×
19.12.2019
219.017.ef24

Результат интеллектуальной деятельности: ОПТИЧЕСКИЙ СМЕСИТЕЛЬ ИЗЛУЧЕНИЯ ЧЕТЫРЕХЧАСТОТНОГО ЛАЗЕРНОГО ГИРОСКОПА ЗЕЕМАНОВСКОГО ТИПА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области высокоточной лазерной гироскопии, а именно к детектированию сигналов четырехчастотного лазерного гироскопа зеемановского типа. Оптический смеситель служит для формирования сигнала четырехчастотного лазерного гироскопа зеемановского типа и имеет функцию компенсации магнитной составляющей ошибки измерений с учетом различия магнитной чувствительности волн различных поляризаций. Технический результат – повышение точности четырехчастотного лазерного гироскопа зеемановского типа, уменьшение ошибки измерений. Результат достигается при использовании помимо двух основных фотоприемников, по одному на каждую пару волн одинаковой круговой поляризации, а также двух дополнительных фотоприемников для двух пар волн с одинаковым направлением обхода резонатора. 4 ил.

Изобретение относится к области высокоточной лазерной гироскопии, а именно к детектированию сигналов четырехчастотного лазерного гироскопа зеемановского типа.

Основная физическая величина, измеряемая в лазерных гироскопах - угловая скорость вращения. Для измерения угловой скорости вращения получают и считывают на фотоприемнике интерференционную картину от двух встречных волн.

В четырехчастотных лазерных гироскопах в каждом из направлений обхода резонатора распространяются по две волны с различными частотами. Как следствие, возможно получение и детектирование интерференционных картин от двух пар волн, что реализовано в системе обработки выходной информации многочастотного лазерного гироскопа [1]. Четырехчастотный режим работы лазерного гироскопа дает преимущество перед двухчастотным, так как существенно компенсирует влияние магнитного поля на ошибки измерений.

Недостатком системы обработки выходной информации многочастотного лазерного гироскопа [1] является неполная компенсация магнитной составляющей ошибки измерений, так как магнитная чувствительность двух пар интерферирующих волн может различаться, что не учтено.

Техническим результатом предлагаемого изобретения является оптический смеситель излучения для формирования сигнала четырехчастотного лазерного гироскопа зеемановского типа, отличающийся от существующих оптических смесителей компенсацией магнитной составляющей ошибки измерений с учетом различия магнитной чувствительности волн различных поляризаций.

Технический результат достигается тем, что оптический смеситель излучения четырехчастотного лазерного гироскопа зеемановского типа, содержащий две призмы из оптически прозрачного материала, разделенные полупрозрачным делительным покрытием, имеющие на двух выходных гранях частично отражающие, частично пропускающие покрытия, а также первый фотоприемник для детектирования интерференционной картины волн левой круговой поляризации, второй фотоприемник для детектирования интерференционной картины волн правой круговой поляризации, третий фотоприемник для детектирования интерфереционной картины волн разных круговых поляризаций, распространяющихся в резонаторе по часовой стрелке, четвертый фотоприемник для детектирования интерференционной картины волн разных круговых поляризаций, распространяющихся в резонаторе против часовой стрелки, предназначенный для повышения точности измерения угловой скорости вращения четырехчастотным лазерным гироскопом зеемановского типа с учетом различной магнитной чувствительности волн левой и правой круговых поляризаций.

В системе обработки выходной информации многочастотного лазерного гироскопа [1] используются два фотоприемника - по одному на каждую пару волн одинаковой круговой поляризации. В предлагаемом изобретении устанавливаются дополнительные фотоприемники для двух пар волн с одинаковым направлением обхода резонатора, что позволяет получить дополнительные данные для уточнения угловой скорости вращения.

Данное решение имеет два препятствия: получение интерференционной картины волн эллиптической поляризации с противоположным направлением вращения вектора напряженности электрического поля и высокая разностная частота интерферирующих волн.

Первое препятствие преодолевается применением линейного поляризатора. Результат сведения двух волн эллиптической поляризации с противоположным направлением вращения вектора напряженности электрического поля - картина суммарного поля с меняющимся в пространстве направлением линейной поляризации излучения [2]. Пропускание полученной картины поля через линейный поляризатор приводит к меняющейся интенсивности излучения (закон Малюса) и возможности детектирования фотоприемником.

Второе препятствие преодолевается применением высокочастотных фотоприемников, а также соответствующей электроники.

