×
19.12.2019
219.017.ef23

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ ГИДРОЛИЗНОЙ СЕРНОЙ КИСЛОТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к неорганической химии и может быть использовано в бумажной, лакокрасочной, пищевой и строительной промышленности. Для переработки гидролизной серной кислоты осуществляют экстракцию из нее скандия на экстрагенте, состоящем из смеси Ди2ЭГФК и ТБФ. Промывают насыщенный экстрагент раствором HSO 50-200 г/дм и НО 5-20 г/дм, реэкстрагируют скандий раствором, состоящим из смеси NaOH и NaCO. Проводят сорбцию серной кислоты из рафината экстракции скандия на низкоосновном поликонденсационном анионите. Десорбируют серную кислоту водой. Проводят сорбцию титана из маточника сорбции серной кислоты низкоосновным полимеризационным анионитом. Десорбируют титан раствором соляной кислоты HCl 100 г/дм с получением десорбата, который направляют на получение диоксида титана путем осаждения гидратированного оксида титана введением десорбата при поддержании постоянного значения рН 4-6 за счет введения водного раствора аммиака. Выдерживают полученную суспензию гидратированного оксида титана при перемешивании. Суспензию фильтруют. Полученный осадок сушат при температуре от 100 до 120°С до постоянной массы осадка и проводят обжиг при температуре от 200 до 900°С. Обеспечивается повышение эффективности переработки гидролизной серной кислоты с получением в качестве продукта высокодисперсного нанокристаллического диоксида титана и увеличение чистоты получаемых продуктов. 3 ил., 5 пр.

Изобретение относится к переработке отходов производства диоксида титана сульфатным способом с получением высокодисперсного нанокристаллического диоксида титана для потенциального применения в бумажной, лакокрасочной, пищевой и строительной промышленности.

Одним из отходов производства диоксида титана сернокислотный способом является гидролизная серная кислота (ГСК). Гидролизную серную кислоту после концентрирования нельзя возвращать в производственный цикл из-за присутствующей в ней большого количества примесей и взвеси гидроксида титана, которая может стать причиной преждевременного гидролиза технологических растворов. Представляет существенный практический интерес разработка технологий комплексной переработки ГСК с получением разнообразных товарных продуктов, в первую очередь высокодисперсного нанокристаллического диоксида титана.

Большинство существующих способов переработки ГСК предполагают либо ее утилизацию, либо возвращение в производственный цикл производства диоксида титана сернокислотным методом, либо частичную переработка с получением регенерированной кислоты и концентратов скандия и титана. Настоящее изобретение нацелено на разработку комплексной технологии переработки гидролизной серной кислоты с получением высокодисперсного нанокристаллического диоксида титана.

Наиболее близким аналогом по совокупности существенных признаков к заявляемому изобретению является способ переработки жидких отходов производства диоксида титана [Патент RU2651019, приор. от 19.09.2016, опубл. 18.04.2018, МПК C01G25/00 и др.], авторы Рычков В.Н., Кириллов Е.В., Кириллов С.В., Буньков Г.М., Боталов М.С., Смирнов А.Л., Машковцев М.А., Смышляев Д.В., включающий в себя экстракцию скандия из гидролизной серной кислоты на экстрагенте состоящем из смеси Ди2ЭГФК и ТБФ с получением насыщенного экстрагента и рафината экстракции, промывку насыщенного экстрагента раствором серной кислоты H2SO4 50-200 г/дм3 и перекиси водорода H2O2 5-20 г/дм3, реэкстракцию скандия раствором, состоящим из смеси NaOH и Na2CO3, с получением концентрата скандия, сорбцию серной кислоты на низкоосновном поликонденсационном анионите, сорбцию титана из маточника сорбции серной кислоты на низкоосновном полимеризационном анионите с последующей десорбцией титана раствором серной кислоты H2SO4 50-200 г/дм3 и перекиси водорода H2O2 5-20 г/дм3. Десорбат отправляют на основное производство.

Недостатком описанного способа является отсутствие возможности прямого получения высокодисперсного нанокристаллического диоксида титана из десорбата сорбции титана ввиду большого содержания серной кислоты и высокого уровня загрязнения кремнием.

В основу изобретения положена задача создания эффективного комплексного технологического процесса переработки гидролизной серной кислоты с получением высокодисперсного нанокристаллического диоксида титана.

При этом, техническим результатом заявляемого изобретения является повышение комплексности переработки ГСК с получением в качестве продукта высокодисперсного нанокристаллического диоксида титана и увеличение чистоты получаемых продуктов.

