×
22.12.2019
219.017.f0cd

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЭКСТРАПОЛИРОВАННЫХ ЗНАЧЕНИЙ ДАЛЬНОСТИ И СКОРОСТИ СБЛИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С РАДИОЛОКАЦИОННЫМ ОБЪЕКТОМ

Вид РИД

Изобретение

№ охранного документа
0002709785
Дата охранного документа
20.12.2019
Аннотация: Изобретение относится к радиолокационным системам и заключается в том, что по принятым от радиолокационного объекта (РЛО) радиосигналам оценивают значения расстояния от летательного аппарата (ЛА) - носителя РЛС до РЛО. Достигаемый технический результат – возможность определения экстраполированных значений дальности до РЛО и скорости сближения с ним. По оцененным значениям дальностей до РЛО, применяя алгоритм полигармонической экстраполяции и чебышевское спектральное дифференцирование, оценивают экстраполированную дальность до РЛО и скорость сближения с ним. Эти данные передают потребителям, например, в систему управления ЛА для формирования и реализации управляющих сигналов. 2 ил.

Изобретение относится к радиолокации, в частности, может использоваться в радиолокационных системах (РЛС), обеспечивающих определение дальности до радиолокационных объектов (РЛО) и скорости сближения с ними.

В радиолокации наряду с формированием текущих оценок дальности до РЛО и скорости сближения с ними достаточно часто необходимо определять экстраполированные (прогнозируемые) значения дальности и скорости сближения в моменты времени, находящиеся за пределами интервала наблюдения и основанные на данных более ранних моментов времени.

Различают следующие виды экстраполяции: экстраполяция в заданную точку, экстраполяция на заданное число шагов, экстраполяция на фиксированный интервал [1].

Известен ряд способов определения экстраполированных значений дальности и скорости сближения с использованием алгоритмов фильтрации во временной и частотной областях. При применении временной фильтрации этапу прогнозирования предшествует итеративная процедура построения математической модели текущего поведения дальности во времени, основанная на теории идентификации и оценивания [2, с. 116-123]. Затем на этапе прогнозирования полученные оценки параметров математической модели используются в вычислительных алгоритмах для определения экстраполированных значений дальности и скорости. Наиболее известный способ экстраполяции параметров полиномиальной траектории по предварительно полученным оценкам этих параметров на момент последнего измерения применительно к решению задачи экстраполяции дальности и скорости приведен в [3, с. 199-200] и в [4, с. 156-158].

При применении частотной фильтрации на основе априорно заданной математической модели поведения дальности находится передаточная функция фильтра Винера, с помощью которого осуществляется экстраполяция дальности [5, с. 118-131, 151-159].

Таким образом, для реализации известных способов экстраполяции принципиально необходимым является знание математической модели поведения дальности и скорости во времени. Учитывая многообразие условий практического применения РЛС, разработаны различные математические модели, характеризующие временные процессы изменения дальности. Поскольку условия применения одной и той же РЛС при ее работе могут существенно изменяться, то для эффективного функционирования РЛС следует использовать ту математическую модель, которая в максимальной степени соответствует конкретному варианту применения. Для этого необходимо непрерывно отслеживать складывающуюся ситуацию в контролируемом РЛС пространстве с целью формирования ситуационной осведомленности об окружающей обстановке, что достаточно сложно обеспечить на практике.

Технической задачей изобретения является разработка способа определения экстраполированных значений дальности и скорости сближения летательного аппарата (ЛА) с РЛО по измерениям дальности, не требующего использования математических моделей относительного движения ЛА и РЛО, что позволит расширить арсенал известных способов экстраполяции дальности и скорости сближения.

Техническим результатом предлагаемого способа (изобретения) является реализация возможности определения экстраполированных значений дальности до РЛО и скорости сближения с ним на основе использования информации о спектрах последовательностей отсчетов дальности (по измерениям дальности). Использование спектральных характеристик для решения задач экстраполяции основывается на том, что в отличие от традиционных подходов к экстраполяции они характеризуют сигнал в целом и в каждом отсчете спектра присутствует информация о закономерностях динамики сигнала на доступном наблюдению отрезке предыстории. Предлагаемый способ снимает требования по точности соответствия моделей изменения во времени дальности и скорости сближения реальному процессу, предъявляемые в известных способах. Поскольку заявляемый способ не требует знания математической модели поведения во времени дальности, то он не имеет прототипа среди известных способов экстраполяции дальности и скорости сближения. Общим признаком с известными способами является лишь наличие процедуры формирования отсчетов дальности до РЛО.

