×
18.12.2019
219.017.ee33

Результат интеллектуальной деятельности: Устройство и способ определения фильтрующих свойств керамических фильтров по расплавленной смеси галогенидов щелочных металлов

Вид РИД

Изобретение

Аннотация: Группа изобретений предназначена для определения фильтрующих свойств пористых керамических фильтров в форме цилиндров с боковой фильтрующей поверхностью по расплавленной смеси галогенидов щелочных металлов, например, хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов. Устройство для определения фильтрующих свойств керамических фильтров содержит рабочую кварцевую ячейку для размещения фильтруемой среды в виде расплава галогенидов щелочных металлов эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов, установленную в ячейке кварцевую трубку для удерживания испытываемого фильтра в виде пористого керамического материала в форме цилиндра с боковой фильтрующей поверхностью, причем образец фиксируется с помощью герметизирующих уплотнений, кварцевый капилляр для отбора проб фильтрата, трубку барботера для перемешивания фильтруемой среды, нагревательный элемент для создания и поддержания расплавленного состояния фильтруемой среды. Способ для определения фильтрующих свойств керамических фильтров включает подготовительный этап, на котором готовят фильтруемую среду путем разогрева смеси галогенидов щелочных металлов эквимолярного состава и мелкодисперсных оксидов до температуры, превышающей температуру плавления хлоридов, но не превышающую температуру плавления мелкодисперсных оксидов; основной этап, на котором пропускают через испытываемый фильтр фильтруемую среду, при этом поддерживают полученную на первом этапе температуру и выполняют постоянное перемешивание фильтруемой среды, а процесс фильтрации ведут таким образом, чтобы внутри испытываемого образца фильтра не достигалось максимальное заполнение фильтратом, для чего отбирают избыток фильтрата; заключительный этап, на котором определяют производительность и тонкость фильтрации испытываемых керамических фильтров. Для определения номинального расхода фильтрата делят полную массу отобранного на втором этапе фильтрата на полное время его отбора. Для определения удельного расхода фильтрата делят полученное значение номинального расхода фильтрата на свободную площадь боковой фильтрующей поверхности испытываемого образца фильтра, определяемой как 2πRL, где R - внешний радиус испытываемого образца фильтра, L - длина испытываемого образца фильтра, находящаяся в фильтруемой среде. Для определения номинальной тонкости фильтрации определяют размеры частиц той фракции мелкодисперсных оксидов, которую обнаруживают в отобранном на втором этапе фильтрате при заданном коэффициенте отсева. Для определения абсолютной тонкости фильтрации определяют максимальные размеры частиц мелкодисперсных оксидов в отобранном на втором этапе фильтрате. Технический результат: обеспечение возможности определения производительности и тонкости фильтрации керамических фильтров. 2 н. и 4 з.п. ф-лы, 1 ил.

Заявляемая группа изобретений предназначена для определения фильтрующих свойств, а именно: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата) пористых керамических материалов (фильтров) в форме цилиндров с боковой рабочей (фильтрующей) поверхностью по расплавленной смеси, в частности хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов. Устройство и способ могут быть применены для входного контроля (контроля годности и отбраковки) керамических фильтров, используемых в технологических операциях разделения расплавов и содержащихся в них частиц твердой фазы в технологиях переработки отработанного ядерного топлива, а также при проведении научных исследований, касающихся развития таких технологий.

Известен широкий круг методов и устройств, которые могут быть применены в том числе для входного контроля и отбраковки фильтров. Это, например, методы и устройства:

– визуального контроля;

– микроскопии (оптической и электронной);

– бесконтактных оптических измерений (с применением сканеров, триангуляционных и теневых схем измерений);

– неразрушающего контроля (ультразвуковые исследования, рентгеновские исследования, томография) и другие аналогичные.

Эти известные методы и устройства применяются на практике и позволяют отбраковать фильтры по геометрическим размерам, сколам, трещинам, иным нарушениям однородности или целостности рабочей (фильтрующей) поверхности.

