) блоком, все остальные БЭР 1 являются ведомыми. Команды оперативного управления (включение/выключение рабочих режимов с передачей параметров режимов) элементами матрицы АФАР, исходящие от ЦПР 3, обращены только к ведущему. Назначение ведущего БЭР 1 и конфигурирование ведомых БЭР 1 осуществляется ЦПР 3 во время инициализации АФАР. Конфигурация связей синхронизации обеспечивает 2-х кратное резервирование по синхронизации для всех базовых элементов решетки 1, начиная со 2-ой строки матрицы АФАР и 2-го столбца матрицы АФАР, сформированной базовыми элементами решетки 1.

Связи между четвертым выходом предыдущего БЭР 1 и шестым входом последующего БЭР 1 в горизонтальном соединении, а также пятым выходом предыдущего БЭР 1 и седьмым входом последующего БЭР 1 в вертикальном соединении, формируют распределенный интерфейс синхронизации, по которому передаются команды управления и синхронизации от ведущего БЭР 1, расположенного в верхнем левом углу матрицы АФАР, по команде, поступающей от ЦПР 3. Распределенный интерфейс синхронизации обеспечивает объединение нескольких БЭР 1 в единую многоканальную структуру с когерентной обработкой сигналов АФАР. Каждое соединение в распределенном интерфейсе синхронизации содержит одну линию для последовательной передачи битовой последовательности. Передаваемая битовая последовательность одновременно с передачей управляющих данных выполняет и роль сигналов синхронизации, при этом распределенный интерфейс синхронизации обеспечивает синхронную отработку команд во всех БЭР 1 с точностью до такта системной частоты, что гарантирует когерентность обработки сигналов АФАР.

Информационный интерфейс, связывающий базовые элементы решетки 1 и ЦПР 3 и обеспечивающий передачу данных результатов обработки сигналов от базовых элементов решетки 1 в ЦПР 3, а также функции управления АФАР, представлен в виде нескольких «гирляндных» цепочек. На фиг. каждый ряд базовых элементов решетки 1 реализует отдельную «гирляндную» цепочку информационного интерфейса, состоящую из сегментов, первый (порождающий «гирляндную» цепочку) из которых формируется соединением входа-выхода с номером 2…К+1 ЦПР 3 и третьего входа-выхода БЭР 1, непосредственно подключенного к ЦПР 3, а остальные сегменты цепочки формируются соединением второго и третьего входов-выходов последующих БЭР 1 в цепочке. Все базовые элементы решетки 1 могут быть объединены в одну цепочку. Каждая «гирляндная» цепочка, в контексте выполняемого в УЦО 5 алгоритма предварительной обработки сигналов АФАР обеспечивает связь между узлами конвейера обработки, которыми являются УЦО 5 в составе БЭР 1. В режимах работы, реализующих алгоритм формирования диаграммы направленности (ДН) для элементов АР, принадлежащих всем включенным в «гирляндную» цепочку базовым элементам решетки 1, с использованием конвейера увеличение количества узлов в конвейере обработки не увеличивает нагрузку на информационный интерфейс по пропускной способности, вызывая только рост кумулятивной задержки поступления данных в ЦПР 3, что не сказывается на скорости работы радиолокационной станциии. В режимах работы, когда формирование ДН для всех, включенных в «гирляндную» цепочку БЭР 1, не выполняется, увеличение количества БЭР 1, объединенных в «гирляндную» цепочку, пропорционально количеству БЭР 1 в цепочке увеличивает нагрузку на информационный интерфейс по пропускной способности. В этом случае количество БЭР 1, включаемых в «гирляндную цепочку» определяется исходя из условия, что общая нагрузка на информационный интерфейс по пропускной способности, порождаемая всеми БЭР 1 в цепочке, не должна превышать требуемой для данного режима пропускной способности информационного интерфейса. Функции управления, возлагаемые на информационный интерфейс, обеспечивают передачу из ЦПР 3 данных настройки для базовых элементов решетки 1, входящих в состав АФАР, а также передачу команд оперативного управления в ведущий базовый элемент решетки 1. Команды оперативного управления, поступающие из ЦПР 3 содержат информацию о типе (форме) излучаемого зондирующего сигнала, его длительности, периоде повторения, параметрах обработки сигналов АФАР в УЦО 5 (ширина полосы частот), а также общий для всей решетки код пространственного наведения, который преобразуется в УЦО 5 каждого БЭР 1 в индивидуальный для каждого элемента антенной решетки 9 фазовый сдвиг и значение амплитуды сигнала для режима излучения зондирующего импульса и в индивидуальный фазовый сдвиг и значение амплитуды сигнала при формировании устройством цифровой обработки 5 диаграммы направленности в режиме приема согласно предустановкам, выполняемым перед запуском рабочего режима АФАР.