Сущность предлагаемого способа определения экстраполированных значений дальности и скорости сближения на основе использования информации о спектрах заключается в том, что после излучения последовательности радиоимпульсов, приема отраженных от РЛО сигналов, фильтрации их от шумов, преобразования в цифровую форму дальнейшую обработку осуществляют с применением алгоритма полигармонической экстраполяции [6, с. 120-121] и Чебышевского спектрального дифференцирования [7, с. 78], существо которых сводится к следующему.

Задают: N-количество точек быстрого преобразования Фурье (БПФ), протяженность по времени t отрезка реализации Т; М (число Чебышевских точек М+1); τ-время упреждения.

Способ полигармонической экстраполяции состоит в том, что для экстраполяции дальности выполняют следующие действия:

- формируют N значений дальностей по принятым сигналам на периоде Т. Затем берется другой отрезок с периодом Т, сдвинутый относительно первого на время τ, и также формируют N значений дальностей. Полученные значения дальностей запоминают в виде массива, причем массив формируют так, что первые N значений дальностей (то есть принятых в течение первого периода Т [t-T-τ, t-τ]) запоминают в ячейках первого столбца этого массива, следующие N значений дальностей, полученных в течение второго периода Т [t-T, t], запоминают в ячейках второго столбца массива;

- значения дальностей, находящихся в 1-м и 2-м столбцах массива, подвергают операции БПФ на N точек, и результаты операции БПФ SI(ω) и SII(ω) запоминают. Каждое из полученных чисел этого массива представляет собой комплексную амплитуду спектра дальности;

- знание спектров SI(ω) и SII(ω) позволяет найти комплексный коэффициент передачи Е(ω) некоторого гипотетического четырехполюсника, обеспечивающего преобразование спектра при переходе от первой реализации ко второй, сдвинутой на интервал τ

Учитывая сохранение закономерностей процесса на интервале прогноза и на интервале предыстории, можно утверждать, что коэффициент преобразования спектра отрезка реализации при переходе от второй реализации к третьей, смещенной относительно второй на τ в область прогноза, изменится незначительно относительно коэффициента преобразования спектра при переходе от первого отрезка реализации ко второму;

- вычисляют значения комплексных амплитуд спектра последовательностей отсчетов дальности реализации, смещенной относительно второй на τ в область прогноза, на основании упомянутого утверждения

- по вычисленному спектру способом обратного БПФ определяют оценки отсчетов на интервале [t-T+τ, t+τ], который частично перекрывается с областью предыстории, а частично лежит в области прогноза [t, t+τ];

- оцененные значения дальности до РЛО Дэ в области прогноза [t, t+τ] выдают потребителям информации.

Типовые алгоритмы спектрального дифференцирования на равномерно распределенной сетке обеспечивают формирование точных оценок только для гладких периодических функций. В то же время информация о дальностях на интервале Т представляет собой негладкую функцию, когда она периодически продолжена. В такой ситуации целесообразно оценки дальностей формировать в неравномерно расположенных точках по дискретно поступающим равномерно измерениям.

Рассмотрим предлагаемый метод в приложении к определению скорости сближения при условии, что измерения дальности приходят с периодом To.

В общем случае точки должны быть распределены с плотностью (на единицу длины) [7, с. 42]

Здесь М - количество точек; х ∈ [-1, 1] - аргумент сетчатой функции.

Для предлагаемой системы обработки сигналов было выбрано Чебышевское спектральное дифференцирование, при котором х=cos θ и точки, удовлетворяющие (3),

Чебышевские точки xj нумеруются справа налево.

Из полученных N оценок отсчетов дальности на периоде Т, который частично лежит в области прогноза, формируют М+1 значений отсчетов в Чебышевских точках До, …Дм, причем номера n полученных отсчетов, соответствующие j, задают формулой

где символ INT означает операцию округления до целого полученного в фигурных скобках числа, cos(jπ/M)=xj.

Расширим эти отсчеты до вектора Д длиной 2М с Д2м-k-k,

Значения отсчетов Д подвергают операции БПФ на 2М точек, и результаты операции БПФ запоминают в этом массиве. Каждое полученное число этого массива представляет собой комплексную амплитуду спектра сигнала с аргументом

Каждое m-e значение комплексных амплитуд умножают на im, где i - мнимая единица, (за исключением m=М, для которого соответствующее произведение полагают равным нулевому значению), т.е. формируют значения комплексных амплитуд спектра производной сетчатой функции по θ, которые запоминают в соответствующих ячейках упомянутого массива.