Однако ни один из этих известных способов и устройств не позволяет провести непосредственную оценку фильтрующих свойств (в том числе: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата)) пористых фильтров. Отметим, что непосредственная оценка фильтрующих свойств фильтра не может быть выполнена без фильтруемой среды, поскольку известно (Зуборев А.И., Кравцов А.Г. Принципы, методы и средства испытаний полимерных волокнистых фильтров для очистки газовых сред // Технологии техносферной безопасности. – 2014. – №. 1. – С. 53), что фильтрующие свойства фильтра зависят не только собственно от характеристик и конфигурации материала фильтра, но и от параметров фильтруемой жидкости и условий процесса фильтрации. Таким образом применение указанных выше известных методов в ряде практических случаев оказывается недостаточным для контроля годности и отбраковки фильтров. Особенно остро этот недостаток проявляется при выполнении входного контроля (контроля годности и отбраковки) керамических фильтров, используемых в технологических операциях разделения расплавов и содержащихся в них частиц твердой фазы в технологиях переработки отработанного ядерного топлива, а также при проведении научных исследований, касающихся развития таких технологий.

Известна группа способов и устройств для непосредственного определения фильтрационных свойств фильтров, основанных на сорбционных, дифракционных явлениях, применении методов оптической (видимой) и электронной микроскопии, а также акустических, емкостных эффектах (Начинкин О.И. Полимерные микрофильтры. М.: Химия, 1985. 216 с.). Эти методы и устройства позволяют оценивать качество фильтрации загрязненных твердыми частицами газовых потоков и строятся на оценке изменения соответствующих показателей фильтров (массы, особенностей взаимодействия с электромагнитным и акустическими волнами, взаимодействии с переменным электрическим током).

Однако эти известные способы и устройства были разработаны для определения фильтрационных свойства полимерных фильтров для случаев очистки газовых сред, загрязненных твердыми взвешенными частицами. Они не могут быть применены для определения фильтрационных свойств керамических фильтров в условиях фильтрации расплавов при повышенных температурах.

Известны способ и устройство по ГОСТ Р ЕН779―2007 «Фильтры очистки воздуха общего назначения. Определение эффективности фильтрации». Устройство для испытаний по известному способу состоит из нескольких квадратных секций воздуховодов. Воздуховод известного решения должен быть выполнен из электропроводного материала, должен быть заземлен, иметь гладкие внутренние поверхности и быть достаточно жестким, чтобы сохранять свою форму при воздействии давления в процессе эксплуатации. В начале секции воздуховода известного решения находится смешивающее отверстие, в центре которого расположена форсунка для распыления пыли. После форсунки находится перфорированная пластина, предназначенная для обеспечения однородности распыления пыли. В последней трети этого воздуховода находится пробоотборник для аэрозоля, подаваемого на фильтр. В секции воздуховода устанавливается также измеритель расхода воздуха.

Однако особенностью известных способа и устройства по ГОСТ Р ЕН779-2007 является применимость исключительно для оценки фильтрационных свойств фильтра при очистке загрязненных газовых сред. Известный способ и устройство не могут быть применены для определения фильтрационных свойств керамических фильтров в условиях фильтрации расплавов.

Известны также другие способы и устройства для определения фильтрующих свойств фильтров для очистки газовых сред (например, технические решения по ГОСТ Р ЕН 1822-1-2010 «Высокоэффективные фильтры очистки воздуха ЕРА, НЕРА и ULPA. Классификация, методы испытаний, маркировка), которые также пригодны только для оценки фильтрующих свойств фильтров по газам и не могут быть применены для оценки фильтрующих свойств фильтров по расплавам.

Известны ГОСТ 16887-71 «Разделение жидких неоднородных систем методами фильтрования и центрифугирования. Термины и определения» и ГОСТ 26070-83 «Фильтры и сепараторы для жидкостей. Термины и определения», в которых даются определения фильтров и их фильтрующих свойств при работе с жидкими средами. Однако в этих известных источниках не указаны технические решения – устройства и способы, пригодные для определения фильтрующих свойств фильтров.