Функции обработки сигналов АФАР обеспечивают формирование 2L когерентных потоков отсчетов излучаемого сигнала в каждом канале в соответствии с установленным режимом работы с учетом заданных фазовых сдвигов и значений амплитуды сигнала для формирования ДН в режиме излучения и передачу их в ЦАП 7 соответствующих каналов; когерентную обработку потоков отсчетов принимаемого сигнала в каждом канале в соответствии с установленным режимом работы с учетом заданных фазовых сдвигов и значений амплитуды для формирования ДН в режиме приема сигналов с последующим суммированием и формированием собственного потока результатов обработки сигналов АФАР, соответствующих элементам АР, представленным в данном БЭР 1. При установке режима работы, не предусматривающего выполнение конвейерного суммирования результатов обработки сигналов АФАР, БЭР 1 выполняет трансляцию в направлении ЦПР 3 собственного потока результатов обработки сигналов АФАР и ретрансляцию в направлении ЦПР 3 потока с результатами обработки сигналов АФАР, полученного из другого БЭР 1 по «гирляндной» цепочке информационного интерфейса. Таким образом, в данном режиме работы объем передаваемых в ЦПР 3 данных увеличивается пропорционально количеству БЭР 1 в «гирляндной» цепочке информационного интерфейса. При установке режима работы, предусматривающего выполнение конвейерного суммирования результатов обработки сигналов АФАР, выполненной в самом БЭР 1, с результатами обработки сигналов АФАР, полученными из другого БЭР 1 по «гирляндной» цепочке информационного интерфейса, формируется общий поток данных в направлении ЦПР 3, являющийся результатом суммирования потока результатов, сформированного данным БЭР 1 и потока, принятого по информационному интерфейсу от другого БЭР 1 по цепочке. Таким образом, в данном режиме работы, поток данных результатов обработки сигналов АФАР, приходящий в ЦПР 3 по цепочке, представляет собой суммарный поток результатов обработки сигналов АФАР всех БЭР 1, объединенных в «гирляндную» цепочку по информационному интерфейсу, при этом объем передаваемых в ЦПР 3 данных не зависит от длины «гирляндной» цепочки. В ЦПР 3 по известным алгоритмам выполняется цифровая обработка данных, полученных из БЭР 1, а результаты обработки передаются пользователю.

Активная фазированная антенная решетка, содержащая приемо-передающие модули, центральный процессор, аналого-цифровые преобразователи, элементы антенной решетки, отличающаяся тем, что дополнительно введены блок формирования опорного сигнала и M*K базовых элементов решетки, в состав которых, кроме 2, L=1, 2, 3, 4, …, приемо-передающих модулей и 2 элементов антенной решетки, включено устройство цифровой обработки, содержащее, кроме 2 аналого-цифровых преобразователей, дополнительно 2 цифроаналоговых преобразователей и узел управления и обработки; выходы блока формирования опорного сигнала, номер которых соответствует номеру базового элемента решетки, соединены с первыми входами базовых элементов решетки, девятым входом узла управления и обработки и четвертым входом приемо-передающего модуля, второй вход-выход базового элемента решетки соединен с третьим входом-выходом базового элемента решетки, располагающегося в том же столбце матрицы АФАР на одну строку матрицы АФАР выше, второй вход-выход каждого из базовых элементов решетки, расположенных в верхней строке матрицы АФАР, остается не подключенным, третий вход-выход каждого из базовых элементов решетки, расположенных в нижней строке матрицы АФАР, подключен к одному из входов-выходов центрального процессора, четвертый выход базового элемента решетки подключен к шестому входу базового элемента решетки, располагающемуся в той же строке матрицы АФАР на один столбец матрицы АФАР правее, четвертый выход каждого из базовых элементов решетки, расположенных в правом столбце матрицы АФАР, остается не подключенным, шестой вход каждого из базовых элементов решетки, расположенных в левом столбце матрицы АФАР, остается не подключенным, пятый выход базового элемента решетки соединен с седьмым входом базового элемента решетки, расположенного в том же столбце матрицы АФАР на одну строку матрицы АФАР ниже, пятый выход каждого из базовых элементов решетки, расположенных в нижней строке матрицы АФАР, остается не подключенным, седьмой вход каждого из базовых элементов решетки, расположенных в верхней строке матрицы АФАР, остается не подключенным; каждый элемент антенной решетки в составе базового элемента решетки подключен непосредственно к приемо-передающему модулю, номер которого соответствует номеру элемента антенной решетки, каждый приемо-передающий модуль в составе базового элемента решетки подключен к устройству цифровой обработки, в каждом базовом элементе решетки первый выход приемо-передающего модуля подключен к первому входу аналого-цифрового преобразователя, второй вход приемо-передающего модуля подключен к первому выходу цифро-аналогового преобразователя, третий вход приемо-передающего модуля подключен к пятому выходу узла управления и обработки с индексом, соответствующим номеру приемо-передающего модуля в пределах базового элемента решетки, второй выход аналого-цифрового преобразователя подключен к первому входу узла управления и обработки с индексом, соответствующим номеру аналого-цифрового преобразователя в пределах устройства цифровой обработки, третий вход аналого-цифрового преобразователя подключен ко второму выходу узла управления и обработки с индексом, соответствующим номеру аналого-цифрового преобразователя в пределах устройства цифровой обработки, второй вход цифроаналогового преобразователя подключен к третьему выходу узла управления и обработки с индексом, соответствующим номеру цифроаналогового преобразователя в пределах устройства цифровой обработки, третий вход цифроаналогового преобразователя подключен к четвертому выходу узла управления и обработки с индексом, соответствующим номеру цифроаналогового преобразователя в пределах устройства цифровой обработки; при этом базовые элементы решетки формируют регулярную двумерную структуру активной фазированной антенной решетки, представляющую собой матрицу АФАР размерностью M*K (M - количество строк матрицы АФАР, K - количество столбцов матрицы АФАР) размерностью M*K с общим количеством элементов антенной решетки N=2*M*K.
АКТИВНАЯ ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА
АКТИВНАЯ ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА
Источник поступления информации: Роспатент