2М значений комплексных амплитуд подвергают операции обратного БПФ на 2М точек, и результаты операции обратного БПФ запоминают в упомянутом массиве. Каждое полученное число этого массива представляет собой производную по θ.

По полученным производным по θ и протяженности отрезка реализации Т определяют значения производной по t во внутренних точках сетки, т.е. вычисляют скорость сближения Vcбл ЛА с РЛО по формуле:

где - производные Д по θ,

а для первой точки существует особая формула, которая не используется из-за больших ошибок дифференцирования [7, с. 78].

В начальной внутренней точке (так как Чебышевские точки нумеруются справа налево, начальные точки оказываются конечными) ошибки дифференцирования также велики и поэтому значение первого внутреннего отсчета при также игнорируется.

В проэкстраполированном участке [t, t+τ] вычисляют среднее значение экстраполированной скорости сближения в соответствии с формулой

где - значения скорости сближения в [t, t+τ] моменты времени,

число вычислений (6) в этом интервале.

Оцененные значения скорости сближения с РЛО выдают в систему управления ЛА для формирования и реализации управляющих сигналов.

Далее через интервал времени τ описанные действия по определению экстраполированных на τ значений дальности и скорости сближения повторяют.

На фиг. 1 представлена блок-схема последовательности действий при реализации измерителя экстраполированной дальности и скорости сближения (ИЭДиС) ЛА с РЛО, где:

1 - измерение дальностей на интервале времени Т через интервал τ;

2 - запоминание отсчетов дальностей;

3 - выполнение БПФ;

4 - определение спектра дальности до РЛО, смещенной в область прогноза;

5 - выполнение обратного БПФ;

6 - определение отсчетов дальностей до РЛО в Чебышевских точках и расширенного вектора;

7 - БПФ в Чебышевских точках;

8 - умножение на im,

9 - выполнение обратного БПФ;

10 - определение экстраполированной скорости сближения с РЛО;

11 - вычисление средней скорости сближения.

В результате выполнения процедуры 1 формируется периодическая последовательность отсчетов дальностей, поступающих с периодом То. Затем выполняется действие 2 запоминания полученных значений дальности в виде массива в ячейках первого и второго столбцов. В каждом столбце запоминаются N отсчетов дальности, сдвинутых относительно друг друга на время упреждения τ. Число общих отсчетов дальности в столбцах равно (Т-τ)/То.

Принципы измерения и получения отсчетов дальности и выполняемые при этом действия достаточно подробно изложены в литературе, например, в монографии [8, с. 137-152].

Основная новизна изобретения состоит в том, что в предлагаемом способе для определения экстраполированных значений дальности и скорости используются два алгоритма: алгоритм полигармонической экстраполяции 3, 4, 5 и Чебышевское спектральное дифференцирование 6-10, функционирование которых описано выше.

Если значения дальности Д и скорости сближения Vcблэ не известны до начала работы ИЭДиС, то первый после включения интервал Т+τ ИЭДиС работает при условии, что экстраполированная дальность Дэ не сформирована. В этом случае ИЭДиС осуществляет измерение значения дальности Д, которое и используется в момент Т+τ для определения Дэ, а значение Vсблэ0 приравнивают нулю.

Использование заявленного способа не предъявляет дополнительных требований к существующим измерителям дальности, а также к принципам построения вычислителей, поэтому он может быть реализован в большинстве из них.

На фиг. 2 приведены графики, иллюстрирующие поведение экстраполированных значений прогнозов дальности и скорости сближения и ошибок прогнозирования с временем упреждения 0,4 с и повторением прогноза через каждые 0,4 с на участке движения с постоянным ускорением сближения, полученные в результате моделирования. На фиг. 2 а) и б) показаны изменения во времени значений прогнозированной дальности Дэ и ошибок прогнозирования в определении дальности ΔД, а на фиг. 2 в) и г) изменение во времени значений прогнозированной скорости сближения Vсблэ и ошибок прогнозирования в определении скорости ΔVcбл соответственно.

При моделировании были сделаны следующие предположения:

-изменение скорости сближения Vсбл является процессом с постоянным ускорением вида Vсбл=Vсбл0+jсбt, где jсб=-20 м/с2;

- число точек для дискретного преобразования Фурье N=512;

- изменение дальности Д является процессом с неизменным коэффициентом преобразования спектра отрезка реализации измерения дальности при переходе от первой реализации ко второй и при переходе от второй реализации к следующей, смещенной относительно предыдущего отрезка на τ=0,4 с.