Заявляемый технический результат достигается тем, что в способе переработки гидролизной серной кислоты, согласно изобретению, десорбцию титана из низкоосновного полимеризационного анионита ведут при помощи водного раствора соляной кислоты с концентрацией 100-200 г/дм3 с получением десорбированного низкоосновного полимеризационного анионита, который повторно направляют на операцию сорбции титана, и десорбата, который в свою очередь направляют на получение высокодисперсного нанокристаллического диоксида титана путем формирования реакционного объема из дистиллированной воды, введения полученного десорбата в реакционный объем при перемешивании и при поддержании постоянного значения рН реакционного объема на уровне от 4 до 6 включительно за счет контролируемого введения в реакционный объем водного раствора аммиака с массовой концентрацией 5-25%, отделения образовавшегося осадка, отмывки осадка дистиллированной водой, сушки и термообработки.

Использование соляной кислоты для десорбции титана из низкоосновного поликонденсационного анионита имеет преимущество над десорбцией смесью серной кислоты и раствора пероксида водорода, такие как:

- снижение степени десорбции кремния, что позволяет получать высокодисперсный нанокристаллический диоксид титана без дополнительной очистки раствора от кремния;

- формирование солевого фона, благоприятного для формирования высокодисперсного нанокристаллического диоксида титана на стадии осаждения в условиях постоянного значения рН реакционного объема;

- снижение степени загрязнения высокодисперсного нанокристаллического диоксида примесями сульфат-ионов.

Для получения высокодисперсного нанокристаллического диоксида титана из десорбата авторами предложено проводить гидролиз хлорсодержащих солей титана в условиях постоянного значения рН на уровне от 4 до 6 единиц, что соответствует области изоэлектрической точки гидратированного оксида титана. Авторы изобретения исходили из того, что образующиеся в процессе гидролиза зародыши гидратированного оксида титана взаимодействуют с дисперсионной средой с образованием двойного электрического слоя. Образование двойного электрического слоя вызвано преимущественной адсорбцией на поверхности образующихся частиц гидроксил-ионов и ионов гидроксония, которая в свою очередь определяется уровнем рН дисперсионной среды. Организация процесса гидролиз солей титана в условиях постоянного значения рН на уровне 4-6 единиц позволяет получать частицы с минимальной преимущественной адсорбцией ионов на поверхности частиц, что определяет пониженный уровень захвата примесей и агрегации частиц в процессе сушки и последующей термической обработки осадка. Предложенный подход оказывается еще более эффективным в условиях повышенного солевого фона, вызванного присутствием в десорбате большого количества соляной кислоты, нейтрализация которой приводит к образованию большого количества хлорида аммоний.

Для переработки гидролизной серной кислоты с получением высокодисперсного нанокристаллического диоксида титана гидролизная серная кислота приводится в контакт с экстрагентом состоящим из смеси Ди2ЭГФК и ТБФ с получением насыщенного экстрагента и рафината экстракции скандия. Промывка насыщенного экстрагента осуществляется раствором серной кислоты H2SO4 50-200 г/дм3 и перекиси водорода H2O2 5-20 г/дм3. Промытый от примесей экстрагент приводится в контакт с раствором, состоящим из смеси NaOH и Na2CO3 для реэкстракции скандия. Продуктом реэкстракции скандия является концентрат скандия.

Рафинат экстракции скандия направляется на операцию извлечения из него серной кислоты путём её сорбции на низкоосновном поликонденсационном анионите. Продуктами данной операции являются маточник сорбции серной кислоты и насыщенный низкоосновный поликонденсационный анионит. Насыщенный низкоосновный поликонденсационный анионит направляют на операцию десорбции водой с получением десорбированного низкоосновного поликонденсационного анионита, который, повторно, направляют на операцию сорбции серной кислоты и десорбата.

Маточник сорбции серной кислоты направляют на сорбцию титана низкоосновным полимеризационным анионитом. Продуктами данной операции являются маточника сорбции титана и насыщенный низкоосновный полимеризационного анионит. Насыщенный низкоосновный полимеризационный анионит направляют на операцию десорбции соляной кислотой HCl с концентрацией 100-200 г/ дм3 с получением десорбированного низкоосновного полимеризационного анионита, который, повторно, направляют на операцию сорбции титана и десорбата.