Наиболее близким к заявляемым способу и устройству являются способ и устройство по ГОСТ Р ИСО 4548-2-2012 «Методы испытаний полнопоточных масляных фильтров двигателей внутреннего сгорания», пригодные для непосредственного определения фильтрующих свойств фильтров и их отбраковки по этим свойствам. Известное по ГОСТ Р ИСО 4548-2-2012 устройство (испытательный стенд) содержит:

– испытываемый (масляный) фильтр;

– резервуар фильтруемого среды (масла);

– измерительный цилиндр – резервуар фильтрата (масла);

– насос для создания трансмембранного давления;

– клапаны для регулирования давления и потоков;

– измерители (расходомер, температурный датчик, манометры для измерения перепада давления на фильтре).

Определение свойств фильтров по известному ГОСТ Р ИСО 4548-2-2012 проводят в три этапа:

– на первом (подготовительном) этапе обеспечивают установку фильтра и подготовку устройства к работе;

– на втором (основном) этапе выполняют собственно фильтрационный процесс, пропуская через испытываемый (масляный) фильтр фильтруемую среду (масло) из резервуара при различных параметрах (температурах, давлениях и потоках масла), регулируемых клапанами и фиксируемых измерителями.

– на третьем (заключительном) этапе анализируя значения параметров, фиксируемые измерителями, делают выводы о свойствах испытуемого фильтра, в т.ч. его производительности.

Однако известные способ и устройство по ГОСТ Р ИСО 4548-2-2012 хотя и не исключают испытания керамических фильтров в форме цилиндров с боковой рабочей (фильтрующей) поверхностью, но явно рассчитаны на работу с маслом в качестве фильтруемой среды и не могут быть применены для фильтрации расплавов, в том числе расплавленной смеси хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов. Кроме того эти известные способ и устройство по ГОСТ Р ИСО 4548-2-2012 не позволяют определять такие фильтрующие свойства испытуемых фильтров как тонкость (номинальная, абсолютная) фильтрации.

Таким образом общими недостатками всех известных и описанных выше технических решений является их непригодность для определения фильтрующих свойств:

– пористых материалов (фильтров) в форме цилиндров с боковой фильтрующей поверхностью;

– по расплавленной смеси (расплавов) галоненидов щелочных металлов, в частности хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов.

Задачей изобретения является получение технического решения, не обладающего недостатками аналогов и прототипа, т.е. пригодного для определения фильтрующих свойств (а именно: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата)) пористых керамических материалов (фильтров) в форме цилиндров с боковой рабочей (фильтрующей) поверхностью по расплавленной смеси галогенидов щелочных металлов, в частности хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов.

Технический результат, достигаемый при реализации заявляемых устройства и способа – возможность определения свойств фильтрации
(а именно: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата)) пористых керамических материалов (фильтров) в форме цилиндров с боковой рабочей (фильтрующей) поверхностью по расплавленной смеси галогенидов щелочных металлов, в частности хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов.

Технический результат достигается за счет того, что заявляемое устройство для определения фильтрующих свойств керамических фильтров по расплавленной солевой смеси хлоридов содержит:

рабочую кварцевую ячейку для размещения фильтруемой среды в виде расплава (расплавленной смеси) галогенидов щелочных металлов эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов,

установленную в ячейке кварцевую трубку для удерживания испытываемого фильтра в виде пористого керамического материала в форме цилиндра с боковой рабочей (фильтрующей) поверхностью, причем образец фиксируется с помощью герметизирующих уплотнений, обеспечивающих фиксацию испытываемого образца фильтра в кварцевой трубке и недопускающих проникновение фильтруемой среды внутрь испытываемого образца фильтра в обход его боковой рабочей (фильтрующей) поверхности,

кварцевый капилляр для отбора проб фильтрата для последующего анализа,

трубку барботера для перемешивания фильтруемой среды и равномерного распределения нерасплавленных мелкодисперсных оксидов по всему объему фильтруемой среды,

нагревательный элемент для создания и поддержания расплавленного состояния фильтруемой среды.