Графики, отображающие значения экстраполированных дальности и скорости сближения построены для моделируемого полета ЛА с начальной скоростью Vсбл0=-200 м/с, с дальностью, изменяющейся по закону Д=100000-200t-10t2 м, периодом измерения дальностей То=0,01 с, числом Чебышевских точек интерполяции 21 (М=20), с временем упреждения τ=0,4 с через 5,5 с после начала измерения и осреднением по 3-й и 4-й Чебышевским точкам.

Из приведенных графиков следует, что экстраполированная скорость сближения и экстраполированная дальность определяются с точностью ΔVcбл=0,1 м/с, ΔД=5 м через 5,5 с после начала измерения дальности.

Таким образом, совокупность и последовательность выполнения изложенных выше действий обеспечивает реализацию нового способа экстраполяции дальности и скорости сближения без использования математических моделей поведения дальности и скорости сближения ЛА и РЛО.

Использование изобретения по сравнению с известными способами позволяет упростить оценивание экстраполированной дальности и скорости сближения и обеспечить высокую точность их определения.

Список использованных источников

1. Бар Шалом Я. Траекторная обработка. Принципы, способы и алгоритмы: в 2. ч. Часть 2. Пер. с англ. Д.Д. Дмитриева. - М.: МГТУ им. Н.Э. Баумана. 2011.

2. Грешилов А.А. Анализ и синтез стохастических систем. Параметрические модели и конфлюентный анализ. - М.: Радио и связь, 1990.

3. Кузьмин С.З. Цифровая радиолокация. Введение в теорию. - Киев: Издательство КВIЦ. 2000.

4. Кузьмин С.З. Основы проектирования систем обработки радиолокационной информации. - М.: Радио и связь, 1986.

5. Шахтарин Б.И. Фильтры Винера и Калмана. - М.: Гелиос АРВ, 2008.

6. Евсеев А.П., Сысоев Д.А. Применение алгоритма полигармонической экстраполяции для реставрации аудиозаписей. // Труды Научной конференции по радиофизике. - Нижний Новгород: ННГУ, 2008.

7. Lloyd N. Trefethen. Spectral Methods in Matlab, SIAM, Philadelphia, 2000.

8. Меркулов В.И. и др. Оценивание дальности и скорости в радиолокационных системах. Ч. 1. - М.: Радиотехника. 2004.


СПОСОБ ОПРЕДЕЛЕНИЯ ЭКСТРАПОЛИРОВАННЫХ ЗНАЧЕНИЙ ДАЛЬНОСТИ И СКОРОСТИ СБЛИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С РАДИОЛОКАЦИОННЫМ ОБЪЕКТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭКСТРАПОЛИРОВАННЫХ ЗНАЧЕНИЙ ДАЛЬНОСТИ И СКОРОСТИ СБЛИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С РАДИОЛОКАЦИОННЫМ ОБЪЕКТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭКСТРАПОЛИРОВАННЫХ ЗНАЧЕНИЙ ДАЛЬНОСТИ И СКОРОСТИ СБЛИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С РАДИОЛОКАЦИОННЫМ ОБЪЕКТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭКСТРАПОЛИРОВАННЫХ ЗНАЧЕНИЙ ДАЛЬНОСТИ И СКОРОСТИ СБЛИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С РАДИОЛОКАЦИОННЫМ ОБЪЕКТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭКСТРАПОЛИРОВАННЫХ ЗНАЧЕНИЙ ДАЛЬНОСТИ И СКОРОСТИ СБЛИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С РАДИОЛОКАЦИОННЫМ ОБЪЕКТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭКСТРАПОЛИРОВАННЫХ ЗНАЧЕНИЙ ДАЛЬНОСТИ И СКОРОСТИ СБЛИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С РАДИОЛОКАЦИОННЫМ ОБЪЕКТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭКСТРАПОЛИРОВАННЫХ ЗНАЧЕНИЙ ДАЛЬНОСТИ И СКОРОСТИ СБЛИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С РАДИОЛОКАЦИОННЫМ ОБЪЕКТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭКСТРАПОЛИРОВАННЫХ ЗНАЧЕНИЙ ДАЛЬНОСТИ И СКОРОСТИ СБЛИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С РАДИОЛОКАЦИОННЫМ ОБЪЕКТОМ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 66.
25.08.2017
№217.015.9ffa

Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера

Способ изменения направления и уменьшения расходимости излучения полупроводникового вертикально излучающего лазера включает в себя измерение диаграммы направленности VCSEL. Используют модель излучения для моделирования дифракционной решетки таким образом, чтобы обеспечить требуемый поворот...
Тип: Изобретение
Номер охранного документа: 0002606702
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ae94

Способ временного закрепления подложек на технологическом основании

Изобретение относится к радиоэлектронике и может быть использовано, например, при изготовлении гибридных интегральных схем, высокоплотных электронных модулей, а также при корпусировании многокристальных электронных компонентов, содержащих утоненные полупроводниковые кристаллы в составе единого...
Тип: Изобретение
Номер охранного документа: 0002612879
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.bba6

Сверхширокополосный радиолокатор с активной многочастотной антенной решеткой

Изобретение относится к радиолокации и может быть использовано в различных радиолокационных системах, где требуется высокое разрешение по дальности. Достигаемый технический результат - увеличение разрешающей способности по дальности. Указанный технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002615996
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bcc1

Способ многоступенчатой фильтрации для систем автосопровождения

Изобретение относится к радиоэлектронным системам сопровождения интенсивно маневрирующих целей, в частности к следящим дальномерам и угломерам бортовых РЛС. Достигаемый технический результат - обеспечение бессрывного сопровождения интенсивно маневрирующих целей с высокоточным оцениванием...
Тип: Изобретение
Номер охранного документа: 0002616188
Дата охранного документа: 13.04.2017
25.08.2017
№217.015.c0f0

Способ подготовки кристаллической или поликристаллической подложки под металлизацию

Изобретение относится к радиоэлектронике, а точнее к технологии производства печатных плат. Сущность способа подготовки кристаллической или поликристаллической подложки под металлизацию заключается в том, что кристаллическую или поликристаллическую подложку стандартным образом шлифуют, на...
Тип: Изобретение
Номер охранного документа: 0002617461
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c2a7

Способ устранения несоответствия динамичности подсистем в составе сложных технических систем и система обеспечения бессрывного сопровождения интенсивно маневрирующей цели

Изобретение относится к системам управления. Способ формирования сигнала управления для сопровождения цели заключается в том, что сигнал управления формируется по закону на основе динамических матриц внутренних связей систем, обобщенного вектора состояния системы и вектора сигналов управления....
Тип: Изобретение
Номер охранного документа: 0002617870
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c615

Система автоматизированного модального управления бокового движения летательного аппарата

Система автоматизированного модального управления (САМУ) боковым движением летательных аппаратов содержит датчик угловой скорости крена, два изодромных фильтра, два ограничителя, четыре сумматора, два звена с зоной нечувствительности, два звена с зоной нечувствительности и ограничением, привод...
Тип: Изобретение
Номер охранного документа: 0002618652
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.d157

Способ изготовления межслойного перехода между печатными проводниками на кристаллической или поликристаллической подложке

Изобретение относится к радиоэлектронике, а точнее к технологии производства печатных плат. Технический результат изобретения - создание способа изготовления межслойного перехода между печатными проводниками на кристаллической или поликристаллической подложке, улучшающего адгезию за счет...
Тип: Изобретение
Номер охранного документа: 0002622038
Дата охранного документа: 09.06.2017
25.08.2017
№217.015.d230

Способ контроля поверхности

Изобретение относится к визуальной оценке качества поверхностей плоских подложек для оптико-электронных компонентов и может быть использовано при техническом контроле состояния поверхности крупных партий деталей в электротехнической промышленности. В заявленном способе контроля поверхности на...
Тип: Изобретение
Номер охранного документа: 0002621469
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.edf9

Способ регулировки яркости отображения информации на оптоэлектронном табло с жидкокристаллическим дисплеем

Изобретение относится к области отображения информации средствами, основанными на жидкокристаллических элементах, и может быть использовано при визуальном считывании показаний с оптоэлектронных табло. Техническим результатом изобретения является упрощение методики создания оптоэлектронных табло...
Тип: Изобретение
Номер охранного документа: 0002628917
Дата охранного документа: 22.08.2017
Показаны записи 21-30 из 35.
10.04.2019
№219.017.0054