Десорбат с операции сорбции титана направляют на получение высокодисперсного нанокристаллического диоксида титана. С этой целью формируют реакционный объем из дистиллированной воды и осуществляют осаждение гидратированного оксида титана путём введения десорбата с операции сорбции титана в реакционный объем при перемешивании и при поддержании постоянного значения рН реакционного объема на уровне от 4 до 5 включительно за счет контролируемого введения в реакционный объем водного раствора аммиака с концентрацией 5-25 г/дм3. После завершения стадии осаждения проводят выдержку полученной суспензии гидратированного оксида титана при перемешивании. Далее проводят фильтрацию суспензии гидратированного оксида титана, промывку гидратированного диоксида титана, сушку и обжиг промытого осадка. Предпочтительно, сушку проводить при температуре от 100 до 1200С до постоянной массы осадка. Обжиг осадка может проводиться при температуре от 200 до 9000С.

Осуществление заявляемого способа подтверждается фигурами и следующими примерами.

Пример 1.

Гидролизную серную кислоту приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ 1:3. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией 10 г/дм3. Отмытый экстрагент реэкстрагировали щелочным агентом с содержанием NaOH:Na2CO3 1:3. Рафинат экстракции скандия пропускали через стеклянную колонку диаметром 10 мм и высотой 30 мм заполненную низкоосновным поликонденсационным анионитом, со скоростью 3 объёма раствора через объём анионита в час. После этого, маточник сорбции кислоты, пропускали через колонку диаметром 10 мм и высотой 30 мм, заполненную низкоосновным полимеризационным анионитом, со скоростью 25 объёмов раствора через объём анионита в час. Далее, через колонку с насыщенным низкоосновным полимеризационным анионитом пропускали раствор соляной кислоты с концентрацией 100 г/дм3. Полученные растворы проанализировали на содержание основных компонентов. Результаты анализов представлены на фиг. 1. Из данных видно, что в результате операции сорбции/десорбции на низкоосновном полимеризационном анионите удаётся получить чистый солянокислый раствор титана, пригодный для получения высокодисперсного нанокристаллического диоксида титана.

Для получения высокодисперсного нанокристаллического диоксида титана в химический стакан отбирают 0,5 дм3 солянокислый раствор титана, полученного на предыдущей стадии. Далее готовят водный раствор аммиака с массовой концентрацией 10%. Для этого в химический стакан вводят 0,3 дм3 концентрированного раствора аммиака (массовая концентрация 24%) и 0,4 дм3 дистиллированной воды. После смешения компонентов получают водный раствор аммиака. Для осуществления осаждения нанокристаллического диоксида титана в реактор, снабженный мешалкой и датчиком рН вводят 0,5 дм3 дистиллированной воды. Далее при помощи перистальтических насосов проводят контролируемое дозированное введение солянокислого раствора титана и водного раствора аммиака в реакционный объём при перемешивании, причем значение рН в реакционном объеме поддерживается в диапазоне от 4 до 6 за счет балансировки скоростей введения обоих растворов. После введения всего объема общего солянокислого раствора титана полученную суспензию выдерживают в течение 2 часов, проводят фильтрацию суспензии, полученный осадок помещают в сушильный шкаф, сушку осадка проводят при температуре 1000С в течение 12 часов. После этого осадок обжигают в муфельной печи при температуре 6000С в течение 2 часов.

После обжига проводят определение доли частиц с размером менее 1 мкм по ГОСТ 9808-84 и определение фазового состава и размера области когерентного рассеяния при помощи метода рентгеновской дифракции. На фиг. 2 представлены результаты определения характеристик диоксида титана, полученных по примеру 1, 2 и 3.

Пример 2 (сравнительный).

Синтез диоксида титана из гидролизной кислоты проводили также, как и описано в примере 1, только значение рН в реакционном объеме в процессе осаждения поддерживается в диапазоне от 3 до 4.

Пример 3 (сравнительный).

Синтез диоксида титана из гидролизной кислоты проводили также, как и описано в примере 1, только значение рН в реакционном объеме в процессе осаждения поддерживается в диапазоне от 6 до 7.

Пример 4 (сравнительный).

Синтез диоксида титана из гидролизной кислоты проводили также, как и описано в примере 1, только осаждение гидратированного оксида титана вели путем приливания водного раствора аммиака с концентрацией 10 г/л в солянокислый раствор титана при перемешивании.

Пример 5 (сравнительный).