Технический результат также достигается за счет того, что заявляемый способ определения фильтрующих свойств керамических фильтров по расплавленной солевой смеси хлоридов с помощью описанного устройства включает:

– подготовительный этап, на котором:

– собирают устройство для испытания и устанавливают испытываемый образец фильтра,

– готовят фильтруемую среду путем разогрева смеси галогенидов щелочных металлов эквимолярного состава и мелкодисперсных оксидов до температуры, превышающей температуру плавления хлоридов, но не превышающую температуру плавления мелкодисперсных оксидов;

– основной этап, на котором выполняют сам фильтрационный процесс с получением фильтрата:

– пропускают через испытываемый фильтр фильтруемую среду,

– при этом поддерживают полученную на первом этапе температуру для сохранения расплавленного состояния фильтруемой среды,

– и выполняют постоянное перемешивание фильтруемой среды с помощью трубки барботера,

– а процесс фильтрации ведут таким образом, чтобы внутри испытываемого образца фильтра не достигалось максимальное заполнение фильтратом, для чего отбирают избыток фильтрата с помощью кварцевого капилляра;

– заключительный этап, на котором определяют производительность и тонкость фильтрации испытываемых керамических фильтров, например, следующим образом:

– для определения номинального расхода фильтрата (производительности фильтра) делят полную массу отобранного на втором этапе фильтрата на полное время его отбора;

– для определения удельного расхода фильтрата делят полученное значение номинального расхода фильтрата на свободную площадь боковой фильтрующей поверхности испытываемого образца фильтра, определяемой как 2πRL, где R – внешний радиус испытываемого образца фильтра, L – длина испытываемого образца фильтра, находящаяся в фильтруемой среде;

– для определения номинальной тонкости фильтрации определяют размеры частиц той фракции мелкодисперсных оксидов, которую обнаруживают в отобранном на втором этапе фильтрате при заданном коэффициенте отсева (обычно 95%);

– а для определения абсолютной тонкости фильтрации определяют максимальные размеры частиц мелкодисперсных оксидов в отобранном на втором этапе фильтрате.

Сущность заявляемой группы изобретений поясняется фигурой, на которой изображена схема устройства.

Группа изобретений может быть реализована следующим образом.

Заявляемое устройство содержит:

– фильтруемую среду (3), представляющую собой при работе установки расплавленную смесь (расплав), например, хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов;

– испытываемый образец керамического фильтра (2) -керамический материал в форме цилиндра с боковой рабочей (фильтрующей) поверхностью, который может быть выполнен в виде полой трубки или стакана с непроницаемым днищем;

– фильтрат (1), представляющую собой прошедшие через испытываемый фильтр (2) компоненты исходной фильтруемой среды (3);

– кварцевую трубку (4), играющую роль держателя испытываемого фильтра (2) с возможностью начального (при установке фильтра) регулирования площади боковой поверхности фильтра, находящейся в расплаве (1);

– герметизирующие уплотнения (7), обеспечивающее фиксацию образца фильтра (2) в кварцевой трубке (4) и недопускающие проникновение расплава (3) внутрь фильтра (2) в обход его боковой рабочей (фильтрующей) стенки;

– кварцевый капилляр (5) для отбора проб фильтрата (1) для анализа, используемый в процессе работы установки;

– трубку (6) барботера для перемешивания твердой фазы (нерасплавленных мелкодисперсных оксидов металлов) в расплаве (3), что обеспечивает равномерное распределение твердой фазы по всему объему расплава (3);

– рабочую кварцевую ячейку (9) – резервуар, содержащий среду для фильтрации (3);

– нагревательный элемент в виде, например, термического нагревателя или печи (8) для создания и поддержания расплавленного состояния фильтруемой среды (3) и фильтрата (1).