Введены обозначения:

v0 - центр линии усиления;

v1 - смещение частот изломом контура резонатора или внесением в резонатор оптического ротатора;

v2+βH - смещение частот зеемановской магнитооптической подставкой (v2=βHZ, где β - магнитная чувствительность, Hz - напряженность продольной компоненты магнитного поля зеемановской магнитооптической подставки) и внешним продольным магнитным полем напряженности Н;

kΩ, - смещение частот вращением с угловой скоростью Ω вокруг оси чувствительности.

На фиг. 1 изображено смещение частот генерируемых четырехчастотным лазерным гироскопом волн в результате излома контура резонатора или внесения в резонатор оптического ротатора.

На фиг. 2 изображено смещение частот генерируемых четырехчастотным лазерным гироскопом волн в результате наложения поля зеемановской магнитооптической подставки и внешнего магнитного поля.

На фиг. 3 изображено смещение частот генерируемых четырехчастотным лазерным гироскопом волн в результате вращения вокруг оси чувствительности.

На фиг. 4 изображен ход лучей в оптическом смесителе и расположение фотоприемников.

Расщепление моды генерации кольцевого лазера на две частоты (фиг. 1) может быть получено двумя способами: внесением в резонатор оптического ротатора излучения [3], применением непланарного резонатора [4].

Дальнейшее расщепление на четыре частоты (фиг. 2) возможно также двумя способами: внесением в контур резонатора ячейки Фарадея [1], реализацией зеемановской магнитооптической частотной подставки [3]. В предлагаемом изобретении используется второй вариант. Поэтому предлагаемый оптический смеситель излучения предназначен для четырехчастотного лазерного гироскопа зеемановского типа.

В четырехчастотном лазерном гироскопе зеемановского типа имеет место одновременная генерация волн четырех различных частот: две волны левой круговой поляризации, распространяющиеся во встречных направлениях; две волны правой круговой поляризации, распространяющиеся во встречных направлениях.

Когда четырехчастотный лазерный гироскоп вращается вокруг оси чувствительности, все четыре частоты смещаются. При этом расположение частот в спектре приводит к тому (фиг. 3), что волны одной круговой поляризации сближаются по значениям частот, а волны другой - разносятся.

Введены обозначения: ЛКП - волна левой круговой поляризации, ПКП - волна правой круговой поляризации, CW - волна, распространяющаяся в резонаторе по часовой стрелке, CCW - волна, распространяющаяся в резонаторе против часовой стрелки. Под полупериодом работы зеемановской магнитооптической частотной подставки далее подразумевается время, в течение которого вектор напряженности создаваемого магнитного поля имеет постоянное направление. В положительный и отрицательный полупериоды работы создается магнитное поле с противоположным направлением вектора напряженности. В четырехчастотном лазерном гироскопе генерируются волны следующих частот:

а) в положительном полупериоде работы зеемановской магнитооптической подставки:Equation Section (Next)

б) в отрицательном полупериоде работы зеемановской магнитооптической подставки:

Оптическим смесителем сводятся волны одинаковых круговых поляризаций. После прохождения выходного зеркала 1 четырехчастотного лазерного гироскопа (фиг. 4), лучи JlKП.CW, ЛКП.ССW, ПКП.ССW и ПКП.CW имеют эллиптические поляризации, так как коэффициенты пропускания выходным зеркалом р- и s-компонент излучения отличаются. Восстановление круговой поляризации происходит при отражении от компенсирующих покрытий П1. На полупрозрачном покрытии П2 встречные лучи смешиваются. Четвертьволновые пластинки 2 преобразуют излучение круговых поляризаций в излучение скрещенных линейных поляризаций. Линейные поляризаторы 3 ориентируют таким образом, что на один фотоприемник 4 поступает излучение, полученное из ЛКП.СW, ЛКП.CCW лучей, на другой фотоприемник 4 поступает излучение, полученное из ПКП.ССW и ПКП.CW лучей. Угол схождения лучей на фотоприемниках определяется взаимным расположением симметричных призм 5 оптического смесителя. В результате интерференции формируются сигналы разностных частот.