Показаны записи 1-8 из 8.
25.08.2017
№217.015.a963

Фармацевтическая композиция в виде назального спрея на основе кеторолака и способ ее получения

Изобретение относится к фармацевтической промышленности и представляет собой фармацевтическую композицию в виде назального спрея, обладающую обезболивающей и противовоспалительной активностью, характеризующуюся тем, что содержит в качестве активного вещества кеторолака трометамин и...
Тип: Изобретение
Номер охранного документа: 0002611659
Дата охранного документа: 28.02.2017
19.01.2018
№218.016.0dfc

Противовирусное лекарственное средство в виде капсул и способ его получения

Изобретение относится к фармацевтической промышленности, в частности к составу лекарственного средства, обладающего противовирусным действием, и способу его получения. Противовирусное лекарственное средство выполнено в виде твердой желатиновой капсулы, содержащей гранулы, включающие в качестве...
Тип: Изобретение
Номер охранного документа: 0002633085
Дата охранного документа: 11.10.2017
17.11.2018
№218.016.9e76

Способ распознавания графических образов объектов

Изобретение относится к области цифровой обработки изображений. Технический результат – повышение скорости и точности распознавания графических образов при одновременном уменьшении количества ложных распознаваний. Способ распознавания графических образов объектов на исходном изображении,...
Тип: Изобретение
Номер охранного документа: 0002672622
Дата охранного документа: 16.11.2018
26.12.2018
№218.016.ab81

Способ дистанционного отбора воздушных проб с поверхности и из негерметизированных объектов и устройство для его реализации

Группа изобретений относится к области газового анализа, а именно к вихревому отбору проб. Заявлен способ и устройство для дистанционного отбора воздушных проб с поверхности и из негерметизированных объектов. Согласно изобретению исследуемый объект обдувают закрученной воздушной струей, пары...
Тип: Изобретение
Номер охранного документа: 0002675879
Дата охранного документа: 25.12.2018
31.05.2019
№219.017.70b6

Система контроля доступа для массовых мероприятий

Изобретение относится к средствам контроля доступа для массовых мероприятий, предназначенным для проверки прав доступа пользователей на объекты по идентификаторам пропускных документов с возможностью аутентификации пользователей при проходах. Технический результат заключается в расширении...
Тип: Изобретение
Номер охранного документа: 0002689807
Дата охранного документа: 29.05.2019
07.06.2019
№219.017.7509

Способ получения наноразмерных ворсистых материалов

Способ по изобретению относится к области изготовления сухих адгезивов для создания достаточно прочной связи между поверхностями соединяемых тел, когда на поверхности как минимум одного тела создается массив отдельно стоящих ворсинок. Способ получения наноразмерных ворсистых материалов, который...
Тип: Изобретение
Номер охранного документа: 0002690816
Дата охранного документа: 05.06.2019
26.06.2019
№219.017.927c

Способ идентификации и классификации объектов

Изобретение относится к способам распознавания плоских изображений объектов по их форме с извлечением признаков объектов на основе контурного анализа, с последующей обработкой извлеченных признаков на основе статистического анализа, и может быть использовано в системах технического зрения....
Тип: Изобретение
Номер охранного документа: 0002692420
Дата охранного документа: 24.06.2019
04.07.2020
№220.018.2f4e

Грузовой пассивный экзоскелет с настройкой под антропометрические параметры пользователя

Изобретение относится к медицине. Грузовой пассивный экзоскелет с настройкой под антропометрические параметры пользователя содержит опорный тазовый элемент (100), опорный элемент спины (200), опору груди (300), опору живота (400), а также правую и левую опоры ноги. Опорный тазовый элемент...
Тип: Изобретение
Номер охранного документа: 0002725288
Дата охранного документа: 30.06.2020
+ добавить свой РИД