Способ с применением заявляемого устройства может быть реализован в три этапа.

На первом (подготовительном) этапе собирают устройство для испытания, в том числе устанавливают испытываемый образец фильтра и готовят фильтруемую среду. В рабочую кварцевую ячейку (9) помещают заранее подготовленную смесь солей и оксидов (т.е. шихту будущей фильтруемой среды (3)), трубку (6) барботера и исследуемый образец фильтра (2), заблаговременно укрепленный через герметизирующее уплотнение (7) к кварцевой трубке (4). Нижний конец керамического фильтра (2) при необходимости (в случае если фильтр имеет форму полой трубки, а не стакана с непроницаемым днищем) предварительно также герметизируют при помощи уплотнителя (7). Затем включают печь (8) и добиваются разогрева содержимого ячейки (9) до температуры, при которой происходит расплавление солей загруженной смеси при сохранении в твердом состоянии мелкодисперсных оксидов. Таким образом внутри ячейки (9) получают жидкую фильтруемую среду (3) – расплав хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов.

На втором (основном) этапе выполняют фильтрационный процесс – пропускают через испытываемый фильтр фильтруемую среду. При этом температуру фильтруемой среды поддерживают на уровне, достигнутом на первом этапе, чтобы сохранить фильтруемую среду в виде расплава. Для обеспечения равномерного распределения твердой фазы ведут постоянное перемешивание с помощью трубки (6) барботера. Фильтруемая среда (3) под действием гидростатического давления начинает частично проникать через пористую боковую поверхность фильтра (2) внутрь, формируя там фильтрат (1). Фильтрат (1) содержит расплав хлоридов из среды (3), которые без изменений химического состава (соотношения компонентов) проникают через боковую пористую поверхность фильтра (2), и некоторое количество, зависящее от фильтрационных свойств фильтра (2) и размера мелкодисперсных нерасплавленных оксидов (от нуля до полного содержания оксидов в фильтруемом расплаве (3)), твердых мелкодисперсных оксидов из фильтруемой среды (3). При этом следят за тем, чтобы внутри фильтра (2) не достигалось максимальное заполнение расплавом (фильтратом), что важно для сохранения движущей силы фильтрационного процесса – трансмембранного давления, формируемого (как было указано выше) силами гидростатического давления. Для удаления избыточного количества фильтрата (1) ведут постоянный отбор среды (1) через кварцевый капилляр (5). Отобранные пробы и скорость отбора (при непрерывном отборе расплава (1)) или моменты времени их отбора (при регулярном отборе расплава (1)) сохраняют.

На третьем (заключительном) этапе производят анализ отобранных проб и определяют фильтрующие свойства пористых керамических материалов (фильтров) в форме цилиндров с боковой рабочей (фильтрующей) поверхностью по расплавленной смеси хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов.

Для определения номинального расхода фильтрата (производительности фильтра) делят полную массу фильтрата (1), извлеченной через капилляр (5) и взвешанной после этого на весах, на полное время его извлечения. Для определения удельного расхода фильтрата делят полученное значение номинального расхода фильтрата (производительности фильтра) на свободную площадь боковой рабочей поверхности фильтра (2), ограниченной с одной стороны нижним краем фильтра (2), а с другой –герметизирующим покрытием (7), обеспечивающим фиксацию образца фильтра (2) в кварцевой трубке (4). Размеры свободной боковой поверхности S фильтра рассчитываются как S = 2πRL, где R – внешний радиус испытываемого образца керамического фильтра (2); L – длина фильтра (2), находящаяся в расплаве (3), т.е. расстояние между нижним краем фильтра (2) и герметизирующим покрытием (7), обеспечивающим фиксацию образца фильтра (2) в кварцевой трубке (4).