За положительный полупериод работы зеемановской магнитооптической подставки длительностью Т/2 количество импульсов биений на фотоприемниках:

За отрицательный полупериод:

Измеренная угловая скорость вращения определяется выражением, не содержащим компонент, связанных с магнитным полем и смещением, вызванным расщеплением частот генерации:

В предлагаемом изобретении реализуется дополнительное повышение точности четырехчастотного лазерного гироскопа зеемановского типа, так как учитываются не только сигналы, полученные от волн одинаковой поляризации, но и сигналы, полученные от волн с одинаковым направлением обхода контура резонатора. Для этого на верхние грани призм 5 (фиг. 4) помещены два дополнительных фотоприемника 6. Покрытия П1 пропускают наружу лучи эллиптической поляризации, что вызвано различием коэффициентов пропускания р- и s-компонент излучения. Результатом дальнейшего наложения полей от волн левой и правой эллиптических поляризаций является линейно поляризованное излучение, причем в поперечном сечении луча имеет место изменение направления поляризации по мере удаления от оси к периферии - направление поляризации вращается с постоянным пространственным периодом [2]. Далее луч проходит через линейные поляризаторы 8, которые пропускают часть линейно поляризованного излучения в соответствии с законом Малюса, что приводит к прохождению луча с периодически меняющейся в поперечном сечении интенсивностью. Далее происходит считывание сигнала интенсивности фотоприемниками 6, что полностью эквивалентно детектированию интерференционной картины. Шаг интерференционной картины может быть регулирован углом схождения волн левой и правой эллиптических поляризаций. Небольшой угол схождения создается анизотропным элементом 7 из оптически активного материала [5]. Выбор материала определяет угол схождения.

За положительный полупериод работы зеемановской магнитооптической подставки длительностью Т/2 количество импульсов биений на дополнительных фотоприемниках:

За отрицательный полупериод:

Съем этих дополнительных данных позволяет выделить в отдельности величину всех частотных смещений:

Таким образом, в первом приближении могут быть определены:

1. смещение частот, вызванное изломом резонатора или внесением в резонатор оптического ротатора,

2. смещение частот, вызванное зеемановской магнитооптической подставкой,

3. смещение частот, вызванное внешними магнитными полями, что может быть использовано при построении математической модели компенсации ошибок четырехчастотного лазерного гироскопа зеемановского типа.

В следующем приближении представляется возможным учесть, что ЛКП и ПКП волны могут иметь различные магнитные чувствительности. В этом случае частоты генерируемых волн имеют вид:

а) в положительном полупериоде работы зеемановской магнитооптической подставки:

б) в отрицательном полупериоде работы зеемановской магнитооптической подставки:

Различие магнитных чувствительностей ЛКП и ПКП волн приводит к тому, что измеряемая угловая скорость вращения зависит от внешнего магнитного поля:

Для компенсации предлагается воспользоваться тем, что:

Таким образом, значение угловой скорости с учетом разных магнитных чувствительностей ЛКП и ПКП полн:

С помощью оптического смесителя излучения с избыточным количеством фотоприемников получено уточнение значения угловой скорости вращения, измеряемой четырехчастотным лазерным гироскопом зеемановского типа, с учетом различия магнитной чувствительности ЛКП и ПКП волн.

Источники:

1. Multioscillator ring laser gyro output information processing system, US 4123162 A.

2. Прохоров А.М. Физическая энциклопедия. Том 4. 1994. С. 53-54.

3. Zeeman multioscillator ring laser gyro insensitive to magnetic fields and detuning frequencies, US 4475199 A.

4. Electromagnetic wave ring resonator, US 4482249 A.

5. Патент РФ №2676835 «Оптический смеситель излучения с применением призм из оптически активных материалов», опубл. 11.01.2019. Бюл. №2

Оптический смеситель излучения четырехчастотного лазерного гироскопа зеемановского типа, предназначенный для измерения угловой скорости вращения с учетом различной магнитной чувствительности волн левой и правой круговых поляризаций, содержащий две призмы из оптически прозрачного материала, разделенные полупрозрачным делительным покрытием, имеющие на двух выходных гранях частично отражающие, частично пропускающие покрытия, а также первый фотоприемник для детектирования интерференционной картины волн левой круговой поляризации, второй фотоприемник для детектирования интерференционной картины волн правой круговой поляризации, третий фотоприемник для детектирования интерфереционной картины волн разных круговых поляризаций, распространяющихся в резонаторе по часовой стрелке, четвертый фотоприемник для детектирования интерференционной картины волн разных круговых поляризаций, распространяющихся в резонаторе против часовой стрелки.
ОПТИЧЕСКИЙ СМЕСИТЕЛЬ ИЗЛУЧЕНИЯ ЧЕТЫРЕХЧАСТОТНОГО ЛАЗЕРНОГО ГИРОСКОПА ЗЕЕМАНОВСКОГО ТИПА
ОПТИЧЕСКИЙ СМЕСИТЕЛЬ ИЗЛУЧЕНИЯ ЧЕТЫРЕХЧАСТОТНОГО ЛАЗЕРНОГО ГИРОСКОПА ЗЕЕМАНОВСКОГО ТИПА
ОПТИЧЕСКИЙ СМЕСИТЕЛЬ ИЗЛУЧЕНИЯ ЧЕТЫРЕХЧАСТОТНОГО ЛАЗЕРНОГО ГИРОСКОПА ЗЕЕМАНОВСКОГО ТИПА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 33.
19.10.2019
№219.017.d849