Гидролизную серную кислоту приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ 1:3. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией 10 г/дм3. Отмытый экстрагент реэкстрагировали щелочным агентом с содержанием NaOH:Na2CO3 1:3. Рафинат экстракции скандия пропускали через стеклянную колонку диаметром 10 мм и высотой 30 мм заполненную низкоосновным поликонденсационным анионитом, со скоростью 3 объёма раствора через объём анионита в час. После этого, маточник сорбции кислоты, пропускали через колонку диаметром 10 мм и высотой 30 мм, заполненную низкоосновным полимеризационным анионитом, со скоростью 25 объёмов раствора через объём анионита в час. Далее, через колонку с насыщенным низкоосновным полимеризационным анионитом пропускали раствор серной кислоты с концентрацией 100 г/дм3 и концентрацией перекиси водорода 10 г/дм3. Полученные растворы анализировали на содержание основных компонентов. Состав раствора приведен на фиг. 3. Для получения диоксида титана в химический стакан отбирают 0,5 дм3 сернокислого раствора титана, полученного на предыдущей стадии. Далее готовят водный раствор аммиака с массовой концентрацией 10 %. Для этого в химический стакан вводят 0,3 дм3 концентрированного раствора аммиака (массовая концентрация 24%) и 0,4 дм3 дистиллированной воды. После смешения компонентов получают водный раствор аммиака. Для осуществления осаждения диоксида титана в сернокислый раствор титана при перемешивании вливают водный раствор аммиака. После введения всего объема водного раствора аммиака полученную суспензию выдерживают в течение 2 часов, проводят фильтрацию и обработку осадка также, как и в примере 1.

Способ переработки гидролизной серной кислоты, включающий экстракцию скандия из гидролизной серной кислоты на экстрагенте, состоящем из смеси Ди2ЭГФК и ТБФ, промывку насыщенного экстрагента раствором серной кислоты HSO 50-200 г/дм и перекиси водорода НО 5-20 г/дм, реэкстракцию скандия раствором, состоящим из смеси NaOH и NaCO, сорбцию серной кислоты из рафината экстракции скандия на низкоосновном поликонденсационном анионите при объемном соотношении рафинат экстракции скандия:низкоосновный поликонденсационный анионит (1-3):1, десорбцию серной кислоты водой при объемном соотношении насыщенный низкоосновный поликонденсационный анионит:вода 1:(1-3), сорбцию титана из маточника сорбции серной кислоты низкоосновным полимеризационным анионитом при объемном соотношении низкоосновный полимеризационный анионит:маточник сорбции серной кислоты 1:(5-20), десорбцию титана, отличающийся тем, что операцию десорбции титана ведут раствором соляной кислоты HCl 100 г/дм с получением десорбата, который направляют на получение диоксида титана путем формирования реакционного объема из дистиллированной воды и осуществления осаждения гидратированного оксида титана путём введения десорбата в реакционный объем при перемешивании и при поддержании постоянного значения рН реакционного объема на уровне от 4 до 6 включительно за счет контролируемого введения в реакционный объем водного раствора аммиака, последующей выдержки полученной суспензии гидратированного оксида титана при перемешивании, фильтрации суспензии гидратированного оксида титана, промывки гидратированного диоксида титана, сушки при температуре от 100 до 120°С до постоянной массы осадка и обжига от 200 до 900°С.
СПОСОБ ПЕРЕРАБОТКИ ГИДРОЛИЗНОЙ СЕРНОЙ КИСЛОТЫ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 207.
25.08.2017
№217.015.b13a

Быстровозводимое каркасное здание

Изобретение относится к области строительства, в частности к быстровозводимым каркасным зданиям. Технический результат изобретения заключается в повышении прочности конструкции. Быстровозводимое каркасное здание содержит фундамент, стены, межэтажные перекрытия. Стены здания состоят из двух...
Тип: Изобретение
Номер охранного документа: 0002613060
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b162

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора используют ионит...
Тип: Изобретение
Номер охранного документа: 0002613238
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b171

Литая латунь

Изобретение относится к области металлургии, в частности к составу многокомпонентных деформируемых медных сплавов, содержащих Zn, Mn, Al, Si, Ni, Cr и предназначенных для получения литых заготовок, подвергающихся пластической обработке для изготовления деталей, работающих в условиях повышенного...
Тип: Изобретение
Номер охранного документа: 0002613234
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b181

Навигационная система зондирования атмосферы

Изобретение относится к радиотехнике и может быть использовано в системах радиозондирования атмосферы на основе использования сигналов глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат - повышение точности и надежности определения пространственных координат...
Тип: Изобретение
Номер охранного документа: 0002613153
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b207

Порошковая проволока для нанесения покрытий, стойких к абразивному износу и высокотемпературной коррозии