Для определения номинальной и абсолютной тонкости фильтрации производят анализ отобранных через капилляр (5) проб фильтрата (1) на размер, прошедших через фильтр (2) нерасплавленных мелкодисперсных оксидов из расплава (3). Такой анализ можно выполнять, например, методами гранулометрического анализа, микроскопии и пр. По размеру самых крупных частиц мелкодисперсных оксидов, обнаруженных в пробах, определяют абсолютную тонкость фильтрации (абсолютная тонкость фильтрации измеряется в единицах длины, она численно равна размеру самой крупной частицы мелкодисперсного оксида, обнаруженного в пробе). Номинальную тонкость фильтрации определяют размером частиц той фракции мелкодисперсных оксидов, которую обнаруживают в пробах фильтрата (1) при заданном коэффициенте отсева (обычно 95%).

Таким образом определяют фильтрующие свойства, а именно: тонкости (номинальную и абсолютную) фильтрации и производительность (номинальный и удельный расход фильтрата) пористых керамических материалов (фильтров) в форме цилиндров с боковой рабочей (фильтрующей) поверхностью по расплавленной смеси, в частности хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов.


Устройство и способ определения фильтрующих свойств керамических фильтров по расплавленной смеси галогенидов щелочных металлов
Устройство и способ определения фильтрующих свойств керамических фильтров по расплавленной смеси галогенидов щелочных металлов
Источник поступления информации: Роспатент

Показаны записи 11-20 из 207.
13.01.2017
№217.015.67d6

Устройство для крепления кладки наружной стены к перекрытию

Изобретение относится к области строительства, а именно к устройствам, обеспечивающим крепление верхней части наружной ненесущей стены, выполненной кладкой из легкобетонных блоков, к перекрытию. Технический результат изобретения заключается в повышении несущей способности и технологичности...
Тип: Изобретение
Номер охранного документа: 0002591707
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.69b3

Способ прокатки трубной заготовки

Изобретение относится к области прокатки трубных заготовок в трехвалковых станах винтовой прокатки. Способ включает профилирование заднего конца заготовки в виде усеченного конуса. Минимизация глубины утяжины на заднем конце заготовки и уменьшение количества дефектов на внутренней и наружной...
Тип: Изобретение
Номер охранного документа: 0002591913
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6ed9

Способ производства сверхтонкой электротехнической анизотропной стали

Изобретение относится к черной металлургии и может быть использовано при производстве сверхтонкой текстурованной электротехнической стали (толщиной 0,01-0,10 мм), применяемой для изготовления магнитопроводов высокочастотных устройств. На промежуточной стадии производства изготавливается...
Тип: Изобретение
Номер охранного документа: 0002597446
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.715a

Бесплотинная гэс с принудительным разгоном текущего потока (варианты)

Группа изобретений относится к области гидроэнергетики и может быть использована для получения электрической энергии от использования гидравлических потоков, в том числе с малой скоростью движения воды. В варианте единичного агрегата устройство содержит накопительную емкость воды, заполняемую...
Тип: Изобретение
Номер охранного документа: 0002596478
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.728e

Способ повышения радиационной стойкости и стабилизации светопропускания германо-силикатных стекловолокон

Изобретение относится к германо-силикатным стекловолокнам. Технический результат изобретения заключается в снижении уровня радиационно-наведенного поглощения, повышении трансмиссионных свойств и надежности Ge-SiO стекловолокон, работающих в радиационных полях. Германо-силикатные стекловолокна...
Тип: Изобретение
Номер охранного документа: 0002598093
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7438

Применение соединений класса 1,3,4-тиадиазина в качестве средства коррекции экспериментального аллоксанового сахарного диабета

Изобретение относится к области медицины, в частности к экспериментальной фармакологии, новым биологически активным соединениям общей формулы I, представляющим собой 2-морфолино-5-фенил-6Н-1,3,4-тиадиазин, гидробромид (L-17); 2-морфолино-5-(4′-фторфенил)-6Н-1,3,4-тиадиазин, гидробромид (L-31),...
Тип: Изобретение
Номер охранного документа: 0002597764
Дата охранного документа: 20.09.2016
24.08.2017
№217.015.95e6