Способ изготовления молекулярно-электронной ячейки низкошумящего широкополосного гидрофона для донных исследований

Изобретение относится к измерительной технике. Предлагаемый способ изготовления молекулярно-электронной ячейки для гидрофона позволяет обеспечить измерение слабых низкочастотных сейсмических и акустических сигналов, распространяющихся в жидких, твердых и газообразных средах. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002703488
Дата охранного документа: 17.10.2019
30.10.2019
№219.017.dbab

Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления

Группа изобретений относится к аддитивному изготовлению объемных микроразмерных структур из наночастиц путем спекания наночастиц на подложке. Получают поток аэрозоля с наночастицами в импульсно-периодическом газовом разряде в потоке транспортного газа, затем производят нагрев аэрозоля с...
Тип: Изобретение
Номер охранного документа: 0002704358
Дата охранного документа: 28.10.2019
30.10.2019
№219.017.dbb2

Аппарат для электрохимического получения слоистых металлических нанопроводов

Изобретение относится к устройствам для гальванического получения наноструктур. Аппарат для автоматизированного получения слоистых металлических нанопроводов с контролируемым составом вдоль их длинной оси включает набор емкостей с растворами электролитов и промывочными растворами, электроды,...
Тип: Изобретение
Номер охранного документа: 0002704363
Дата охранного документа: 28.10.2019
01.11.2019
№219.017.dca7

Способ определения значений параметров разрядного контура с нагруженным на газоразрядный межэлектродный промежуток емкостным накопителем энергии, обеспечивающих максимальную энергоэффективность получения наночастиц в импульсном газовом разряде

Способ определения значений параметров разрядного контура с нагруженным на газоразрядный межэлектродный промежуток емкостным накопителем энергии, обеспечивающих максимальную энергоэффективность получения наночастиц в импульсном газовом разряде может быть использован для повышения электрического...
Тип: Изобретение
Номер охранного документа: 0002704566
Дата охранного документа: 29.10.2019
27.11.2019
№219.017.e6ec

Инфракрасный детектор и способ его изготовления

Изобретение относится к области измерительной техники и касается инфракрасного детектора ИК-диапазона. Инфракрасный детектор включает в себя активный слой, содержащий коллоидные квантовые точки и плазмонные наноантенны, расположенные между встречно-штыревыми электродами. При этом при...
Тип: Изобретение
Номер охранного документа: 0002707202
Дата охранного документа: 25.11.2019
07.06.2020
№220.018.253d

Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур

Изобретение относится к аддитивной 3D-технологии производства объемных микроразмерных структур из наночастиц. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения...
Тип: Изобретение
Номер охранного документа: 0002722961
Дата охранного документа: 05.06.2020
12.06.2020
№220.018.26a4

Способ аддитивного изготовления объемных микроразмерных структур из наночастиц

Изобретение относится к аддитивной 3D-технологии изготовления объемных микроразмерных структур из наночастиц. Способ включает получение потока аэрозоля с наночастицами в потоке транспортного газа, нагрев аэрозоля в потоке транспортного газа с обеспечением получения наночастиц сферической формы...
Тип: Изобретение
Номер охранного документа: 0002723341
Дата охранного документа: 09.06.2020
25.06.2020
№220.018.2b0c

Способ обеспечения температурной стабильности параметров молекулярно-электронного преобразователя в области высоких частот

Изобретение относится к измерительной технике, в частности к способу обеспечения температурной стабильности параметров молекулярно-электронных преобразователей, используемых в линейных и угловых акселерометрах. Это изобретение может найти применение в сейсмодатчиках, датчиках для стабилизации...
Тип: Изобретение
Номер охранного документа: 0002724303
Дата охранного документа: 22.06.2020
25.06.2020
№220.018.2b0f