Изобретение относится к области металлургии, а именно к порошковым проволокам для нанесения покрытий, и может быть использовано для защиты поверхности деталей, работающих в условиях воздействия частиц абразива и высоких температур. Порошковая проволока состоит из стальной оболочки и сердечника,...
Тип: Изобретение
Номер охранного документа: 0002613118
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b44e

Способ неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев методом рентгеноструктурного анализа

Использование: для неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев. Сущность изобретения заключается в том, что выбирают место контроля и строят градуировочную кривую для каждого вида полуфабрикатов, получают дифракционный спектр...
Тип: Изобретение
Номер охранного документа: 0002614023
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b452

Способ количественного определения триазавирина методом вольтамперометрии (варианты)

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002614022
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b568

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Устройство содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор...
Тип: Изобретение
Номер охранного документа: 0002614181
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b57e

Способ определения статического давления в некалиброванной камере высокого давления

Изобретение относится к измерительной технике и может быть использовано для определения величин давления (в том числе высоких и сверхвысоких) и интервалов давлений в камерах синтеза материалов, а также при проведении исследований конденсированных фаз в условиях высоких давлений. Для...
Тип: Изобретение
Номер охранного документа: 0002614197
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b595

Способ определения антиоксидантной активности с использованием метода электронно-парамагнитной резонансной спектроскопии

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности (АОА). Сущность заявляемого способа заключается в том, что определение АОА проводят по разности количества парамагнитных частиц...
Тип: Изобретение
Номер охранного документа: 0002614365
Дата охранного документа: 24.03.2017
Показаны записи 31-36 из 36.
23.05.2023
№223.018.6e46

Способ переработки сбросного скандийсодержащего раствора уранового производства

Изобретение относится к металлургии цветных металлов, а именно к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов. Способ включает операцию экстракции скандия на твердом экстрагенте ТВЭКС, реэкстракцию скандия, возвращение реэкстрагированного ТВЭКС на...
Тип: Изобретение
Номер охранного документа: 0002795930
Дата охранного документа: 15.05.2023
23.05.2023
№223.018.6e62

Способ комплексной переработки сидеритовых руд

Изобретение относится к черной металлургии, а именно к переработке высокомагнезиальных сидеритовых руд. Способ включает дробление и грохочение исходной руды, магнетизирующий обжиг, сухую магнитную сепарацию, доизмельчение извлеченной магнитной фракции, выщелачивание из нее магния, выделение...
Тип: Изобретение
Номер охранного документа: 0002795929
Дата охранного документа: 15.05.2023
05.06.2023
№223.018.772a

Способ производства оксидных композиций церия-циркония и редкоземельных элементов

Изобретение предназначено для использования в составе трехмаршрутных катализаторов очистки выхлопных газов автомобилей. Способ производства оксидных композиций церия-циркония включает приготовление общего раствора с концентрацией от 10 до 100 г/дм в пересчете на конечную композицию, содержащего...
Тип: Изобретение
Номер охранного документа: 0002766540
Дата охранного документа: 15.03.2022
16.06.2023
№223.018.7a2f

Способ производства автомобильного трехмаршрутного катализатора

Предложен способ производства автомобильного трехмаршрутного катализатора. Способ содержит стадии приготовления водной суспензии, содержащей композицию на основе оксидов церия и циркония, оксид алюминия, соль модификатора и раствор соли драгоценных металлов; нанесение суспензии на субстрат,...
Тип: Изобретение
Номер охранного документа: 0002738984
Дата охранного документа: 21.12.2020
16.06.2023
№223.018.7b8d

Способ синтеза композиции на основе оксида алюминия и твердого раствора оксидов церия и циркония

Изобретение относится к способам получения композиционных порошковых материалов гидрометаллургическим способом, а именно к композициям на основе стабилизированного оксида алюминия и твердого раствора оксидов церия и циркония, которые могут быть применены как носители каталитически активной фазы...
Тип: Изобретение
Номер охранного документа: 0002755558
Дата охранного документа: 17.09.2021
16.06.2023
№223.018.7c1a

Способ приготовления биметаллических палладий-родиевых катализаторов (варианты)

Изобретение относится к способам (вариантам) получения каталитических композиций, применяемых в качестве трехмаршрутных катализаторов нейтрализации автомобильных выхлопных газов. Первое изобретение относится к способу приготовления биметаллических палладий-родиевых катализаторов, включающему...
Тип: Изобретение
Номер охранного документа: 0002744920
Дата охранного документа: 17.03.2021
+ добавить свой РИД