Шнековая волновая электростанция (варианты)

Группа изобретений относится к гидроэнергетике и может быть использована для выработки электроэнергии от движения волн в морях или океанах. Шнековая волновая электростанция содержит валы с закрепленными на них винтовыми лопастями, образующими одно- или многозаходные шнеки, расположенные под...
Тип: Изобретение
Номер охранного документа: 0002608795
Дата охранного документа: 24.01.2017
25.08.2017
№217.015.96e3

Кольцевой регулируемый термосифон

Изобретение относится к теплотехнике и может быть использовано для передачи тепловой энергии по вертикальным протяженным каналам в системах теплоэнергетики. Изобретение заключается в том, что в кольцевом регулируемом термосифоне, содержащем испаритель, конденсатор, трубу для транспорта пара,...
Тип: Изобретение
Номер охранного документа: 0002608794
Дата охранного документа: 24.01.2017
25.08.2017
№217.015.a13e

Установка для определения физических параметров высокотемпературного металлического расплава фотометрическим методом в вертикальной вакуумной электропечи

Изобретение относится к области физики и металлургии, а именно к устройствам, используемым в исследовательских и лабораторных работах для измерения физических параметров расплавов. Предлагаемая установка, содержащая подвесную систему в виде упругой нихромовой нити, на которой подвешены...
Тип: Изобретение
Номер охранного документа: 0002606678
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a373

Способ получения литого композиционного материала

Изобретение относится к области металлургии и может быть использовано для получения композиционных литых материалов для деталей транспортных средств, машин и оборудования. В способе осуществляют подготовку алюминиевой шихты, содержащей 20% лома алюминия и 80% лома алюминия с добавкой жидкого...
Тип: Изобретение
Номер охранного документа: 0002607016
Дата охранного документа: 10.01.2017
Показаны записи 11-20 из 64.
20.03.2015
№216.013.3220

Способ контроля основных компонентов хлоралюминатного расплава

Изобретение относится к области аналитической химии и может быть использовано для автоматического или экспресс-анализа в лабораторных или промышленных условиях. Способ контроля основных компонентов хлоралюминатного расплава включает определение мольного соотношения этих компонентов в жидком...
Тип: Изобретение
Номер охранного документа: 0002544307
Дата охранного документа: 20.03.2015
10.03.2016
№216.014.bf06

Способ тонкослойного электролитического получения свинца

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы,...
Тип: Изобретение
Номер охранного документа: 0002576409
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.dd29

Электрохимический способ получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% KWO, 25 мол.% LiWO и 45 мол.% WO в...
Тип: Изобретение
Номер охранного документа: 0002579119
Дата охранного документа: 27.03.2016
10.08.2016
№216.015.5626

Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий. Способ включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление...
Тип: Изобретение
Номер охранного документа: 0002593246
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a9b

Способ электрохимического получения порошка иридия с удельной поверхностью более 5 м/г

Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002600305
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.86ff

Способ электролитического алитирования изделий из низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании...
Тип: Изобретение
Номер охранного документа: 0002603744
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.90cc

Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного...
Тип: Изобретение
Номер охранного документа: 0002603844
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b31

Способ получения лигатурного сплава алюминий-бор

Изобретение относится к получению лигатурного сплава на основе алюминия, который может быть использован для очистки алюминия, получаемого электролизом, от переходных элементов. Способ получения лигатурного сплава алюминий-бор включает алюмотермическое восстановление борсодержащего компонента в...
Тип: Изобретение
Номер охранного документа: 0002610182
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a7dd

Способ обработки проволоки для катализатора, выполненной из металла платиновой группы

Изобретение относится к области электрохимической обработки металлов и может быть использовано при изготовлении катализаторов химических реакций. Способ обработки проволоки для катализатора, выполненной из металла платиновой группы, осуществляют переменным током в водном растворе минеральной...
Тип: Изобретение
Номер охранного документа: 0002611463
Дата охранного документа: 22.02.2017
+ добавить свой РИД