Молекулярно-электронный гидрофон с компенсацией статического давления

Изобретение относится к акустической метрологии. Молекулярно-электронный гидрофон с компенсацией статического давления содержит молекулярно-электронный преобразователь, жестко закрепленный внутри герметичного корпуса, заполненного легкосжимаемой жидкостью и разделенного на две камеры жесткой...
Тип: Изобретение
Номер охранного документа: 0002724296
Дата охранного документа: 22.06.2020
25.06.2020
№220.018.2b26

Преобразующий элемент молекулярно-электронного преобразователя диффузионного типа

Изобретение относится к измерительной технике в частности к чувствительным элементам (электродным узлам) молекулярно-электронных преобразователей диффузионного типа. Сущность изобретения заключатся в том, что в преобразующем элементе молекулярно-электронного преобразователя диффузионного типа,...
Тип: Изобретение
Номер охранного документа: 0002724297
Дата охранного документа: 22.06.2020
Показаны записи 1-7 из 7.
10.12.2015
№216.013.9752

Отказоустойчивая интегрированная навигационная система с избыточным количеством измерителей угловой скорости

Изобретение относится к навигационной технике и может быть использовано при проектировании инерциальных и интегрированных навигационных систем. Технический результат - повышение надежности. Для этого вычислитель начальных данных частью входов подключен к выходам измерителя проекций абсолютной...
Тип: Изобретение
Номер охранного документа: 0002570358
Дата охранного документа: 10.12.2015
13.01.2019
№219.016.aed8

Оптический смеситель излучения с применением призм из оптически активных материалов

Изобретение предназначено для получения сигналов вращения четырехчастотного лазерного гироскопа. Оптический смеситель лучей, распространяющихся во встречных направлениях в резонаторе четырехчастотного лазерного гироскопа, предназначен для одновременного детектирования интерференционных картин,...
Тип: Изобретение
Номер охранного документа: 0002676835
Дата охранного документа: 11.01.2019
10.04.2019
№219.017.04a4

Инерциально-спутниковая навигационная система с комбинированным использованием спутниковых данных

Изобретение относится к области приборостроения и может быть использовано при проектировании комплексных навигационных систем, включающих устройство инерциальной навигации и аппаратуру потребителя спутниковой навигационной системы. Технический результат - повышение точности и...
Тип: Изобретение
Номер охранного документа: 0002334199
Дата охранного документа: 20.09.2008
29.05.2019
№219.017.63bc

Интегрированная инерциально-спутниковая навигационная система

Изобретение относится к навигационной технике и может быть использовано при проектировании комплексных навигационных систем. Интегрированная инерциально-спутниковая навигационная система содержит радиоприемник, соединенный через усилитель с антенной, выходами подключенный к вычислителю...
Тип: Изобретение
Номер охранного документа: 0002277696
Дата охранного документа: 10.06.2006
12.04.2023
№223.018.4852

Четырехчастотный лазерный гироскоп зеемановского типа

Изобретение относится к области высокоточной лазерной гироскопии, а именно к лазерным гироскопам зеемановского типа. Четырехчастотный лазерный гироскоп имеет знакопеременную зеемановскую магнитооптическую частотную поставку для устранения явления захвата частот встречных волн и периодического...
Тип: Изобретение
Номер охранного документа: 0002731171
Дата охранного документа: 31.08.2020
12.04.2023
№223.018.49f5

Система подавления влияния магнитного поля на дрейф нуля в зеемановских четырехчастотных и квазичетырехчастотных лазерных гироскопах

Изобретение относится к области высокоточной лазерной гироскопии. Технический результат – подавление влияния магнитного поля на дрейф нуля в зеемановских четырехчастотных и квазичетырехчастотных лазерных гироскопах. Результат достигается реализацией устойчивого режима работы лазерного гироскопа...
Тип: Изобретение
Номер охранного документа: 0002750425
Дата охранного документа: 28.06.2021
22.04.2023
№223.018.5124

Способ регулирования периметра резонатора четырехчастотного лазерного гироскопа

Изобретение относится к области высокоточной лазерной гироскопии, а именно к системам регулирования периметра резонатора четырехчастотного лазерного гироскопа. Способ управления длиной резонатора в четырехчастотных лазерных гироскопах заключается в том, что осуществляют детектирование сигнала...
Тип: Изобретение
Номер охранного документа: 0002794241
Дата охранного документа: 13.04.2023
+ добавить свой РИД