Способ измерения дальности в импульсно-доплеровских радиолокационных станциях

Способ измерения дальности в импульсно-доплеровских радиолокационных станциях (РЛС) заключается в том, что излучают линейно-частотно-модулированное(ЛЧМ) радиоимпульсы с крутизной, обеспечивающей однозначное измерение дальности до любого летательного аппарата (ЛА), находящегося в пределах...
Тип: Изобретение
Номер охранного документа: 0002296346
Дата охранного документа: 27.03.2007
10.04.2019
№219.017.0055

Способ обнаружения и анализа радиосигналов

Способ обнаружения и анализа радиосигналов заключается в том, что задают: первый порог, определяемый уровнем шума приемного устройства, третий порог, определяемый мощностью помеховых сигналов, четвертый порог, определяемый величиной эффективной площади отражения (ЭПО) обнаруживаемых объектов, а...
Тип: Изобретение
Номер охранного документа: 0002296349
Дата охранного документа: 27.03.2007
10.04.2019
№219.017.02ed

Радиолокационная система для обнаружения проводов линий электропередач

Изобретение относится к радиолокации и может быть использовано на летательных аппаратах при совершении ими маловысотных полетов. Предлагаемая радиолокационная система для обнаружения проводов линий электропередач за счет использования специального вычислителя, оптимизированного на решение...
Тип: Изобретение
Номер охранного документа: 0002310885
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.1d96

Способ автоматического группового целераспределения истребителей с учетом возможного выбывания участников

Изобретение относится к способу автоматического группового целераспределения истребителей с учетом возможного выбывания участников, который заключается в том, что для каждого перехватчика формируют функционал эффективности перехвата, путем решения множества численных уравнений получают...
Тип: Изобретение
Номер охранного документа: 0002684963
Дата охранного документа: 16.04.2019
29.04.2019
№219.017.3f37

Следящий измеритель с обнаружителем маневра и адаптивной коррекцией прогноза

Изобретение относится к радиотехнике и может использоваться в радиотехнических системах измерения параметров траекторий летательных аппаратов, а именно: дальность - скорость, скорость - ускорение, угловая координата - скорость изменения угловой координаты. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002296348
Дата охранного документа: 27.03.2007
29.04.2019
№219.017.44d1

Способ скрытного самонаведения самолетов на воздушные объекты

Изобретение относится к области приборостроения и может быть использовано в системах самонаведения летательных аппаратов. Технический результат - расширение функциональных возможностей. Для достижения данного результата траектория наводимого летательного аппарата все время находится в секторе...
Тип: Изобретение
Номер охранного документа: 0002408845
Дата охранного документа: 10.01.2011
01.05.2019
№219.017.47fe

Способ двухэтапного ранжирования воздушных целей по степени опасности в радиолокационных информационно-управляющих системах

Изобретение относится к радиолокации и радиоуправлению и может быть использовано при модернизации существующих и разработке перспективных радиолокационных систем. Достигаемый технический результат: повышение достоверности ранжирования воздушных целей при решении задач многоцелевого...
Тип: Изобретение
Номер охранного документа: 0002686482
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.489e

Система информационного обеспечения скрытного наведения летательных аппаратов в зоне обнаружения импульсно-доплеровской рлс

Система информационного обеспечения метода скрытного наведения летательных аппаратов (ЛА) в зоне обнаружения импульсно-доплеровской РЛС (ИД РЛС) содержит формирователь косвенных измерений, формирователь оценок, регулятор. Формирователь оценок содержит фильтр дальномерного канала, фильтр канала...
Тип: Изобретение
Номер охранного документа: 0002686802
Дата охранного документа: 30.04.2019
04.06.2019
№219.017.7342

Способ автоматического группового целераспределения истребителей с учетом приоритета целей

Изобретение относится к системам управления летательными аппаратами (ЛА) и может быть использовано в комплексе функциональных программ управления и наведения ЛА авиационных комплексов для назначения целей перехватчикам при противостоянии групп ЛА. Предлагаемый способ позволяет определить...
Тип: Изобретение
Номер охранного документа: 0002690234
Дата охранного документа: 31.05.2019
13.06.2019
№219.017.81bf

Емкостной генератор тока

Емкостной генератор тока предназначен для использования в приборостроении, в частности в микроэлектронике. Генератор состоит из двух электрических конденсаторов переменной емкости, соединенных электрической цепью и связанных между собой в противофазе так, что когда одна емкость имеет...
Тип: Изобретение
Номер охранного документа: 0002346380
Дата охранного документа: 10.02.2009
+ добавить свой РИД